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Phonon velocity and atomic interaction in superfluid He
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From %ard identities that take into account the condensate reservoir, the velocity of long-

wavelength phonons is obtained as a function of the condensate fraction and chemical potential. By
introducing an eN'ective He-atom scattering length s(T) that increases with decreasing temperature,
from s(T =Tz)=2.56 A to s{T=0)=3.13 A, excellent agreement between theory and experiment
is obtained for the phonon velocity and chemical potential in the entire super6uid region. As a re-

sult, the condensate fraction is such that no{T =0)=0.090 and it exhibits a rapid buildup just below

Tq, in agreement w'th recent 6nite-temperature Green's-function Monte Carlo studies.

I. INTRODUCTION

The crucial role the Bose broken symmetry has in the
6eld-theoretic description of superfluid 4He is now well
established. As first introduced by Bogohubov' for weak-
ly interacting systems and later generalized by Beliaev,
the order parameter is the ensemble average of the boson
field (f ) . On the basis of this macroscopic wave func-
tion, Gavoret and Nozieresi were able to show that in
the long-wavelength limit the density response and
single-particle Green's functions display the same phonon
spectrum. GriSn has recently discussed a more general
approach to the role of (P)&0 in connection with the
coupling of the density and Geld fluctuation spectra.

The breaking of the gauge symmetry in terms of a real
parameter g (0&(&1) such that the zero-mode amph-
tudes satisfy the commutation relation [bo, bo] = I —g, al-
laws for microscopic fluctuations of the particles in the
k=O state. As a consequence, the continuity equation
exhibits a source contribution and the additional terms
that appear in the %ard identities may be interpreted as
being due to the condensate reservoir.

The temperature dependence of the velocity of pho-
nons in superffuid He has long been of interest. Griffin
has conjectured that the slight variation of the phonon
velocity c ( T) with temperature is probably due to the
changing condensate density. In Sec. II of this paper,
the g formahsm is used with the shielded-potential ap-
proximation ' (SPA) in the superffuid region, T & Ti, to
show that

p=g(no —2) (1.2)

is the chemical potential measured in units of nUO. For
/=0, only the first term on right-hand side of Eq. (1.1)
survives and we recover the phonon velocity as deter-
mined by Szepfalusy and Kondor. The second term
comes from the condensate reservoir (f ~ 0), and because

c =(nUO/m)[no —(1+/)p],
where Uo is the interaction constant, rn the He-atom
mass, the total particle density n is taken as constant,
no(T) denotes the condensate fraction, and

of it the phonon velocity no longer vanishes at T&.
In the same frainework of the g formalism and the

SPA, the chemical potential per unit mass reads

IT, =(nUO/m )p„m ':—ym . (1.3)

In Sec. III it is shown that the simultaneous 6tting of
both Eqs. (1.1) and (1.3) to the respective experimental
data leads to a unique no( T) for a given effective-mass pa-
rameter y. This procedure also yields the temperature
dependence of the interaction constant, which is the sub-
ject of Sec. IV.

II. LONG-WAVELENGTH PHONON VELOCITY

ni, =—(biibo) V '=(1—()(aoao) V '+no, (2.3)

where ao is the usual k=O Bose annihilation operator, V
denotes the volume of the system, and no here is the con-

In the dielectric formulation of interacting Base sys-
tems, ' " the one-phonon excitation spectrum is deter-
mined by the poles of the full density-density response
function through the zeros of the dielectric function,

1 —Uo[X „„(k,ic)+X „„(k,ia) ]=0, (2.1)

where X „„and 7"„„arethe improper and proper parts of
the irreducible density-density correlation function, re-
spectively; and since we are only interested in the long-
wavelength limit, the interaction constant is taken as the
Fourier transform of the interatomic potential. The im-
proper contribution can be expressed in the form

C n7„„=A„"G„„A",

where G„are the irreducible Beliaev-type Green's func-
tions and A„" are the density vertex functions. The sum-
mation convention over repeated indices (p, v=+, —) is
assumed and f2= 1 is set throughout.

The proper part can be written in terms of regular
functions from %ard identities that take into account the
condensate reservoir. These identities are derived from
the continuity equation with a source term due to the pa-
rameter g in the definition of the zero-mode amplitudes,
such that
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densate density (not fraction) that vanishes if /=0. From
those Wai'd identltles [Eqs. (2.22}-(2.25} ill the secoild
paper of Ref. 5, with )no:—no] it is straightforward to
obtain

2

Vk
& [Ja Pa l &+m

continuation then gives

Xs„(k,w)=2(1 —g)gnUOV '[E (ea) —N (0)]

1 1
X +

w —Ea+kp w+ea k—p
(2.10)

—n '~2k 'P„A„—k 'X"
where X (ea) is the Bose distribution function. In the
SPA one has X (e„)=&a„a & and N (0)=&b b &/

(1—g};hence, it follows from Eq. (2.3) that

wXsn "0 wppAp+ &[pa~pa]& ~

[N (0)—N (ea)]/V =no/(1 —g) .
(2.4)

By substituting Eq. (2.11) in (2.10) we find

(2.11)

where pa and Ja are the density and longitudinal-current
operators, the subscripts and superscripts J and S in the
correlation and vertex functions refer to the
longitudinal-current and reservoir source, respectively,
and P„—:sgnp,. In the thermodynamic limit, the last term
of Eq. (2.4) vanishes and the first term within the
parentheses equals the overall density n

We now work out the general results (2.2) and (2.4) in
the SPA. From previous results the vertex functions in
this approximation are '

4(n, nU, w
X,"„(k,w) =-

w' —(sa —gp)'
(2.12)

n~ = —lllilm X JJ(k, 0) .
k~0

(2.13)

We consider next Eq. (2.8} in the low-frequency and
long-wavelength limit, (k, w)~0. Talbot and Griffin"
have shown that in the zero-frequency and long-
wavelength limit the normal fluid density satisfies the
sum rule

A" =n'" A'= 'kn'"P-
p Pf0 & p 2 Plo p &

(2.5) This implies, in turn, a superfluid density

and since the irreducible self-energies vanish, G„„equals
the unperturbed Green's function, 5 ns =no+ limk 'Xsj(k, 0) .

k~0
(2.14)

Zno(sa —p)
X„„(k,w)=

w —(ea —p)'

and Eq. (2.4) becomes

X"„„=m 'w -'k'(n+m 'X i'i no k'X s'-)--

(2.7)

Gp» =6p» =5@»[(sgnp )w —Ka +p]
where ea ——k /2m and p, here is the dimensional chemi-
cal potential (not in n Uo units). From (2.5} and (2.6), Eq.
(2.2) is readily evaluated,

Hence, in the hydrodynamic limit the expression within
the parentheses of Eq. (2.8) vanishes identically. On the
other hand, in this limit Eqs. (1.2) and (2.12) imply that
w 'Xs„——0(g ), which is large since )&&1. As long as
we end up with a phonon dispersion relation, and this
will be the case, the factor in front of the parentheses in

Eq. (2.8) is constant. Therefore, in the (k, w)~0 limit the
dominant contribution to 7 „„comes from the last term
of Eq. (2.8}:

&Sn
—1

X „„(k,w) = —w 'X s„, (k, w)~0 . (2.15)

Xs„(k,r)= —
& T,Sa(~)pa &

=2g[&T;„( ),'&&T,b,'( )b, &

& T,a' „(~)u „&& T,b, (~)b,' &]

x g &~p'~, &, (2.9)

where pa and Sa are defined by Eqs. (2.4) and (2.6) in Ref.
5. After substituting the unperturbed propagators by
their well-known expressions, we Fourier analyze Eq.
(2.9) and, subsequently, carry out the frequency summa-
tions by standard techniques. The frequency analytic

(2.8)

We first consider the determination of Xs„. This is

achieved through identical steps as in the evaluation of
X sJ [Eqs. (4.8)-(4.14) in Ref. 5]. Thus, we begin from its
definition and factorize the imaginary time (a=it} or-
dered product, i.e.,

2nD UO(ea —p} 4(non Uo
2 + =1.

w —(sa —I )
(2.16)

For convenience we make dimensionless the quantities
that enter Eq. (2.16) by measuring energies and momenta
in units of n Uo and (mn Uo)', respectively. After some

algebra Eq. (2.16) can be rewritten as

w —A(k)w +B(k)=0,
where the coef6cients have the form

2

A (k)= g a;ea ' and B(k)= g P;sa ',

(2.17)

(2.18)

with the a s and P s given by

Combining now Eqs. (2.1), (2.7), (2.12), and (2.15), we
finally obtain an equation for the zeros of the dielectric
function:
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w =aoei, +a, ck (k~O, g((1), (2.20)

which gives immediately the (dimensional) phonon veloc-
ity

c = —,'(nUo/m)a, . (2.21)

Taking into account the expression for aI in Eq. {2.19},
this result becomes identical to Eq. (1.1).

To illustrate the above results we let nz( T =0)=0.090.
This choice, which will be justi6ed in Sec. IV, implies
(=0.1036 [Eq. (2.6) in Ref. 8], and the values of no(T)
are then obtained [Eq. (4.19}in the second paper of Ref.
5] from known values of n, (T). ' Therefore, the second
factor in Eq. (1.1) can be readily evaluated, whereas the
factor (nUo/m)'~ is chosen so that'3 c(T =0)=238.21
m sec '. In Table I the calculated c (T) is compared with
the experimental data. ' ' The agreement is excellent

TABLE I. Phonon velocity at various temperatures and sa-
turated vapor pressure. Experimental values from Refs. 12
(0(T (Tz), 13 (T=O) and 14 (T=Tq), calculated from Eq.
(1.1) for no(T =0)=0.090.

c {msec ')

ao=2, a, =2[no —( I+/)p],
a2 ——4gn o —2n op, + ( I +g )p, , Po ——1,
I 1 ai ~

P2=2no[24 (1+2()p]+(1+4(+( )p

A=2k Inc[(2+()I —4]—{1+0)i'I

A=kV'[2no(2 k—W)+4 '] .

Here again no and p denote, respectively, the condensate
fraction and the dimensionless chemical potential (1.2).
With regard to the magnitude of the coefficients in (2.19),
we recall that no (g, which implies p =0 (g) and, conse-
quently, a, and P, are of 0 (g').

On the basis of the k~O and /((1 limit, a phonon
dispersion relation results if one neglects terms of 0 (sk )

or 0 (g ). In this case we eliminate in Eq. (2.17) the con-
tributions from 8(k} and a2, the latter being the energy
gap which is inherent to the g formalism in the SPA.
Thus Eq. (2.17) reduces to a (dimensionless) Bogoliubov-
type energy spectrum, namely,

up to about T=1.5 K. Although the theoretic values
depart from the measurements as T increases, they
represent a substantial improvement with regard to the
previous result due to Szepfalusy and Kondor that pre-
dicts a vanishing c ( T~Tz ).

An increase (decrease) in the initial choice of n o( T =0)
provides higher (smaller) values of c(T) in the interval
(O, TI„] T.hus, an inspection of Table I shows that
no( T =0)=0.090 gives a better fit than any
no(T =0) &0.090. This is to be contrasted with the case
no(T=O)=0.062 that results from the best fit of p(T). s

On the other hand, no(T =0)-0.18 fits c(TI, ) [and, by
construction, c(T=0)], but at temperatures 0(T &Tz
the calculated values exceed the experimental error.

In the remaining sections we adopt the following ap-
proach: by assuming ab initio that Eqs. (1.1) and (1.3) do
correctly describe c ( T) and p( T), what would then be the
resultant condensate fraction and interatomic potential,

III. THE CONDENSATK FRACTION

In this section we show that the fitting of Eqs. (1.1) and
(1.3) to the experimental measurements is a convenient
way to extract the condensate fraction. Dividing one
equation by the other we obtain a dimensionless relation,

yaI(T)/2ij(T)=c (T)/P(T) . (3.1)

2 8 & I I I
I

I I I I
t

I I I I
(

I I I

2.7

2.6

The function p, and a, depend on g both explicit and im-

plicitly through no, so that the substitution of the right-
hand side of Eq. (3.1) by the measured values defines a
constraint surface f ( T, g, y ) =0. To this end we use the
following data: the phonon velocity as given by the
second column in Table I and the chemical potential'
mp{ T =0)= —7.160 K, that is, p(T =0)= —14.878

Jg '(= —86.828 K A }, and, at temperatures in the in-

terval 1.2 K & T & 2.1 K, the values as tabulated by May-
nard in 0.1 K steps. ' All these quantities refer to the sa-

turated vapor pressure. Figure 1 exhibits the relationship

0
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10

TA.

Calc.

238.21
237.37
236.80
235.98
234.83
233.27
231.22
228.54
225.06
220.53
214.20
205.11

Expt.

238.21
237.4
236.8
236.1

235.2
234.0
232.7
231.0
228.8
225.8
221.8
217.1

2.5
0.05 O.IO O.I5 0.20 0.25

FIG. 1. Relationship between symmetry-breaking and
efFective-mass parameters at given temperatures, calculated by
Eq. (3.1), where c(T) and p(T) correspond to the measured
values found in Ref. 12.
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FIG. 2. Symmetry-breaking and effective-mass parameters
calculated similarly as in Fig. 1 for T=O, with c(0) and p(0)
from Refs. 13 and 15. Condensate fraction corresponding to g
( T=O), calculated from Eq. (4.19) in Ref. 5.

0.25

0.20—

Po O. l5

0.05 i i I I

l.5 l.7
T (K)

2.!

FIG. 3. Symmetry-breaking parameter vs temperature. 0:
no(T =0)=0.06, y=2.483; : no(T =0}=0.09, y=2.447; 0:
no(T =0)=0.12, y =2A06. The errors indicated are related to
the uncertainties in the measured values of c(T) and IT(T) in
Ref. 12. Solid curve: g( T) that gives no(T) represented by the
solid curve of Fig. 4. Dashed curve: extrapolation of the solid
curve to Tz.

between g and y at given temperatures. The T=O K
curve is hardly distinguishable from the T=1.2 K one
and is plotted in Fig. 2 together with the associated nz
(T=O). Clearly, a fixed y defines the T dependence of g
and conversely. Since it is naturat to assume a constant
effective mass, a knowledge of no at any T specifies y,
and the latter implies g( T) in the entire superfluid region.
We illustrate this with three examples: no(T=O}=0.06,
0.09, and 0.12, which yield (Fig. 2) y =2.483, 2.447, and
2.406, respectively. The corresponding g(T) and no(T)
for each case are shown in Figs. 3 and 4.

If one makes the plausible assumption that
nu(T) )nu(T'), T & T', then the case nu(T =0)=0.06 is
ruled out by a simple inspection of Fig. 4. By this cri-
terion a lower bound of 8.3% is found for the condensate
fraction at absolute zero.

o, I I I I I I I I I I

l. I l.5 I.5 l.7 l.9 2. I

FIG. 4. Condensate fraction vs temperature calculated from
Eq. (4.19) of Ref. 5 and corresponding to each set of g( T) given
in Fig. 3.

IU. THE INTERATOMIC POTENTIAL

By construction, Eq. (3.1) is independent of the interac-
tion constant and furnishes a family of nu(T)'s whose
members are specified by y. In order to actually fit c (T)
and P( T},one must, in addition, find out the quantities

u
—= (nUu/m)'~

g=nVO/m'=u /y .

(4.1)

(4.2)

For definiteness we take for n u( T), and the associated
g(T), the sohd curves represented in Figs. 4 and 3, re-
spectively, which correspond to y =2.447 and
nu( T =0)=0.090, as in Sec. II.

This choice is suggested by Green's-function Monte
Carlo calculations' and, as will be seen below, turns out
to be a judicious one. The function u(T) represented in
Fig. 5 was obtained by matching Eqs. (1.3) and (4.2) with
the measured' ' P(T) as shown in Fig. 6. By using this
u (T) we compare in Fig. 7 the calculated c (T), Eqs. (1.1)
and (4.1), with the experimental values. ' ' Since to our
knowledge data on P( T& ) is not available, which prevents
a determination of g( Ti ) from Eq. (3.1), we have circum-
vented this problem by calculating u(T&) from Eq. (1.1)
with' c (Ti ) =217.1 m sec ' and the extrapolated result
g( Ti ) =0.231 as indicated by the dashed curve in Fig. 3.

By using the above determined values of u(T} and the
He-atom mass in (4.1), one sees that nUO increases from
39.9 K (T = Ti ) to 88.55 K ( T=O). These are diScult to
be interpreted physically since the He-atom parameters
yield n Uo-8.6 K. By the same token, we recall that. Al-
drich and Pines' found nU0-27. 3 K. %e next show
that u(T} can nevertheless be rewritten in terms of an
effective interaction that is suited to a physical interpreta-
tion.
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Accordingly, we first notice that the right-hand side of
(4.1) comes from the product of nUO with (mnUO)'
which are the respective natural units of energy and
length used in Sec. II. This leads us to introduce new en-
ergy and length parameters, n Uo and s, defined by

U
—=n Uy, Uo =4ms/m .

Consequently, one has

U(T)=(4mn/m. )s (T);

(4.3)

ao
0 l.0

I I i i I I

R.Q and s(T) is shown in Fig. 8 with the constant factor in
(4.4) taken at T =T„:

FIG. 5. Temperature dependence of U, Eq. (4.1), which fits
calculated and measured values of p, ( T) as shown in Fig. 6.

8 I + I I
I

I I I I
I

I I I I
I

I

-l5.0
C%

-IS. I

-l5.2

4m n/ m=3. 353 A, [in(T&)=0.022 A ] . (4.5)

U(T)=nor(T)/m, o(T)=4ms (T), (4.6)

where o(T) is the total effective cross section. Likewise,
from Eqs. (4.1) and (4.6) the interaction constant becomes

0

In particular, zs= s(T=T&)=2.56 A equals the He-
atom hard-core diameter and so =—s(T =0)=3.1264 A is
close to, but smaller than the average interatomic dis-
tance. ' Similarly, one finds nUO(T =TI )=8.59 K and
nUO(T =0)=10.483 K. These physical values allow one
to interpret s (T) as an efFective scattering length for the
He atoms in the superAuid region, whereas in the normal
phase s(T ~ TI)=sz, as indicated in Fig. 8. Equation
(4.4) can then be rewritten as

Uo nor /——m . (4.7)

lg, '$ '

I n I I I I I I I I I I I I I I

0 l.0 I.5 2.0

FIG. 6. Chemical potential per unit mass vs temperature.
Solid curve: Eqs. (1.3) and (4.2) with U(T) as given in Fig. 5. o:
experimental values from Refs. 15 (T=O) and 12 (TgO).

240 I g l l
[

I f I I
i

I I 1

Finally, we remark that the calculated c(T) and P(T)
still fall within the experimental errors for any no (T=O)
chosen within the interval -0.06-0.12. The correspond-
ing s& and so parameters are shown in Fig. 9. It is
relevant that no(T =0)=0.09 is located halfway between
the interval limits, which is a clear indication of the best
fit.

V. CONCLUDING REMARKS

In summary it was shown that an analysis of the pho-
non velocity and chemical potential leads to well-defined
no(T) and s(T) for a given y. This latter parameter is
chosen so that s(T&) equals the real He-atom cross-

t I
i

I I i \

i

220—
2.9 '—

~«g

CiO

Rl 5
0 l.o

I I I I I I I I

l.5
v(K)

FIG. 7. Phonon velocity vs temperature. Solid curve: Eqs.
(1.1) and (4.1) ~ith U(T) as given in Fig. 5. 0: experimental
values from Refs. 13 ( T=O), 12 (0 ~ T g Tq ), and 14 ( T = Tq ).

a 5 I Q I I ( l I I I i 1 I I I I I I I 1

0 I.O I.5 2.0
r tK)

2.S

FIG. 8. Effective scattering length vs temperature, Eqs. (4.4)
and (4.5), vrith U(T) as given in Fig. 5.
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while the zero-point energy associated with the two-
particle interaction at T=O is estimated to be

2n m '=1.90 K . (5.2)

5.0

2.5
l I l I I I ) I i I 1

0.06 0.09
n, (T 0)

O. I2

FIG. 9. EH'ective scattering lengths so(T=O) and sz (T = Tz)
as functions of no (T=O).

n [U (To=0)—U() ( T = Ti ) ]= 1.89 K, (5.1)

section diameter. The fact that this scheme implies
no(T =0)=0.09 strengthens the Green's-function Monte
Carlo results' which is, incidentally, close to the original
value obtained by Penrose and Onsager from a plausible
ground-state wave function. '

In previous studies of the condensate, ' the
symmetry-breaking parameter g was regarded as a con-
stant throughout the superfluid region, and as a conse-
quence no(T) did not display such a rapid buildup just
below T) as seen in Fig. 4. Moreover, a constant g gives

no(T) values that are close to the ones furnished by an

empirical formulation due to Svensson, Sears, and
Griffin. However, by reanalyzing the procedure of ex-
tracting the condensate fraction from inelastic neutron
scattering, Griffin ' obtains values of no(T) that are con-
siderably larger at high T and smaller at low T. Further-
more, Griffin has also pointed out the rapid increase of
no(T) in a recent finite-temperature computer simulation
carried out by Ceperley and Pollock. z2

%'ith regard to a plausible physical explanation for the
increase of the effective scattering length, we recall that
London had estimated the zero-point energy for the two
limiting cases of very small and very high densities. 2i In
both cases it was found that this energy increases with
the hard-core diameter. In fact, we have found in Sec. IV
that the eftective interaction constant is such that

In this view, the underlying reason for the T dependence
of the effective scattering length is accounted for by the
increase in the dominant role of the zero-point energy
from T=T& down to T=O.

To see how this energy might aI'ect the interatomic po-
tential, we extend an argument due to Landau and used
by Bogoliubov in his original work. ' In that gas model of
superfluidity the interaction is primarily due to binary
coBisions, and in the evaluation of the Fourier amplitudes
of the two-particle potential the free-particle waves are to
be replaced by the exact wave functions obtained in the
solution of the Schrodinger equation. Thus, in principle,
the zero-point motion manifests itself in the Fourier
coefficient of the potential via the exact wave functions.

%'e finally remark that an increase of the scattering
length below the A, point lends itself to a qualitative
description of the steep fall of viscosity in this region. As
emphasized by London, liquid He I at low temperatures
and under low pressures has a viscosity of the type usual-

ly found in gases and not in liquids. Hence, the
coef6cient of viscosity is expected to vary linearly with
the mean-free path, and the latter with the reciprocal of
the scattering cross section. As the temperature enters
the superQuid region the cross-section increase contrib-
utes additionally to the lowering of the viscosity. At ab-
solute zero, although 91% of the particles carry momen-
tum, there is no transport mechanism that leads to a
finite viscosity. If one assumes a statistical preference for
a radial distribution function of a Td lattice type, then
the average interparticle distance is of the order of
2 ' n ' -3.18 A. ' On the other hand, we have
found that s(T =0)-3.13 A, which means that the
mean-free path is vanishingly small, and so is the
viscosity's transport mechanism. Despite the simple ar-
guments involved, this physical picture serves the pur-
pose of showing that an increase of the scattering length
is compatible with the phenomenon of superAuidity.
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