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The probability of Andreev re6ection is calculated as a function of the energy for quasiparticles
that are incident on a normal-metal-superconductor (S-g interface with a gradual variation of the
pair potential. These calculations are an extension of the work of 81onder, Tinkharn, and Klapwijk
[Phys. Rev. 8 25, 4515 (1982)],who assulned a step function for the position dependence of the pair
potential. %e integrate the Bogoliubov equations numerically in the region in which the pair poten-
tial varies with position and apply boundary conditions to find the quantities of interest. This ap-
proach is also used to calculate the geometrical resonances in the transmission of a tunnel junction
on an N-S bilayer. For a steplike variation of the pair potential, the same expression for the
transmission is found as with the usual density-of-states approach. Also results are given for a gra-
dual variation of the pair potential at the interface. Both the probability of Andreev refiection and
the geometrical resonance elects begin to change if the region in which the pair potential varies
with position becomes of the order of the coherence length of the superconductor.

I. INTRGDUCTION

In the BCS ground state of a superconductor, electrons
with opposite momentum and spin are condensed in
Cooper pairs. This is due to an attractive phonon-
mediated electron-electron interaction that is larger than
the repulsive Coulomb interaction. Below a specific
threshold energy, no excited states exist. The quasiparti-
cle states above that threshold are mixtures of electron
and hole wave functions. The coupling of these wave
functions is described in the Bogoliubov equations via a
pair potential h. In a normal metal, the pair potential is
zero, and there is no energy gap in the excitation spec-
trum. If an electron in a normal metal is incident on an
interface with a superconductor (N-S interface), the
change in the pair potential causes total or partial An-
dreev reflection. ' The electron is then refiected as a hole
while a Cooper pair is injected into the superconductor.
If the N-S interface is not perfect, the electron may also
be ordinarily refiected and, if its energy is larger than the
energy gap of the superconductor, it may be transmitted
as an excitation as well. Blonder, Tinkham, and
Klapwijk (BTK) showed that the Bogoliubov equations
are very suitable to describe the re6ection and transmis-
sion of quasiparticles at an N-S interface. They assumed
that, at the X-5 interface, 5 increases instantaneously
froIn zero 111 X to a collstallt valllc 111 S. Thc11 tllc sohl-
tions of the Bogoliubov equations in N and in S are sim-
ple; the probabilities of re8ection and transmission are
found by matching the two solutions at the N-S interface.
Ordinary scattering of quasiparticles at the interface is
taken into account via appropriate boundary conditions.

The assumption of a step-function for b,(x) is valid for
the small-area S-Sjunctions in which BTK were primari-
ly interested. In other geometries, for instance, a point
contact on an N-S bilayer, the Andreev-refiection process
induces a correlation between electron and hole states
near the interface in ¹ Unless the effective electron-
electron interaction in N is zero, this means that there is
a finite pair potential in N (proximity effectl). On the
other hand, the N metal causes a depression of the pair
potential in S that decays away from the interface.

In this paper, we extend the calculations of BTK to
study the efFect of a gradual variation of the pair poten-
tial near the N-S interface on the refiection and transmis-
sion coefficients of quasiparticles. Although in principle
the position dependence of lL should be calculated self-
consistently, ' we limit ourselves to an assumed h(x) (see
Fig. 1). In the region in which h(x) is not constant, the
Bogoliubov equations are solved numerically. At the N-S
interface, a 5-function potential is assumed to represent
the scattering of quasiparticles, and we allow a discon-
tinuity of b(x). Like in the calculation of BTK, the 5-
function potential is dealt with by means of boundary
conditions. At the starting point and at the end point of
the integration, the solution is matched to the solutions
for zero 6 and for constant 6 in X and S, respectively.
From the coeScients of the latter solutions, the probabili-
ties of refiection and transmission are deduced. The
method is described in Sec. II, while in Sec. III results for
different choices of h(x) are discussed and compared to
the BTK results.

Andreev refiection plays a crucial role in the origin of
the geometrical resonance eSects that are observed in the
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FIG. 1. Position dependence of the pair potential 5 that is
assumed in the calculation of the probabihties of re6ection and
transmission. The parameter Z indicates the scattering poten-
tial at the N-S interface.

calculations with a self-consistent b,(x).
At an N-S interface, the Cooper pairs of the supercon-

ductor leak into the normal metal, so the pair amplitude
changes gradually. The pair potential is given by the
product of the pair amplitude and the BCS potential that
describes the effective electron-electron interaction. If
the interaction is repulsive in X, the sign of the pair po-
tential in X is opposite to that in S. As an interesting
sidestep, we discuss in Sec. V the influence of b, (x) & 0 in
X on the probability of Andreev reflection and on the
geometrical resonance effects. In Sec. VI, the conclusions
are given.

differential conductance of tunnel junctions on S-S bi-
layers (for a review, see Ref. 5). The geometry is shown
in Fig. 2; the tunnel junction is represented by the 5-
function potential at x = —xr. An electron at the tunnel
junction in N that moves toward the N-S interface re-
turns to the tunnel junction as a hole. After ordinary
re6ection at the tunnel barrier and a second Andreev-
reflection process, it again returns to the tunnel junction
but now as an electron. This electron wave function in-
terferes with the original electron wave function. De-
pending on the energy of the quasiparticle, the interfer-
ence will be constructive or destructive, which leads to
maxima and minima in the differential conductance
versus voltage of the tunnel junction. Usually, the
differential conductance is interpreted as reflecting the
density of states of excitations in N. Then, the density of
states in a thin N slab with on one side an N-S interface
and on the other side a perfectly re6ecting boundary is
calculated by solving the Bogoliubov equations using
Green's functions techniques. ' Recently, the calcula-
tions have been extended using quasiclassical Green's
functions to thick N layers in which the position depen-
dence of the pair potential is no longer steplike. Howev-
er, BTK have shown that their approach of matching
solutions of the Bogoliubov equations can be applied to
calculate the differential conductance of an N-S tunnel
junction. The transmission of a tunnel junction on an
S-Sbilayer can be analyzed the same way. If a step func-
tion is chosen for h(x), we show that the results of the
density-of-states approach and the BTK approach are
identical. In Sec. IV, results for different choices of h(x)
are given and compared to the result for a step function.
The results are similar to those of the density-of-states
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FIG. 2. Position dependence of the pair potential 5 that is
assumed in the calculation of the geometrical resonance efFects.
The parameter Z indicates the tunnel junction.

II. BOGOI.IUBOV EQUATIONS

Because in the ground state electrons with opposite
momentum and spin are coupled, the elementary excita-
tions of a superconductor are not just single-electron
wave functions. An excitation with wave vector k is built
up from the creation of an electron with wave vector k
and the annihilation of an electron with wave vector
—k. The latter process can also be interpreted as the
creation of a hole excitation with wave vector k. In the
Bogoliubov-equation formalism, the excitations are
represented by a two-element column vector f (we will
follow the notation of BTK as much as possible):

f (x, t)
(x t)

The functions f(x, t) and g(x, t) obey the Bogoliubov
equations:

df A 8 —p(x)+ V(x) f (x, t)
Bt 2m

+b.(x)g (x, t), (la)

Bg fi 8
i% = — — —p(x)+ V(x) g (x, t)

dt 2m Qx2

+b,(x)f (x, t) (lb)

in which p(x), b,(x), and V(x) are the electrochemical
potential, the pair potential, and the ordinary potential,
respectively. In the normal metal far from the S-S inter-
face [A(x)=0], Eq. (la) reduces to the Schrodinger equa-
tion for electrons. Then Eq. (lb) is the time-reversed
Schrodinger equation, which may be interpreted as
describing a hole excitation. %e have assumed that the
potentials vary only in the x direction, the direction nor-
mal to the 5-S interface. Then the y- and z-dependent
parts of the wave function are plane waves and can be
disregarded; with k, the x component of the wave vector
is meant.

The Bogoliubov equations can be simplified by noting
the different length scales in it. Except for a step at the
N-S interface, p(x) is assumed to be constant. For V(x),
a 5 function is taken to represent the scattering of quasi-
particles at the N-S interface. The effects of the discon-
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tinuity of p,(x) and of the 5-function potential can be
combined in a 5-function potential with an effective
height. It is accounted for in the boundary conditions of
the solutions in X and in S and can therefore be omitted
from the differentia equation. The wave function oscil-
lates on a scale kF ', the inverse Fermi wave vector. As
b (x) is much smaller than p,(x}=i(I kF2/2m, the effects of
superconductivity on the wave function are limited to
small deviations of the wave vector from kF. For an exci-
tation with energy E, it is therefore convenient to take
trial solutions

f =27(x) exp(ikFx —iEt IA)

and

g =V(x) exp(ikFx —iEtlfi),

in which the functions u (x ) and V(x ) are assumed to vary
only on a scale that is much larger than kF '. Neglecting
higher-order terms, the Bogoliubov equations can be
written as:

=i ( m

/zan,

„) '[Eu —h(x )8'],
ax

i (mgcb, „—) '[EV—4(x)u ] .
x

The functions it(x }and 8'(x) vary on the scale of the BCS
coherence length

go —fiUF /(iri((, „—) =A~kF I(atm b, „),
which is indeed much larger than kF ' (lL „is the value of
the pair potential in S far from the interface). If for an
excitation with negative wave vector the trial functions

f =8'(x) exp( ikFx —iEt IR)—

This is, up to first order in (kF(0), the wave function
used by BTK. Far from the interface in N [4(x)=0], the
general solution is

i(k F+xN)x —i(kF —x& jx1=a0e +

1 i {kF+x~)x 0 i (kF —x~)x
+p (} e +5

1
e (4)

The four terms in Eq. (4) correspond to electrons
(

~
k

) & kF ) and holes (
~

k
~

& kF ) moving in positive
(a,P}and negative (y, 5) x direction, respectively.

Although Eq. (2) is a very convenient lnathematical
formulation of the Bogoliubov equations, it is a physical-
ly interesting sidestep to consider a difFerent formulation.
We take as a trial solution the wave function given in Eq.
(3} but we temporarily define uo Uo alld az in terms of
the local value of b,(x}. If this trial solution with the
proper time dependence is inserted in the Bogoliubov
equations [Eq. (1)],equations for the position dependence
of the coefficients a, P, y, and 5 are obtained. Neglecting
terms of second order in (kFgo)

' and expressing uo and

Uo in terms of i(((x), we find

aa ai)( ah 5Ee '"' — iaxi(
2(E —b ) gb, (E b, )'—

are defined also for all E ~0, the general solution of the
Bogoliubov equations for constant h(x) =6„is

Qo
(kF+ "S)x Uo {kF—"s)=a e e

UO uo

Qo —i {kF+z&)x Uo
&{kF—x&)x

+y e +5 e
UO Qo

and

g =P(x) exp( ikFx —iEtIA)—
a5 aa 5S—aEe""'" (5xa

ax 2(E2—g2) ~g g (E2—i( 2)l/2

(5)

are chosen, the same equations for u(x) and V(x} are ob-
tained. Thus the general form of the wave function in the
region in which h(x) varies with position is

u, (x),„Vb(x}

V, (x) ub(x)

in which the two sets of functions (u, b(x), V, s(x)) are
solutions of Eq. (2). If h(x )=8 „is constant, the solution
of Eq. (2) is

( )
'

'[Ey(E2 g2 )I/2]1/2 '

g(x) [Ey(E2 g2 )i/2]l/2

with its (E b, „)'/ (mgoh——) '—. For later use, we
define a.

N
—E(egos(i„} '. The—solution is valid for all en-

ergies E ~0 and is not limited to E ~ 5,„. If the usual
BCS coherence factors

(E2 i( 2 )I/2
2 2 QO

(M 0 = I —U o = j. +
2 E

with

& =[E'—Z2(x)]'"(~g,a„)-' .

The equations for p and y are found by replacing a with

p and 5 with y. Equation (5) clearly shows the Andreev-
re6ection process: If 6 varies with position, the
coefficients a and 5 influence each other. These are the
coefBcients of an electronlike quasiparticle moving in the
positive x direction (a) and a holelike quasiparticle mov-
ing in the negative x direction (5). The two coefficients P
and y also inhuence each other, but there is no coupling
between the two sets of coefficients. Only the potential
V(x} gives rise to a coupling between the two sets that
correspond to excitations with positive and negative wave
vector, respectively. For numerical calculations, Eq. (5)
is not very convenient because it contains a singularity at
b,(x)=E. The singularity is limited to the coefficients
and is due to the choice of the trial function. The wave
function itself shows no singularity. This is con6rmed by
the fact that the formulation of the Bogoliubov equations
ill Eq. (2}shows 110 slllgulal'lty.

%'e will analyze the probabilities of reAection and
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transmission of a quasiparticle incident on an S-S inter-
face that has a geometry as given in Fig. 1. At the inter-
face (x =0), the scattering potential
V(x) =Z(egos„)5(x) is located, and there is a discon-
tinuity in the pair potential 5 —6 . The parameter Z
describes the strength of ordinary scattering at the inter-
face. It contains a contribution of a 5-function potential
and a contribution due to the discontinuity of IM(x) (i.e.,
of the diff'erence of k~N and kzs ). For x &xs
[b,(x)=b,„]and for x & —xN [h(x)=0], the solution of
the Bogoliubov equations is given by Eqs. (3}and (4), re-
spectively. Like BTK, we are interested in the situation
with a single incoming electron wave in N, and we would
like to calculate the coefficients of the outgoing reffected
electron and hole waves in N and the coefftcients of the
outgoing transmitted electronlike and holelike waves in
S. These coem]Icients are de6ned for x ~ —xz and x gxz,
respectively, and the corresponding wave functions have
to be matched via a numerical solution of Eq. (2) in the
region —x~ & x &xs. This means, for instance, that
there is no incoming hole wave at x = —xz in N and that
there are no incoming waves at x =xs in S. These
boundary conditions are not very suitable for a numerical
solution because they apply at two different positions.
Therefore we choose the initial values of the coefficients
of the outgoing waves at x =x& and integrate back to
x = —XIv. If this is done for two independent sets of ini-
tial values, the relevant coefflcients can be deduced (de-
tails are given in the Appendix). The result is the proba-
bility currents A(E), 8(E), C(E), and D(E}
(A +8+C+D =1) that correspond to a quasiparticle
with energy E that is incident on the N-S interface.
A (E) and 8 (E) are related to Andreev-reffection and or-
dinary refiection processes, respectively, while C(E) and
D(E) denote transmission without and with change in
character (electronlike or holelike) of the quasiparticle.

Geometrical resonances are calculated for the
geometry of Fig. 2. The tunnel junction is represented by
a (very high) 5-function potential at x = —XT. For sim-

plicity, the 5-function potential at the X-S interface is
omitted. The quantity of interest is the transmission of
electrical current T, which is given by
T(E)=1—8(E)+A(E). This function can be calculat-
ed in a similar way as the probability currents for the N-S
interface of Fig. 1. Only the boundary conditions have to
be adapted because the geometry is different (details are
given in the Appendix).

Negative values of b,(x}in N can be directly inserted in

Eq. (2). In fact, if (u (x),V(x) ) is a solution of Eq. (2) with
b,(x), then (Q(x), —II(x)) is the solution with —5(x).
Often the phase of the wave function is not relevant but
in the application of boundary conditions it will make a
difference. It will therefore be interesting to calculate the
probability of Andreev refiection and the geometrical res-
onance effects also for b,(x}&0 in X.

D(E) (proofs are given in the Appendix). The probabi¹
ties C(E) and D (E) are zero for E & 4„,while, if Z =0,
the probabilities 8 and D are zero for all E. If b,(x}
changes on a scale that is small compared to (0, the BTK
results are reproduced. %e calculate the values of the
probabilities for the geometry given in Fig. 1. The shape
of b,(x) is assumed to be parabolic with zero slope at
x =—XIv and x =xs. For another shaPe of 5(x), Practi-
cally the same results are obtained as long as the effective
length over which /L(x) varies with position and the
values of b, + and d are the same. We take a small 5-
function potential at the N Sin-terface (Z =0.3},and we
set 2XIvl(ego)=2xs/(ego)=3 Th.e probability of An-
dreev reAection is given in Fig. 3 as a function of energy
for three sets of values (b, +,b, ). The curves for the oth-
er probabilities are omitted for clarity. For E gh„,
C =D =0, and B =1—A. For E & 6„,D tends to zero
on the same scale as A, while B and C tend to their high-
energy values 1 —8 =C =(1+Z ) '. The results for
A (E) are compared to the BTK result (the dashed lines
in Fig. 3). The fact that A&0 for E ~ b, „ is a standard
result of the quantum mechanics of a sharp potential
step, If the potential rises more gradually, A becomes
smaller. For E & b „,the effects of b, &0 and b, +&5„
are largest for low and higher energies, respectively. In
the curve for 6 =0.4b, „and 5+=6„,the influence of
the 5-function potential at x =0 is smaller for low quasi-
particle energy. This can be understood by realizing that
for E &h(x), the functions il and II are exponentially
damped, so that the value of the wave function at x =0 is
small. The maximum of A in the curve for b, =0 and
6+ =0.6h„ is due to a geometrical resonance eff'ect. For
E y b, +, it is possible that for a specific energy, the in-
coming electron wave and the Andreev-rejected hole
wave are both zero at x =0. Then the 5-function poten-
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III. PRGBASII.ITY GF ANDRKKV REFI.KCTIGN

Independent of the exact form of 6(x), some observa-
tions can be made about the values of the probabilities of
reflection A (E) and 8 (E) and of transmission C(E) and

FIG. 3. Energy dependence of the probability of Andreev
reAection of a quasiparticle incident on the N-S interface of Fig.
1 for three sets of (5+,6 ) values. The parameter Z=0.3,
while 2x~/{ego}=2x„/(ego}=3 The dashed line .is the BTK
result for Z =0.3.
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tial has no influence at all, and A equals unity. In the
curve for 4 =4+=0.54„,both effects are present.

1V. GEOMI;lNICAL RES@NANCE Erj. a,CI'8

Geometrical resonances occur, for instance, in the
geometry of Fig. 2. They are due to interference effects
of the wave functions of quasiparticles that feel a pair-
potential step on one side of the N slab and an ordinary
potential on the other side. The resonances manifest
themselves as sharp peaks or as oscillations in the
difFerential conductance (or transmission) of the tunnel
junction at x = —xz. The geometrical resonance effects
can be calculated in two different ways that correspond to
two diff'erent interpretations. The usual interpretation is
that the differential conductance of the tunnel junction
measures the density of states of the excitations in the
normal-metal slab backed by a superconductor. The den-
sity of states is obtained from the BoIIoliubov equations
using Green's-functions techniques. For E ~4„, the
probability of Andreev reflection is unity, and "bound
states" of the quasiparticles are found at specific energy
values. For E ~ 4„,the density of states shows maxima
that are due to "quasibound states. " A completely
difFerent approach is to calculate the transmission T of
electrical current of the complete structure of Fig. 2.
Such a calculation has already been done analytically, for
arbitrary Z and for a steplike variation of 4(x), by Hahn
as an extension of the calculations of BTK. In the Ap-
pendix, T/To is given in the limit of large Z
[Tp ——(1+Z )

' is the transmission coefficient of the tun-
nel junction if no superconductor is present]. This result
is identical to the result of the density-of-states approach.
The sharp peaks in the transmission for speci6c energies
E ~ 4„are due to the fact that, for those energies, A = 1

and 8 =0, so T =2 independent of the value of Z. This
can be understood by realizing that for specific energies it
is possible to have a solution of the Bogoliubov equations
with an incident electron wave function and an Andreev-
reflected hole wave function that both are zero at
x = —xr. Such a solution is not influenced by a 5-
function potential at that point.

Although the two interpretations are completely
difFerent, in the limit of a step-function for 4(x) the re-
sults are identical. Here, we calculate the transmission of
the structure of Fig. 2 in the limit of large Z for

ko) =2xs/(le p) =3

FIG. 4. Energy dependence of the normalized transmission
coeScient of the tunnel junction of Fig. 2 for four sets of
4,
'h, +,5 ) values. The vertical lines for E g h„correspond to
the singularities of T/T0. The parameter Z of the tunnel junc-
tion is assumed to be infinite, while 2xs/(li fp)=2 x/( flip)=3
and 2xr/(mgp) =4.

at x = —xr. In experiments, the most left N layer in Fig.
2 is often replaced +ith an S layer because the peak in the
density of quasiparticle states in a superconductor
reduces the effect of thermal smearing. Because of the
tunnel barrier at x = —xr, the geometrical resonance
effects are hardly influenced by the nature of the top lay-
er. We take a top N layer because then the calculation is
simpler. The results of the calculation for four sets of
(4+,4 ) values [including a steplike 4(x)] are given in
Fig. 4. For Ep)4„, the amplitude of the oscillations
scales with the discontinuity (4 4) at the inter—face.
For energies only slightly larger than 4„, the amplitude
is also influenced by the shift of the maxima. For
E ~4„, the positions of the peaks have shifted too.
These energy shifts can be related to phase shifts of the
wave function. The shifts to higher energies of the maxi-
ma in the curve for 4 =0.44„and 4+ =4„are due to
the fact that the effective thickness of the N slab is small-
er in this case than for a steplike variation of 4(x). These
results are very similar to the results of the density-of-
states calculation with a self-consistent 4(x).

2xT I(ngp)=4 .

We omit the 5-function potential at x =0 because the
combination of two such potentials leads to oscillations
on a very small energy scale due to interference e8'ects of
the exp(ik~x) parts of the wave functions. This effect
makes the numerical calculation much more complicat-
ed. Moreover, in a real sample, the thickness is not con-
stant on the scale of kF ', so - results for several
thicknesses have to be averaged, vrhich makes the small-
scale oscillations disappear again. To avoid these compli-
cations, me limit ourselves to a single 5-function potential

V. NEGATIVE PAIR PG& I;NTIAL

In the BCS theory of superconductivity, the effective
electron-electron interaction between electrons with op-
posite momentum and spin is represented by a single po-
telltlal —Vaos. For Vacs )0 (attractive lllteractloll), a
superconducting ground state of the electrons is found,
while for Va~ ~0, 5=0 is the only solution. As the
effective electron-electron interaction is the sum of an at-
tractive phonon-mediated interaction and the repulsive
Coulomb interaction, it may be negative in metals that do
not show superconductivity even at very low tempera-
tures. At an N-S interface, the superconductor in general
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induces a pair amplitude of the electrons in ¹ If in X
Vscs ~0, then the pair potential, which is the product of
the pair amplitude and V~, will be negative. Ho~ever,
N also in8uences S, and the position dependence of h(x)
should in principle be calculated self-consistently. Possi-
bly, the large negative value of 5 that we assume in our
calculation does not occur in such a self-consistent calcu-
lation.

In Fig. 5 results are given for the probability of An-
dreev remection and for the geometrical resonance efFects
for a negative tail of h, (x) in N (b = —0.4h „,
b, +=0.66,„). Figure 5(b) is very similar to the previous
results for positive b,(x) in ¹ The positions of the maxi-
ma are shifted somewhat in energy and the amplitude of
the oscillations for E ~ b „scales with the discontinuity
in b, at the interface (and apparently not with the discon-
tinuity of

~
b,

~

as also might have been expected). The
probability of Andreev reflection shown in Fig. 5(a)
confirms the observation that the discontinuity of 5 rath-
er than of

~
6 ) is important because, for E y 6„ the

curve is almost equal to the BTK result. For E ~ 5„the
probability of Andreev reSection differs strongly from the
results for positive b,(x) in N. The inhuence of the 5-

A

).0-

function potential is enhanced rather than diminished
while, for large enough values of Z, A even becomes zero
(8 then equals 1). This cannot be due to a geometrical
resonance efFect because in the region beyond the point
where

~

b(x)
~

=E in N, the functions u(x) and 0'(x) are
not oscillating. Possibly, the contributions to the
Andreev-rejected wave due to the decrease of 5 in N and
due to the increase of 6 at the interface and in S partly or
completely compensate each other.

VI. CONCLUSION

%'e showed that the probabilities of re6ection and
transmission of a quasiparticle incident on an S-S inter-
face with a gradually changing pair potential can be cal-
culated by numerically solving the Bogoliubov equations
near the interface and by applying appropriate boundary
conditions. This method can also be applied to find the
geometrical resonance effects in the transmission of a tun-
nel junction on an N Sbil-ayer. For a steplike variation
of the pair potential at the N Sinter-face, the results of
the usual density-of-states calculations are reproduced.
Both the probability of Andreev re6ection and the
geometrical resonance efFects begin to change if the re-
gion in which the pair potential varies with position be-
comes of the order of the coherence length of the super-
conductor. As the pair potential usually varies on this
scale, the inhuence of that variation should be taken into
account in a careful comparison of theory and experi-
ment.
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FIG. 5. (a) Energy dependence of the probability of Andreev
reflection of a quasiparticle incident on the N-S interface of Fig.
1 for 5 =—0.4h„and 5+=0.66„. The parameter Z =0.9,
while 2xs/(n fo)=2x~/(@go)=3. The dashed hne is the BTK
result for Z =0.9. The inset shows the position dependence of
5 near the interface. {1)Energy dependence of the normalized
transmission coe%cient of the tunnel junction of Fig. 2 for

= —0.48k„and 2k+ =0.66„. The parameter Z of the tunnel
junction is assumed to be infinite, while

2x g/(m/0) =2x~/(nfs) =3 and 2xr/(neo) =4.

APPENDIX

In order to obtain the probabilities of reflection and
transmission of an incoming quasiparticle from the nu-
merical solution of the Bogoliubov equations [Eq. (2)], ap-
propriate boundary conditions have to be applied. The
integration is performed from x =xz to x = —x~ (see
Fig. 1) for two independent sets of initial values at x =xs
that only contain outgoing quasiparticles. From the two
solutions (denoted with the indices 1 and 2), the probabil-
ities of reQection and transmission of a quasiparticle in-
cident in X can be reconstructed. For x & xz the genera1
solution is given in Eq. (3); we choose the two indepen-
dent solutions:

i (kF+as ~x
Qo

I 8
"o

Uo —s(kF —KS }x

Qo

For —x~ &x &xz, the wave function is of the form
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Q, (x)

V, (x)

iT& (.x)
e

Qi, (x)

(B1{+/ax)—(B1{-/ax ) =2k,Z1{+ . (A4b)

The wave function i' is given in Eq. (A2). The boundary
conditions are simplified by realizing that i7+b2 ——Q+„
V b2

——V+„, and that the other functions are zero. If we

again neglect terms proportional to BQ /ax and BV/ax in

Eq. (A4b), we find as initial conditions for the integration
for x &0:

i7, , =( I +iZ)Q +, , V „=(1+iZ)V+i,

Q b) = —lZV ~), V b) = —lZQ g)

Q g2=lZV g), 0 g2=lZQ g)

Q by=(1 —iZ)Q,+i, V bz
——(1 iZ)V,+,—.

Because the differential equation Eq. (2} is homogeneous,
common prefactors of u and P may be split o8'. This
means that for —xN &x &0, the two solutions for the
wave function can be written

Vbo(x)Qao(x)
1{,=(1+iZ) e iZ — e

V,p(x) Qbo{x)

in which the four sets of functions (Q,j(x),V,J(x)) and

(Qb (X. ),Vb (x. )) (j =1,2) are solutions of Eq. (2). The
boundary conditions at x =xs demand that g and ag/ax
are continuous. In the latter condition, terms that are
proportional to BQ /ax, BV/ax, and as may be neglected
with respect to terms proportional to kF (except in the
exponent). Then the initial conditions of the numerical
integration are

KsX
Q i(xs ) =Qb2(xs ) =Qpe

1Kgxg
Va i(xs )=Vbi(xs ) =Uoe

ub, (xs ) =u, i(xb )=0,
Vbi(XS)=Vai(XS)=0 .

Only a single integration of Eq. (2) has to be performed
from x =xs to x =0 because two sets of functions are
equal to zero (the differential equation is homogeneous),
and the other two sets are identical.

The potential V(x)=Z(irgph„}5(x) is taken into ac-
count via the boundary conditions at x =0 (indices
and —indicate the values of the functions for x 10 and
x t0, respectively):

(A4a)

functions with positive and negative wave vector get
DllXed.

For x & —xz, the general solution for the wave func-
tion is in principle given by Eq. (4}. The solutions f, and

gz we started with in Eq. (Al), correspond to a single out-
going electronlike quasiparticle and to a single outgoing
holeHke quasiparticle„respectively. Such solutions have
to correspond in N to mixtures of incoming electron and
hole wave functions with their respective reflected waves.
Therefore, for x & —xN, the wave function is written as

1 f (kF+ Kg )x 0 t(kF —K~ )x

0 +a, 1e
1 —I (kF+ K& )x

+b, 0e
I

0 —~(kF —KN )x 1 —
& (kF+K& )x

+'g
1

e +ay 0 e

0 I (kF —Kg )x
+b„

1
e (A6)

The coefficients a, and b, are the amplitudes of the
Andreev-reflected wave and the ordinarily reflected wave,
respectively, for an incident electron wave with ampli-
tude 1. The coeScients a& and b& are in magnitude equal
to a, and b„respectively, but may difFer in the phase fac-
tor. By applying the boundary conditions at x = —xz
(namely, continuity of f and of ap/ax), the coefIicients
a, b and b, b can be expressed in the solutions of the nu-
merical integration

~ap( XN } Qa ~ Vap{ XN } Va

Qbo( XN } ~b& Vbo( XN } Vb

The result is

( 1+Z )Q V —Z QbVb
ae= e

(1+Z }Q, Z i7b—

iZ(1 —iZ)(QbV —Q, Vb )

(1+Z )Q
' —Z'Q '

while ab ——a, and bb —— b, (1+iZ}/(—1 iZ) T—he am. pli-
tudes of the transmitted waves corresponding to a single
incident electron wave (c, and d, } or corresponding to a
single incident hole wave (c„and db ) can be deduced by
writing for x & xz.

T

Qo
l (kF+Kg )x Uo —l (kF —Kg )x

J=UJ ca e
Uo

+d~ e'
uo

Qbo(x) „u,p(x)
gz iZ—— e' F +(1 iZ) —e

Vbo(x) Q,o(x )

(A5)
Up Qp—f (kF —K~)x (kF+KS)+q cI, e +dI, e
uo

"
Uo

The sets of functions (Q,p{x),V,o(x)) and (Qbo(x), Vbp(x))
are two solutions of Eq. {2) with initial conditions
~ co=~ a)~ 0 ao=U a), and 9 ho=0 ~), V ho=a'~), respec
tively. In Eq. (A5} it is clear that only if Z+0, wave

These P should be equal to the wave functions we start-
ed with in Eq. (Al). The coefficients v and i)J. are known
from the foregoing calculation, so the amplitudes c, I, and
d~ I can be determlQed:
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(1—iZ)u,
Cq = e

(1+Z2) 2 Z2 2

EZQy —EK~X~N N

(1+Z } —Z g'2

(AS)

IK~X~ 0 —i {k~—K~)x
$2 ——ue

1
e

—i (k~+K~ )x

while cl, ——c,(1+iZ)l(1 i—Z) and ds ———d, . Following
8TK, we de5ne probabihty currents A, 8, C, and D for
the various wave-function components. These are given
by

~ = Iud, a I

C =
I c., l, I

'(
I uo I

' —
I uo I

'»
D = ld. , l I'( Iuo I' —Iuo I') ~

If the region near the N-S interface in which h(x) is not
constant is much smaller than go, the integration of Eq.
(2) over this region hardly changes g and K It can easily
be shown that then O', =5& ——uo exp(i~sxs ) and

V, =g& ——uo exp(iasxs) As. ~sxs and @~X' are very
small in this limit, Eqs. (A7) and (A8) reduce to the BTK
results. So deviations from the BTK results are only to
be expected if b,(x) varies on the scale of go. Two obser-
vations of BTK can be shown to hold also for this more
general situation. First, if Z =0, there is no ordinary
reffection and no transmission with change of character
of the quasiparticle (8 =D =0}. Secondly, if E & b, „,uo
and uo are comPlex conjugates, so C=D=0. If also
Z =0, 8 =0, and A necessarily equals 1. This also fol-
lows from the calculation because the initial values of g
and V are complex conjugates [note that for E & rh, „,~s in

Eq. (A3a) is imaginaryt. Then during integration of Eq.
(2), the functions remain complex conjugate and, for
Z =0, A =

I (0, /g, )exp( 2isjvx—z) I
=1.

To calculate the geometrical resonance elects, the
foregoing discussion has to be adapted only slightly. The
geometry is given in Fig. 2. The tunnel junction is
represented by a 5-function potential with very large Z at
x = —xT, while at the N-S interface no barrier is as-
sumed to be present to avoid interference effects due to
the exp(ik„x) parts of the wave functions. The quantity
to be calculated is the transmission coefficient T of the
whole geometry. That will be very low but it should be
scaled with To=(1+Z )

' the transmission coefficient if
no superconductor is present. If ihe charge current is
evaluated at x g —xT in N, T is given by T = 1 —8 + A.
Because there is no 5-function potential at the N-S inter-
face, the two solutions given by Eq. (A2} can be evaluated
all the way to x = —x~. The result is two numbers
g~ )( —xN }=ui 2( —xN ) =g~ aild Vg )( —x~ ) =Pi 2( —xpg )

=U, ; the other four functions are identically zero. For
—XT &x & —x~, the solutions are given by Eq. (4) with
the coeScients being determined by the boundary condi-
tions at x = —x~:

EK~X~ 1 *
l (kF +K~ )X

) =u~e (} e

—iKpg X~ 0 i {k+—K&)x+8'e
1

e

Now, for x & —xT, the wave functions of Eq. (A6) are
chosen and, at x =xT, they are matched to the above
solutions using the boundary conditions of Eq. (A4). The
results for the coeScients a, z and b, & are

—2iK x
P e N N

g2+Z2(g2 02 N T N
)

(A9)

g'. +Z'(g .'V2e '—"""' "'
)

—2I (kF+K'& )xTXe

T =1+2Re
To

4iK~(XT —XN )

V, e

2 4«N(x, -x~)9,—V, e

—2IKN(xT —XN ) 2 21K~(XT—x~ )u, e +V,e
—2iK&(x& —x& ) 2 2iK&(xT -xN )

f7 ge —V ge
(A10)

The latter expression for T/To is most suitable to dis-
cuss the energy range E & b, „.As has been discussed be-
fore, for those energies, u, and 8, are complex conju-
gates. Then the numerator is real while the denominator
is purely imaginary. This means that T/To equals zero
except if the denominator is zero, which is the case if the
phase factors obey

tan[2'~(XT —x~)]=1m(g, )/Re(g, ) . (A 1 1)

For speci6c values of the energy of the quasiparticles, this
condition may be fulfilled and T/To diverges. From Eq.
(A9) it foBows that, for these energies, 8 =0 and A =1,
so T =2 independent of the height of the tunnel barrier.
This can be understood by realizing that, for specific
values of the phase of the coeScient a„ it will be possible
to have an incident electron wave function and an
Andreev-refiected hole wave function that both are zero
at x = —xr. Such a wave function is not influenced by
the presence of a 5-function potential at that point (note
that there is no 5-function potential at the N Sinterface). -

If at the N Sinterface the -pair potential b,(x) varies
only on a scale that is much smaller than go, no numeric
integration has to be performed. The solution is then
given by i7, =uo and 8', =uo, while r&x& ——x&x& ——0.
Most other calculations of geometrical resonance effects

while aI, ——a, and

bl, ———b, exp(4ikFxT)(1+iZ)/(1 —iZ) .
In the limit of very large Z, the normalized transmission
coefficient T/To of the tunnel junction is given by
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assume such a steplike variation of b,(x). The condition
for the peaks of T/To for I & b,„,Eq. (Al 1), then is

l&2 —Ei)in
tan(2tt~xT )= E

This is exactly the condition that has already been found
by de Gennes and Saint-James. ' The expression for
T/Tz, Eq. (A10), reduces to

T = 1+2Re
To

2 4la~xT
Uoe

u2 U2e
'"N"T

0 0

This expression has also been obtained by calculating the
density of states of the normal-metal slab using Green's
functions to solve the Bogoliubov equations. So in the
limit of a steplike variation of b,(x), the two methods
yield identical results.
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