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NMR in super6uid He in a thin slab is studied in the Ginzburg-Landau regime. The predicted
qualitative difference in response from the bulk case of both the A and 8 phases suggests that NMR
can be a very sensitive experimental probe of the order parameter in severely con5ned geolnetries.
%'e present numerical solutions for the NMR frequencies.

I. INTRODUCTION

The presence of walls deforms the order parameter of
superBuid He from its bulk form. ' Near T, one can
calculate the efFect of the walls with Ginzburg-Landau
theory. Recent ex eriments on the Sow of He in
confined geometries ' (dimension of the order of the
coherence length) have measured two distinct critical
currents, the upper-critical-current density agrees with
the theoretical value. '" s However, such experiments are
not very sensitive to the detailed form of the order pa-
rameter. Moreover, the latest exhaustive theoretical re-
sults on the order parameter in a semi-in6nite geometry
have again studied only the superAuid mass and spin
currents. "'

The present paper demonstrates that nuclear magnetic
resonance (NMR) provides a much better measure of the
order parameter. As shown below, the resonance fre-
quency of the lowest spin mode is substantially different
for the A and 8 phases and depends strongly on the slab
width.

II. THEORY

The calculations are based on Leggett's theory' ' gen-
eralized to include the effect of gradient terms in the free
energy. ' ' In the linearized approximation (relevant to
continuous-wave NMR), the equations reduce to a
Schrodinger-like eigenvalue equation with coef6cients
that depend on the static value of the order parameter. '

These equations are then solved numerically.
%e first determine the precise form of the static order

parameter (see Sec. II A). Next, the Leggett equations for
the change in the spin vector due to the applied oscillat-
ing magnetic 6eld are derived in terms of the general stat-
ic order parameter (Sec. II 8). Then, in Sec. III, we spe-
cialize the Leggett equations to the A and 8 phases and
solve them.

A. Form of the static order parameter

It is worthwhile to consider the relative magnitudes of
the various contributions to the total free energy. The
dominant bulk term is'

+p2A„'; A„;A,*)A„J+piA„';A„';A„JA„

+p4 A „*;A „;A „'J A „J+ps A „'; A „;A „J.A „'I .

The next most important contribution comes from the
slow spatial variations of the order parameter. This is
written as'

Fz ——gzHqH„A „';A „; (3)

FD=&D(Aut Au. + A;i.Ai.,—
3 A„'i.A„i,»

where the characteristic field strength is
HD =(galgz)'~ —=25 G and the characteristic length is
Ln= (K2/gD)'~ —=6 pm. Thus a/gD=(K/( gD)
=1)&10 (1—T/T, ); for (T, —T)/T, »10, we may
treat the dipole term as a perturbation in any calculation
of the static order parameter. Similarly, since
(LDHD/)H) =6X10 (1—T/T, )/H G for strong
fields (typically, H =600 G) and ( T, —T)/T, » 10, the
magnetic 6eld may also be taken to be a small perturba-
tion. (We shall see below that these two perturbations lift
most of the degeneracy of the order parameter. )

Throughout our analysis we shall consider a thin slab
geometry with the two infinite planes lying perpendicular
to the x axis, with the static magnetic Seld in the x direc-
tion. Moreover, we shall express all dimensional lengths
and wave numbers in terms of the coherence length g( T).

1. A-Iike phase

We first derive the Ginzburg-Landau equations for the
A-phase order parameter. The bulk form of the A phase
is well known, but in the presence of walls it is no longer
the equilibrium state. As our ansatz we take

A„;=6„exp(itIz)d„[a2(x)y+ia3(x)z]; . (5)

where the functions az(x) and a3(x) are determined by
minimizing the bulk and gradient terms of the free ener-

(2)

In the weak-coupling limit, E&, E2, and E3 are equal.
Moreover, the temperature-dependent coherence length
is defined by (K2/a)'~ =g( T), where
g(T)=( —', )'~ go(l —T/T, )'~ and T, is the critical tem-

perature. From Greywall's data' we 6nd that for zero
pressure, go=6. 4)&10 m and T, =0.93 K. Finally, we
must include the magnetic energy term and the nuclear
dipole term if we are to describe the NMR response of
the superlluid. These are, respectively,
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gy, and the exponential describes uniform Sow in the z
direction with dimensionless momentum q. In bulk we
take az(x}=az(x)=1, which gives b~z ——a/4P~s. This
ansatz satisSes the boundary condition that the 1 vector
(equal to y Xz) be normal to the wall. ' The vector d is
still arbitrary. The Ginzburg-Landau equations are ob-
tained by substituting this form into Fo+F& and varying
with respect to az(x) and az(x). We find

az az(—q 1)———,'az[(a&+a 3 )+P(a z
—a z )]=0,

a z
—a&(3q —1)——,'az[(az +a 3 )+P(a z

—a z )]=0,
(6)

A&, b, &exp——(iqz)R„„A „;,
where

a) 0 0

0 a2 0

0 0 a3

(10}

where P =P»/Pz~~.
A relaxation technique is used to solve the equa-

tions. z'zz Clearly, for zero How (q=0} the equations are
degenerate, whence az ——a3. The d vector is fixed by in-

cluding the effects of the magnetic and dipole perturba-
tions as well as the Now. The applied static magnetic 6eld
Hox forces the d vector to lie in the y-z plane, while the
dipole energy tends to align d along the direction of flow.
If there is no Qow, then the d vector has no preferred
direction in the y-z plane. Hence, the lowest energy
configuration is always obtained with d in the z direction,
which remains the equilibrium state if the applied oscil-
lating rf field is in the x or y direction.

Thus the A-phase static order parameter is

A„, =h„exp(iqz)5„, [az(x)y+iaz(x)z];,

with az(x) and a&(x) given by the solution of (6) and (7).

2. B-like phase

The 8-phase order parameter is intrinsically more
complicated than the A-phase order parameter. As in
Ref. 5 we take as our ansatz

forced to lie parallel to the static magnetic Seld. This
step still leaves the rotation angle 8 to be determined.
%e can show that the derivatives of 8 are negligible rela-
tive to 8 itself. A straightforward calculation for zero
flow (az ——a3) shows that 8 satisfies the differential equa-
tion

8 z88
a3

Bx Bx

(z
z 03sln8(Q i +40zcos8)

L 2
(12)

where the a; (i=1,2,3) satisfy differential equations that
include gradients of 8 as factors. %e see that the right-
hand side is of the order of g /I. n «1 so we expect only
small variations in the value of 8 across the slab. In or-
der to verify this expectation explicitly, we may solve the
equations for a, and a& in the absence of the gradient 8
terms, z substitute the solution into Eq. (12), and see
whether the solution for 8 is approximately constant. As
expected, numerical studies show that to a very good ap-
proximation 8 is indeed constant except very close to the
walls. A variational calculation with 8 constant gives

1 xa] a2+a3
cos8= ——

x a2+a3
(13)

In the case of zero flow, a2 ——a3 and we recover the result
of Fujita et al Thu.s, the static form of the order pa-
rameter is completely determined.

We would like to consider brielly the form of the order
parameter in the case of large Sow in a wide channel.
The essential change is in the structure of the rotation
matrix: the original R (x,8) is augmented by an addition-
al rotation R(y, ,n}, w—hich minimizes the integrated
magnetic free energy whenever I dx (a, —a

& ) is positive.
As a result the n vector is no longer in the x direction,
with the consequence that the angle 8 differs substantially
from the value in (13). These changes give a three-
dimensional (3D} order parameter which is qualitatively
different from the form (9}, and we therefore expect a
discontinuous change with increasing flow to a very
different NMR response. we will not pursue this topic
here since to our knowledge, there presently do not ap-
pear to be any experiments planned which could measure
this en'ect.

R„=6„„cos8+h„h (1—cos8) —e„„;|z;sin8 .

In bulk, the normalization is such that a& ——a2 ——a3 ——1

for q=0 and a2 ——a3 remains generally true for zero Bow.
The constant uzi is given by b,z

——a/2(3P&z+P3~5).
Thuneberg et a/. ' have shown recently that this assump-
tion is indeed the correct form for A: all ofF-diagonal
elements in A are zero except in the presence of Row
when very small imaginary ol'-diagonal terms appear.
We substitute this into the total free energy and vary it to
obtain the Ginzburg-Landau equations.

The leading perturbation to Fo+Fz is the magnetic
energy Fz. For reasonably strong magnetic 6elds
(1 «H /Hn «Ln /g) without flow, the n vector is

8. The Leggett equations
for a conSned geometry

i3S,
i fi = [5;,8),

Bt
(14)

In this section we shall derive the Leggett equations for
the spin vector of superfiuid He in a confined geometry.
The analysis follows closely the approach of Buchholtz'
and is not novel. The one new feature is that the static
order parameter will appear explicitly as coeScients in
the difFerential equations for the spin vector. This, as we
shall show, renders the NMR frequency a sensitive func-
tion of the detailed form of the order parameter. We be-
gin with the Heisenberg equations of motion for the spin
density S and the order parameter A „,,
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iA " =[A„;,8],
Bt

where,

28= f dx S yS—;H;+FD+F~

Here 8 is the magnetic Seld, X is the normal-state mag-
netic susceptibility, and y=2. 04X10 (Gsec) '. The
commutation relations are given by [S;,Si]=i%a;jkSk
and [S;,A„]=itic;„„A„i.

In this paper, we shall consider the linearized form of
the Leggett equations only. Thus, writing
H=Hp+H'(t), S=Sp+S', and A;= Aq, + Aq, (t),

0
P,l JMl

where A „; is the static order parameter and Ho the con-
stant applied field, and using ySp ——XHp, we find, from
Eq. (15),

(where n is the unit vector normal to the wall) determine
the problem completely. In order to solve these equa-
tions we need consider the homogeneous part only.
Moreover, we can neglect the o8'-diagonal terms of the
operators X and Xa in the strong-field limit, i.e.,
(cop/coL ) « 1 where cop is the longitudinal resonance fre-
quency and ~I ——yHO is the Larmor frequency. Then the
longitudinal NMR response is given by the x component
of Eq. {20) while the transverse NMR response is found
from the y and z components of (20) (see Ref. 17).

III. SOLUTION OF THE LEGGETT EQUATIONS

We shall now proceed to solve the Leggett equations
for the A and 8 phases in a con6ned geometry. The re-
suits are summarized by Figs. 1-3. Although we present
results for T=O.9 K only, numerical studies show that
they are essentially unchanged for T=0.7 and 0.8 K.

I

p

Bt
—ye„, A„; H S

x (17) A. A-like phase

Next, we differentiate Eq. (14) and substitute for A„',.

from Eq. (17). This gives the required equation for S',
r

From Eqs. (20) and (8) we find for longitudinal and
transverse NMR, respectively,

~'Sk
pa'kmn

as' BHn'

(Hii )„+(Sp )

z
( a z +a

& } + ( a i —a i )S„' — S„' =0,
2 g2 Bx x Q2„

(22)

+(Xkm +/km ) Sm Hm =0, —(18)m y m

where X and Xa are functions of the static order param-
eter A„; (from now on we shall drop the superscript for
clarity), namely

&km =Re2gDr[Ai'; Akm+ Ak; A;m

+ek;ie ( A;'i A + A;q A~i)

1 LD a (a2+a2 )

2 2
NL —N—a 35'+ S' =0,0 A

(23)

where 0„=4gDy b, „/g.
Consider first the equation (22) for longitudinal NMR.

For zero How, a2 ——a3 and we expect no longitudinal reso-

—5i, (A; A "+A A;)],
Re2Kyekpq[e——p„A,„(2A, ,„+A „„)

+2eq„Ap'„( A,„+A, B„

+ A. „a,+ A.a,')

+e„A,'„(A,„„+2A„„,a, + A„„a,')]

1.0

0.6—

I

(
I I

(where 8„=8/Bx„and the commas denote
difkrentiation, e.g., A, ,„=—BiA, /Bx, Bx„). Finally, we
Fourier transform these equations with respect to time to
obtain a set of eigenvalue equations for the resonance fre-
quency ru,

cdzSk iytoek „[S'(H—p)„+(Sp) H„']

S.' —H.' =0. (20) 0.0

Thus, Eq. (20) together with the boundary condition '

BS'

boundary

(21)
FIG. 1. A-phase transverse resonance frequency of the

lowest spin mode as a function of dime nsionless width,

+2 2 2



37 NMR IN SUPERFLUID 'He IN A CONFINED GEOMETRY 5013

nance {the gradient terms are too small to give a measur-
able effect). However, Suite Sow results in a significant
positive-squared longitudinal resonance shift. Indeed, at
critical flow (for weak coupling) and neglecting the gra-
dient terms) one finds co& ———', Q„. The gradient terms
would tend to reduce this value.

Next, we see from Eq. (23) that there is no qualitative
dimerence for transverse NMR between the case for zero
flow alld flllltc Sow. Furthermore, since experiments arc
more hkely to investigate zero-Sow NMR, we shall
present results for this situation only. Introduce the
parameter A,, such that the transverse resonance frequen-

cy co, is given by co, =coL +A,,Q„. To leading order in

(Q„/col ), Eq. (22) reduces to

8 I BSy'
a3

" + (a3+A, , )S'=0 .
X BX

In order to solve this, and aB subsequent equations, we
use a multiple, variable step-size shooting method. l The
results of the calculation are given in Fig. 1. The expect-
ed downward shift is obtained for large width W. Indeed,
for this orientation, d 1=0, the bulk value is A, , = —1 as-
suming that the 1 vector remains spatially constant, i.e.,
the slab width is much less than 10 pm. Next, at the
critical width W=m [the actual width is Wo ——Wg(T)]
the frequency shift vanishes (in keeping with the fact that
there is no longer any super6uid phase). Finally, the
small dip in the curve between W=7 and 12 is a direct
consequence of the form of the static order parameter: a
plot of the square of the average amplitude of the com-
ponents of the static order parameter against width also
shows this behavior. (This is also seen in the results for
the 8-phase longitudinal NMR. )

, as„'
2p3

BX BX

2
gDC D ]5 I(X. , l

——,A, ( )S„=O,
J

& ll =Sal(1 —2cos'8) —Zalulcos8

where the longitudinal resonance frequency or& is given by
coI ——A, IQ& with Qs ——15gD y hs /X. The results are
shown in Fig. 2. Clearly, the most interesting feature is
the sharp drop in A, I at W=7, which is indicative of the
3D-to-planar-phase transition. The theory gives kf-
for a bulk planar state. We note that the bulk 3D value
of A,

&
——1 is attained at W= 50.

The calculation of the transverse NMR response is
slightly more complicated. We can, however, simplify
the equations considerably if we introduce the new vari-
ables S+ ——S~+iS,' and S =S» iS,'—Th. en, because
a2 ——a3 for q=O, we obtaina, , aS,

(3al+a3)
2

gnk
(X 33

——", A, , )S+ =0,

X 33
—a 3

—Za, —5a, a3cos8 403cos 8 .D 2 2 2 2

Here, the transverse resonance frequency co, is
co, =col+A, ,Q& to leading order in (Qs/co~) . In the
present case, the 30-to-planar-phase transition is even
more apparent in the nonlinear dependence of A, , on W
(see Fig. 3). Indeed, the cusp at W=7 is also seen in the

B. 8-like phase

Again, we shall solve the zero-Sow case (q=O) only.
The equation for the longitudinal NMR response is ob-
tained by substituting for 3„; in Eq. (20) from Eq. (9).
%e 6nd

1.0 l I I I I I

0.6—

0.0 I I I I I I I ~ I I

go 80
Q~~NSEONLESS imTH v

I I ~ I I I I I

fo 80
9~~ÃSEOHUP88 mbTH N

FIG. 2. 8-phase longitudinal resonance frequency of the

lowest spin mode as a function of dimensionless width,

N =XIQg.
FIG. 3. 8-phase transverse resonance frequency of the lowest

spin mode as a function of dimensionless width, co =coL +k, Qg.
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amplitude of the static order parameter. Once more, the

bulk value is achieved at W= 50 while in the absence of
the gradient terms the theory predicts k, =—,

' for the pla-

nar state.

Ao~ rate. %e hope that future experiments on superAuid
He in con6ned geometries mill attempt to measure these

predicted differences.

IV. CONCI. USION ACKNOWLEDGMENTS

%'e have demonstrated that NMR is, in principle, a
very sensitive probe of the order parameter of super6uid
'He. Perhaps most significantly, we have shown that the
NMR signal for the 8-like planar phase is very difFerent
from that for the A phase. Moreover, the longitudinal
NMR signal for the A phase is strongly dependent on the

I am grateful to M. R. Freeman for useful discussions.
I mould like to thank Professor A. L. Fetter for the innu-
merable, helpful comments and suggestions he made
throughout the course of this work. This research has
been supported in part by the National Science Founda-
tion (NSF), Grant No. DMR-84-18865.

'G. Barton and M. A. Moore, J. Low Temp. Phys. 21, 489
{1975).

L. H. Kjaldman, J. Kurkijirvi, and D. Rainer, J. Low Temp.
Phys. 33, 577 (1978).

3T. Fujita, M. Nakahara, T. Ohmi, and T. Tsuneto, Prog.
Theor. Phys. 64, 396 (1980).

4K, %. Jacobsen and H. Smith, J. Low Temp. Phys. 67, 83
(1983).

5A. L. Fetter and S. Ullah, Jpn. J. Appl. Phys. 26, 149 (1987).
6M. T. Manninen and J. P. Pekola, Phys. Rev. Lett. 48, 812

(1982);J. Low Temp. Phys. 52, 497 (1983).
K, Ichikawa, S. Yamasaki, H. Akimoto, T. Kodama, T. Shigi,

and H. Kojima, Phys. Rev. Lett. 58, 1949 (1987),
sJ. P. Pekola, J. C. Davis, Zhu Yu-Quu, R. N. R. Spohr, P. B.

Price, and R. E. Packard, J. Low Temp. Phys. 67, 47 (1987}.
9V. Y. Kotsubo, K. D. Hahn, and J. Parpia, Phys. Rev. Lett, 58,

804 (1987}.
'OJ. G. Daunt, R. F. Harris-Lowe, J. P. Harrison, A. Sachrajda,

S. Steel, R. R. Turkington, and P. Zawadzki (unpublished).
E. V. Thuneberg, Phys. Rev. 8 33, 5124 (1986).

'~E. V. Thuneberg, %. Zhang, and J. Kurkijarvi, Phys. Rev. 8
36, 1987 (1987).

'3A. J. Leggett, Ann. Phys. {N.Y.) 85, 11 (1974).
' A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

H. Smith, %'. F. Brinkman, and S. Engelsberg, Phys. Rev. 8
15, 199 (1975).
L. J. Buchholtz, Phys. Rev. B 18, 1107 (1977).

' S, Theodorakis and A. L. Fetter, J. Low Temp. Phys. 52, 559
(1983).
N. D. Mermin and G. Stare, Phys. Rev. Lett. 3Q, 1135 (1973).

'9D. S. Greywall, Phys. Rev. 8 33, 7520 {1986).
OJ. C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).
'V. Ambegaokar, P. G. de Gennes, and D. Rainer, Phys. Rev.

A 9, 2676 (1974}.
S. L. Adler and T. Piran, Rev. Mod. Phys. 56, 1 (1984}.

~ S. E. Koonin, Computationa/ Physics {Benjamin/Cummings,
Menlo Park, CA, 1986), Chap. 6.

24A. L. Fetter and S. Ullah, J. Low Temp. Phys. (to be pub-
lished).
M. R. Freeman, R. S. Germain, E. V. Thuneberg, and R. C.
Richardson (unpublished).

26%. H. Press, B. P. Flannery, S. A. Teukolsky, and W. Vetter-
ling, Numerica/ Recipes: The Art of Scientific Computing
(Cambridge University Press, New York, 1986), Chap. 16.


