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Recently, a method was put forth to evaluate quantitatively gap functions and transition tempera-
tures for heavy-fermion superconductors. This formalism involves a modi5cation of the Eliashberg
spin-8uctuation equations of Berk and Schriel'er, with the modi5cation being the replacement of the
Lindhard susceptibility by the experimentally derived susceptibility. In the case of UPt3, it was

shown that both the mass renormalizstion and superconducting-transition temperature could be ex-
plained by this method. The purpose here is to discuss the results of the solutions to these equations
in depth for the cases of UPt3 and UBe», as well as some preliminary thoughts on other heavy-
fermion metals.

I. INTRODUCHON TO SPIN FLUCTUATIONS

There is a growing body of literature which proposes
spin fluctuations, in particular antiferromagnetic (AF)
spin fluctuations, as the origin of superconductivity in
heavy-fermion metals. ' To test the validity of this pro-
posal, one would need to put such ideas on a more quan-
titative basis. There are two aspects of this problem
which need to be considered: (1) the efFect of this interac-
tion on the quasiparticle masses, and (2) whether the pro-
posed interaction will lead to a correct superconducting
solution. We have been worried about the former prob-
lem for quite some time. The large masses seen in
heavy-fermion metals over that given by local-density-
approximation (LDA} band calculations could be due to
one of two things: (1}The LDA is not valid for these sys-
tems, or (2) there are large dynamical corrections to the
ground-state LDA results. Certainly, the second point
would be the most appealing, but the first cannot be ruled
out. It is difficult, though, to understand why the LDA
does so well for predicting equilibrium lattice constants
and bulk moduli for UPt3 (Ref. 4) and UBe» (Ref. 15) if
point one were so. Recently, de Haas —van Alphen
(dHvA} data on UPt3 have appeared which confirm to a
good degree of accuracy the LDA Fermi surface. This
point is very significant, as it shows that the most ques-
tionable part of the LDA calculations, the ansatz for
treating the f electrons as Bloch states obeying single-
particle statistics, is valid (at least, for the ground state).
Unfortunately, such data are not available on UBe&3 and
CeCuzSi2, so one cannot rule out that certain pathologies
might occur for these metals. For our purpose, though,
we will assume that point one is not true and proceed
with a discussion of point two.

The mass renormalizations seen in heavy-fermion met-
als are so large that they limit what dynamical interac-
tions could be involved. For many reasons, spin Suctua-
tions seem to be a likely source. In exchange-enhanced
metals like Pd, though, the actual spin-fluctuation
enhancement of the mass is small. In that case, it is be-
cause of the nearly 511ed nature of the d band, which
drastically reduces ihe phase space available for virtual

spin excitations. Such effects can even be seen in heavy-
fermion metals. In the case of USn3 (y = 170
mJlmolK2), a mass renormahzation factor of about 7.S
is extracted when compared to LDA calculations, yet in
the case of the related heavy-fermion magnet NpSn3
(y=240 mJ/moleKi), a factor of only 2.4 is found. '

The essential difFerence between these two metals is that a
series off bands which lie just above the Fermi energy in
USI13 are pulled through the Fermi energy in NpSn3, thus
substantially reducing the available states above the Fer-
mi energy for virtual processes in the latter metal. This
observation led to an attempt by the author to evaluate
the full four-point scattering function due to spin fluctua-
tions" for the case of CeSn3, a mixed valent metal whose
LDA Fermi surface agrees with dHvA data. ' This in-
volved program was not successful, which the author
feels is due to the nonvariational nature of the expres-
sions used. One important observation, though, came
from this work. The Berk-Schrieffer Eliashberg equa-
tions for spin fluctuations' lead to a mass renormaliza-
tion proportional to the logarithm of the Stoner factor S.
This is a consequence of using a Lindhard susceptibility
function. If one replaces the Lindhard static susceptibili-
ty in the Berk-SchriefFer equations by a constant, then the
mass factor scales with S as opposed to log(S). Since this
is a better representation for heavy fermions because of
the weak f-band dispersion, and we know experimentally
that y does indeed scale with 7, ' the case for spin Nuc-
tuations is made stronger. Recently, a method combining
density-functional techniques with Green s-function tech-
niques has been used to evaluate spin-fluctuation
enhancements in Pd and V. ' We considered attempting
to apply this method to Upt3, but the evaluation of even
the noninteracting susceptibility is complicated because
of spin-orbit efFects. ' In fact, there is quite a lively de-
bate at this time about whether the true dynamic suscep-
tibility is even of quasiparticle origin. .

The resolution of this depressing state of afFairs was to
realize that the dynamic-susceptibility function was al-
ready given to us by neutron-scattering experiments.
Therefore, by using this information in place of the Lin-
dhard function, one could make an attempt to solve the
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Berk-SchrieSer equations for heavy-fermion metals, both
in the normal and pairing channels (a related approach
has been advocated by Lonzarich' ). This method will be
discussed in Sec. III. Before- doing this, thougll it would
be advisable to try to rule out phonons as a mechanism
for superconductivity.

II. EI.ECTION-PHONQN PA'KRACTION

Since the electron-phonon interaction is responsible for
virtually all known superconductors, it would be worth
trying to rule it out before proceeding to spin fiuctua-
tions. The electron-phonon parameter A, has been evalu-
ated for Upt& within the rigid-muIn-tin approximation
by Oguchi et al. , ' and comes out to be about 0.3. Plug-
ging this into a McMillan expression gives a transition
temperature of about the right value (assuming a very op-
timistic p,

' value}. This paper has been criticized on a
number of grounds. First, the A, values for the other
heavy-fermion su~perconductors are much lower than that
found for UPt3. ' Second, it has been suggested that
Migdal's theorem is not valid for heavy-fermion systems
because of their low-Fermi temperatures. 3 Recently, the
latter point has been extensively addressed by Fenton. 2

If the large mass is due to dynamic effects, then the quot-
ed Fermi temperatures are really just the frequency range
over which the mass renormalizations exist. Since the
phonons have a low-spectral density in this energy re-
gion, then the interaction responsible for the large masses
does not afect the electron-phonon interaction to an ap-
preciable extent (we assume that the electron-phonon in-
teraction itself cannot cause mass renormalizations of 20
or more, for obvious reasons). This does not mean,
though, that the gap function is not affected by these re-
normalizations. As Fenton has pointed out, the gap
function in the frequency range over which the mass re-
normalizations exist is reduced by Z, the mass renormal-
ization, thus suggesting that the calculated transition

temperature must also be reduced by this factor.
In actuality, the situation is worse than this. This can

be seen by doing an analysis similar to what McMillan
did for ordinary superconductors, ' where the frequency
dependence of the gap is treated as a step function. In
our case, though, an extra step has to be included to
represent the fact that the gap is reduced at low frequen-
cies. This frequency limit can be estimated by adding a
step of this width on top of the band density of states,
and adjusting the width to fit the experimental specific
heat. For UPt~, this turns out to be 15 K (half-width).
Using this value and a Z of 20, along with the parameters
of Ref. 18, a transition temperature of 10 K is calcu-
lated. To get significant deviations from this result, one
requires that the transition temperature calculated
without renormalizations is approximately equal to or
greater than the renormalization frequency range. In
fact, the observed transition temperature could be repro-
duced if A, was 0.72 and p, '=0.1. As this A, value is over
twice that calculated by Oguchi et al. , and the p' used is
most likely well too small, there ~ould appear to be little
hope of a standard electron-phonon solution. In the oth-
er heavy-fermion superconductors, the calculated A, 's are
much smaller than that of UPt3, so the outlook is even
darker for those metals. This does not mean that a more
exotic phonon mechanisin like that proposed by
Razafimandimby, Fulde, and Keller 2 is not conceivable,
but it too will have to conform to the guidelines discussed
above.

III. THE MAGNETIC ELIASHBERG EQUATIONS

As mentioned in Sec. I some progress can be made in
heavy-fermion metals by taking the Berk-Schriefi'er mag-
netic (BSM) Eliashberg equations' and replacing the Lin-
dhard function by the experimental susceptibility. The
BSM equation in the normal channel is'3' 3

X(p,z)= —
—,'I g f de5(e e~ ) f —ImX(q, Q) f(e)+n (0) 1 f (e)+n (0—)

z —a+0 z —e—0

where I is the contact interaction, and 28 the bandwidth.
In the case of UPt3, extensive neutron data by Aeppli
et al. reveal that to a good approximation

ImX= —X(q)I'co/(I' +co ), (2)

where X(q) is the static susceptibility and I is the neu-
tron line width (about 5 meV in the case of UPt&). This
approximate fit turns out to work well for most heavy-
fermion and mixed valent metals. The solution of Eq. (1)
using Eq. (2) has been derived in Ref. 25. The result for
the mass renormalization at the Fermi surface (zero tem-
perature) is

m '/mb ——1+ ', I NX,„=Z— (3)

with mb the band mass, and J„the average of the static

susceptibility over the zone. Note that I is not present in
Eq. (3), but it does set the frequency range over which the
mass renormahzation exists [see Eq. (3) of Ref. 25). To
solve Eq„(3), we recognize that the ratio of the interact-
ing (experimental) to the noninteracting (band) suscepti-
bihty (the Stoner factor, S}is (1 IN) '. Thus I is—fixed
given the bulk susceptibility and an appropriate LDA
calculation (possible ambiguities will be discussed in Sec.
V). From the neutron data of Ref. 24, the static suscepti-
bility function at q =n./c(0, 0,2) is approximately twice
that at the zone center, thus 7,„ is about 1.5 times the
bulk susceptibility. Given that X(0) is about 0.26
states/meV (Ref. 14) and the band density of states N is
about 0.0089 states/meV (Ref. 7), we get a Z of 16.5 for
Upt3 which is the value found when comparing either
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specific heat or dHvA data to the LDA calculations. In
the case of mixed valent CeSn3, one finds a Z of 4.7,
which is also consistent with experimental data. Other
cases wiB be discussed in Sec. VI.

One can also evaluate Eq. (1) at Suite temperatures,
which requires doing the energy integral numerically.
From this, one can extract the temperature dependence
of y in the normal state. This has been done for the case
of UPt~ and is plotted in Fig. 1 along with the phonon-
corrected experimental data of Renker et al. There is
rather close agreement between these two curves. Note
that this pseudo-Tz lnT behavior is a consequence of the
frequency dependence of the susceptibihty in Eq. (2) and
is difFerent from that due to free-electron-like ferromag-
netic pararnagnons.

This success led to a consideration of the pairing chan-
nel. Using a form given by McMillan, ' it is

0.0
l

i0.0
l

15.0

FIG. 1. Calculated dependence of the electronic speci5c-heat
coeScient of UPt3 in the normal state (solid line} vs temperature
(arbitrary units). The dashed line is the phonon-corrected ex-
perimental data of Renker et a1. (Ref. 26).
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where co, is a cutofF energy, D is the same frequency in-
tegral given in Eq. (1), and E is (e + b, }'~ . The solution
of this equation at zero temperature is derived in Ref. 25
and is

where a step function is assumed for the gap h(co) =b, for
co & co, and zero otherwise (this approximation will be dis-
cussed in Sec. IV). Solving Eq. (4) at the critical tempera-
ture and using the results of Eq. (5), we find

exp

«5(e e~ «)X(q) in(—2I'/&~ «)

«5(» ep «)X(q)—

where the actual T, is the maximum value in Eq. (6). In
Eq. (6), the b, 's are the zero temperature lVs given by
solving Eq. {5). This assumes that 5 (T} is of the form
h(t)f(p), an ansatz which will be justi6ed in Sec. IV. As
a final point, Z is found from Eq. (3) by replacing NX,„
by g 5(ez «)X(q). A more extensive discussion of these
equations is given in Ref. 25. [Note that if X(x —x') can
be written in the form a(x)a(x'), one can eliminate 6
from Eq. (6) and obtain an expression which only depends
on normal state quantities. This has been checked and
yields the same results as Eq. (6).]

IV. THE Gap FUNCTrez FOR Upt,

To solve the gap equations of Sec. III one needs to
know the Fermi surface and the q dependence of g. In
the case of UPt3, the former is known since the dHvA
data are consistent with the I.DA surface; the latter is
given approximately from the neutron data of Ref. 24.
%'e model the surface by two ellipsoids at the zone center
(I ) and two disks about the A point «r/c (0,0, 1). X(q) is
taken to peak at n. /c (0,0,2) where it has a value twice
that at the zone center. The peaking of g outside the

I

zone boundary is a consequence of the nonsymmorphic
nature of the lattice, rellecting antiferromagnetic correla-
tions between the two U atoms in the primitive cell.
Thus to solve the problem, we must fold the Kramers-
degenerate Fermi surface out into a double zone (the
e8'ect this has on the symmetry of the gap function will
be discussed below). Since X(q} has approximately axial
symmetry, we can integrate the 4 dependence out analyti-
cally (where P is the angle in the basal plane) and are left
with one-dimensional integrals with respect to k, to per-
form. These are done by specifying the gap function at a
6nite set of k, values and replacing the integral by a
weighted sum with the weights proportional to dS/

~

Ve
~

{appropriately normalized to the proper density of states
N}. Equation (5) is then solved by simple iteration (a
mixing factor of 20% is needed for stability} on a mini-
computer. Fortunately, the converged solution does not
depend on the particular starting values one uses. The
inclusion of full hexagonal symmetry was done for one
case (which required using Cray computer} but yielded
virtually the same results as the axial approximation.

In Ref. 25 the solutions of these equations for various
choices of X(q} and Fermi surface dimensions were dis-
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cussed. Unfortunately, the solutions in that paper were
of odd parity. These are not allowed, since by diagram
counting, the factor of 3 in Eq. (4) is replaced by a factor
of —1 for odd parity, and thus the pairing potential is
repulsive. The author has now generated even-parity
solutions. The gap functions behave roughly as
cos(k, c/2) and thus change sign under translation by
m/c(0, 0,2). Because of this, the 2-centered surfaces
have lines of nodes on their equators. Since one of the
zone-centered surfaces extends as far out as
m/c(0, 0,0.75), its gap becomes rather small near the
poles. The combination of these two effects leads to a
rather small-transition temperature of about 23 mK.

Because the gap function oscillates in sign periodically,
the integral over the zone of the gap times the average
susceptibihty vanishes. This removes the strongly repul-
sive (isotropic) part of the magnetic-fiuctuation interac-
tion, with the superconductivity being due to the oscilla-
tory behavior of X with q. ' This is extremely important
as it is the fundamental difFerence between what is being
proposed here and a phonon-based mechanism. In the
latter, the superconductivity is entirely due to the fre-
quency dependence of the interaction. Another conse-
quence of the change in sign of the gap function under
translation by n/ (c0,0,2) can be seen by Fourier trans-
forming with respect to r, the relative separation of elec-
trons in the Cooper pair. It is trivial to verify that 5 van-
ishes at r =0 and peaks at a value equal to the separation
of the hexagonal planes. Thus the gap solution
represents pairing between electrons at near-neighbor
sites.

We now address the question of whether the calculated
transition temperature can be raised. From the form of
Eq. (6), we see that T, scales with I, so increasing I'
would raise T, . As I, though, is fairly well fixed by the
neutron data, we should seek elsewhere for answers. As
will be discussed in Sec. V, there could be some ambigui-
ty associated with the estimation of the contact interac-
tion I Since th. e Z function, though, has the same I
dependence as the gap function, T, turns out to be rather
insensitive to I. As discussed extensively in Ref. 25, there
is some dependence of T, on Fermi-surface dimensions,
but it is not a strong dependence. This leaves two possi-
bilities. The 5rst concerns the frequency dependence of
the gap, which has been ignored up to now. This has
been checked, though, for the case under consideration
and leads to about a 20% reduction in T, (the procedure
will be discussed in depth in Sec. VI for the more relevant
case of UBe, 3). The last possibihty is related to the q
dependence of X. There are two aspects to be considered.
The first is to realize that the magnitude of the oscillatory
behavior of g with q essentially acts as an effective cou-
pling constant. In fact, if J is taken to triple at its peak,
rather than double, T, is increased by a factor of 11. On
the other side, if X only increased by 50% at the peak,
then T, would be decreased by a factor of 15. After
analyzing the data in Ref. 24, the author feels, though,
that the factor-of-2 increase is the most reasonable. This
leaves the question of matrix elements. %hen one calcu-
lates the susceptibility from a band structure, one must
include matrix elements of the "single-particle" orbitals

with the operator e''i'. The effect is to reduce interband
terms relative to intraband ones (this is what is responsi-
ble for keeping the susceptibility from diverging as one
includes more and more bands}. To see the importance of
these matrix elements for our case, let us look at the Z
function again. As shown in the table of Ref. 25, the Z
function varies by only about 5% over the zone. If,
though, one looks at the comparison of the experimental
dHvA masses to the band masses, the implied variation
of Z is much greater. Unfortunately, the proper in-
clusion of these effects would require calculating the full
interacting susceptibility from first principles, which
would be an extremely involved project. We can, though,
include these effects in a crude, phenomenological fashion
as will be illustrated next.

To proceed, let us perform a calculation where only the
I -centered surfaces are treated. In this case, the transi-
tion temperature is up to 884 mK. We now realize the
importance of matrix-elements effects. By including
these, we can start to decouple the two surfaces, leading
to a higher-transition temperature. To do this, we simply
put in a constant reduction factor for the interband terms
in Eq. (5) and solve again. A reduction of the interband
terms by 95% relative to the intraband ones is sufficient
to boost T, to 491 mK (the experimental value is about
500 mK}. This, to be truthful, is a fudge factor, but there
is some physical relevance to this. By analyzing the gap
functions, one finds that the polar surfaces have gaps that
are substantially smaller than those on the zone-centered
surfaces (they are of similar size in the fully coupled
case). This means that the polar surfaces will dominate
for thermodynamic quantities such as the specific heat,
thermal conductivity, and ultrasonic attenuation, as con-
sistent with experimental data. To show this in greater
detail, we need to calculate the temperature dependence
of the gap for this case. We will not make the ansatz
h(p, T)=h(T)f (p) as we wish to test its validity. This
requires solving Eq. (4) at each required temperature,
with the thermodynamic integrals being done numerical-
ly (by use of Gaussian quadratures). Convergence is
reasonably fast, except when T gets close to T, where
convergence is extremely slow. The transition tempera-
ture is found to be about 0.99 of the value given by Eq.
(6), with the 1% discrepancy being due to numerical ap-
proximations. Moreover, the above ansatz appears to be
true, with h(T} having a BCS temperature dependence.
By using these results, the specific heat has been calculat-
ed and is compared to the experimental data of Sulpice
et al. in Fig. 2. The agreement is quite good (the agree-
ment is not as good for the fully coupled case).

V. THE SUSCEPTIBILri.Y FUNCTION FOR UPt,

Since the susceptibility function is such a crucial input
to this model, an extended discussion of it and how it
enters the model is in order. As the reader must have
gathered by now, use of the experimental susceptibility
has been of great advantage. There is also another ad-
vantage not previously discussed. As is well known,
there is no Migdal's theorem for spin Suctuations. For-
tunately, these el'ects appear to be important only at in-
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FIG. 2. Calculated dependence of the electronic speci5c-heat
coeScient of Upt3 in the superconducting phase (solid line) vs

temperature for the interband reduction factor equal to 0.05.
The dashed line is the experimental data of Sulpice et aI. (Ref.
29).

termediate to high frequencies, ' but certainly it would be
naive to ignore them. By using the experimental suscep-
tibility, though, certain classes of vertex corrections ap-
pear to be included automatically, so there is a hope
that further vertex corrections will not severely aN'ect the
results discussed above. It must be remembered at this
stage that the superconductivity comes from a q depen-
dence as well as an co dependence, so the applicability of
Migdal-type arguments will have to be modified anyway
and will be discussed further below. A more severe ap-
proximation concerns the proper estimation of the con-
tact interaction I. There are two required inputs: the ex-
perimental bulk susceptibility and the (noninteracting}
band susceptibility (their ratio is the Stoner factor S) with
I being determined from S =(1—IN) '. This can be de-
rived from a variational principle within the context of
spin density-functional theory. The vahdity of this
"formula" in the presence of strong spin-orbit coupling is
questionable. In particular, a g factor of 2 is assumed
when converting the density of states over into suscepti-
bility units. It is comforting to know, though, that the lo-
cal density estimate for I exceeds that extracted from ex-
periment by only 15 lo (Ref. 7) in the case of UPt3, and as
the calculated mass renormalization is correct, there ap-
pears to be no problem in this case. As will be discussed
in the next section, the renormahzation factor calculated
for UBe, 3 also appears to be correct, so one hopes that
the current method for extracting I will stand the test of
time. Another problem is that due to the diSculties of
obtaining accurate data for the susceptibility function,
only a limited region of q space has been sampled. In
fact, it is known that Th-doped and Pd-doped UPt3 actu-
ally magnetically order at {1,0,2) as opposed to the (0,0,2}
vector considered here. (102) correlations have now
been seen in pure UPt, but they are weak and occur at a
lower frequency scale. The growth of the (102}correla-
tions as one dopes leads to a rapid suppression of the su-

perconductivity. s Can this be understood'? The {002)
correlations correspond to a U atom being antiferromag-
netically correlated to its six nearest-U neighbors. (102)
correlations, though, cause some of these neighbors to
flip their moment directions. ~ Therefore, we would ex-
pect this to lead to a substantial pair-breaking effect and
thus cause a rapid suppression of superconductivity, as
seen experimentally. The point to be garnered here is the
more q-dependent data obtained, the better model calcu-
lation one can perform.

Ultimately, one would like to be able to calculate the
complete dynamical susceptibility from 6rst principles,
with full inclusion of matrix-element efFects in the BSM
equations. The author believes that this will be possible
using density-functional techniques, especially given the
success of the calculations of Ref. 15 for Pd and V. The
author has calculated the noninteracting susceptibility
for UPt3 from bands which reproduce the de Haas-van
Alphen Fermi surface. This involves using spin-orbit
generalized matrix elements. ' The calculations indeed
show that the susceptibility is strongest at m/c(0, 0,2),
with the peak in the imaginary susceptibility being at
about 120 meV. When this is scaled by the Stoner factor
of 30, one obtains a value of 4 meV, close to the experi-
mental value of 5 meV. Of course, the experimental sus-
ceptibility seems to be vrell explained from a Kondo-
impurity point of view, ' and the fact that the line width
does not go to zero at the point (0,0,4) seemed to cast
doubt on a quasiparticle description of the susceptibility.
In the presence of spin-orbit coupling, though, the latter
statement is not valid. This has been veri6ed in the
UPt3 case, ' where the imaginary susceptibility is sub-
stantial at q =(0,0,0) for nonzero frequencies. Thus the
author would be most surprised if one could not repro-
duce the experimental data from a density-functional-
based method (an antiferromagnetic tendency for UPt,
was predicted from LDA calculations before the neutron
experiments were performed ). A correct density-
functional treatment for the interacting susceptibility
would require an extension of current spin-density theory
to include spin-orbit efFects. Although these efFects have
been included in a passive manner when doing moment-
polarized calculations on heavy-fermion metals, ' ' a
correct theory is somemays o8. In particular, no analo-
gous method to that given in Ref. 33 for calculating the
susceptibility has been derived in the presence of spin-
orbit coupling. Such eNorts should be made, though, in
an attempt to better understand the physics involved and
to 6nd the appropriate connections between density-
functional and Kondo-based methods.

Finally, we must consider the validity of the Eliashberg
equations themselves. The frequency assumptions impli-
cit in Migdal's theorem seem to be okay. The band cal-
culations on both UPt3 (Refs. 4 and 7) and UBe» (Refs. 5

and 39) indicate a Fermi temperature of the order of 1000
K. Thus the ratio of 1 (which acts as a Debye tempera-
ture} to Ez is a smaB number. The momentum assump-
tions are a different matter. The neglect of momentum
derivatives in the BSM equations could cause some quan-
titative problems. Certainly, the implied mass renor-
malization anisotropies noted in Ref. 7 could be due to
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such terms, and/or to the matrix-element elects dis-
cussed above (which are themselves taken with respect to
a momentum operator}. As the superconductivity itself is
proposed to be due to a momentum dependence, the in-
clusion of momentum derivative terms certainly needs to
be explored. As this will lead to an enhancement of the
anisotropy„one expects that it wiH also lead to a rise in
T, . To handle these terms, one also needs to calculate
the matrix elements, which leads again to the complexity
of doing a complete calculation using the band-structure
wave functions.

TABLE I. Superconducting solutions for UBe13. The neu-
tron line width is taken to be 151 K, and the peak value of 7 at
(222) is assumed to be four times the bulk value. The solutions
are tabulated according to the interband reduction factor {rang-
ing from 1.0 for fully coupled to 0.0 for uncoupled). Listed for
each surface is the mass renormalization at the 8=0, / =0 point
for the I (0,0,0) and X (0,0,2) surfaces, as well as the "transi-
tion temperature" for each surface (mK). Only in the uncou-
pled case, of course, would there be two transitions. The gap
functions for the first two cases are of E~ symmetry, whereas
those of the last case are of A &g symmetry for I and Eg symme-

try for X. The third case is a mixture of both symmetries.

VI. USe„, Umu, Si„AND CeCu,
Solution Z(I ) Z{X)

The above success has led to a consideration of other
heavy-fermion metals. Preliminary neutron data on
UBe J 3 has been reported by Neumann et al. ,

' indicating
a peak in X at n/a (2, 2, 2), consistent with antiferromag-
netic correlations between the two U atoms in the primi-
tive cell. Note that X peaking outside the zone is again
reNective of the nonsymmorphic nature of the lattice.
The data also indicates that X increases by about a factor
of 4 from the zone center to the (2,2,2) point (note,
though, that the statistics are poor, and the data was tak-
en at 10 K, above the coherence temperature for UBe&3).
Other data of Goldman et al. at 10 K indicate a hne
width of about 13 meV. Using the I.DA density of
states of Ref. 5 and the experimental bulk susceptibility
tabulated in Ref. 14, a Stoner factor of about 92 is found.
Since X,„should be about 2.5 times the bulk value, a mass
renormalization of 89 is found, close to the value of 92
needed. Unfortunately, no dHvA data is available on
UBe» so we must take the LDA Fermi surface on faith.
It consists of two nested spheres about I which are inter-
connected along the (111) lines ' and pillboxes cen-
tered at the X points. We thus model the surface as a I'-
centered sphere and an X-centered ellipsoid. Because of
the cubic symmetry present, the Fermi surface integrals
in Eqs. (5) and (6) have to be treated two-dimensionally,
which requires the use of a Cray. As in UPt3, one must
perform a double-zone foldout, this time along the ( 111)
direction.

At Srst, no solutions were found. This was remedied
by a11owing the gap function to have complex phase and
allowing the phase to be difFerent on each of the three X
ellipsoids. As in UPt3, the solution appears to be in-
dependent of chosen start values for the self-consistency
process, but in this case, a bad choice of start values led
to divergent solutions, so it is conceivable that the solu-
tion space has not been completely searched. The ob-
tained solutions are described in Table I as a function of
the interband reduction factor. For the fully coupled
case (factor equal to one}, the solution is the E state of
class 0(Dz) of Volovik and Gor'kov. The I -centered
surface has a gap function which vanishes at intersections
of the surface with ( 111) lines. The X-centered surfaces
have gaps which roughly behave as e '"~, where
n = 1,2, 3 for each surface, respectively. There is,
though, considerable warping on the surface. For in-
stance, the gap function for the n =3 surface has a siz-
able imaginary component which has zeros when the an-

1.0
0.5
0.25
0.0

88.5
81.4
74.7
65.5

88.5
96.8

102.3
111.5

193
470
821

2648

186
495
943

1665

gle P is equal to odd powers of m/4. The difFerence be-
tween the I - and 1-centered surfaces is essentially one of
symmetry, with the 1 -centered surface having eightfold
symmetry relative to the susceptibility peaks, and the X-
centered surfaces only fourfold symmetry. It is encourag-
ing that the I'-centered gap function has point nodes, as
this is expected from transport data (see below). On
the other hand, a transition temperature of only 193 mK
is calculated. For the uncoupled case (factor equal to
zero}, the X-centered surfaces have similar gaps as before
with a transition temperature of 1665 mK. The I-
centered surface, however, has a roughly constant gap
function with real phase and a transition temperature of
2648 mK. The intermediate case with a factor equa1 to
0.5 is similar to the fully coupled ease, whereas the ease
with a reduction factor of 0.25 has a I'-centered gap func-
tion with a real part that is larger at the poles than at the
equator and an imaginary part which is zero when P is
equal to odd multiples of m/4 (there are no nodes). The
transition temperature for this case is equal to the experi-
mental value of 0.9 K.

Speci6c-heat data reveal that there is a sizable strong-
coupHng correction to the gap jump at T, . We thus
turn to a discussion of the frequency dependence of the
gap function as alluded to in Sec. IV. The frequency
dependence of Z has already been given by Eq. (3) of Ref.
25 (Z decreases smoothly with frequency). We take as
the zero-order gap a step function equal to that of Eq. (5)
for co&co, and zero otherwise (co, is taken to be some
reasonable value like 3I", the chosen value is not impor-
tant). As the energy integrals are analytic, we can solve
as before to generate the gap as a function of frequency.
The resultant h(co) is approximated by a two-line seg-
ment function so as to keep the energy integrals analytic.
After about three iterations, the gap function is reason-
ably converged. This is shown for one of the UBe» cases
in Fig. 3. The gap function drops ol' rapidly for
~~0.25I, then begins to even out for m~51. This
high-frequency tail is most likely unphysical, since for
large enough frequencies, one expects that Coulomb
repulsion effects (even in the anisotropic channel) will
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FG. 3. Frequency dependence of the gap function for USe»
with the interband reduction factor equal to 0.25. The frequen-

cy is in units of the line width (j.51 K). The straight line seg-
ments are approximations used during the iterative process and
for calculating the transition temperature. The high-frequency
tail would be forced negative by neglected efFects, such as that
due to the anisotropic Coulomb pseudopotential.

come into play, leading to a negative gap function just as
in the phonon case. This is equivalent to saying that the
attractive nature of the pairing will be lost for high
enough frequencies. Given the two-line-segment approxi-
mation to b, (co), Eq. (6) is then solved. For the case of
UBei3, a reduction of about 309o for r, is found, with a
weak dependence of this T, reduction relative to the in-
terband reduction factor. We now solve for the tempera-
ture dependence of the gap function. For one case, this
was done exactly as done above for UPt3 (very time con-
suming), but it was discovered that the temperature
dependence is virtuaHy identical to that of BCS theory.
We thus assumed a BCS dependence after this, which
made the evaluation of the specific heat trivial. Finally,
the temperatures were all scaled by the calculated 30%
reduction due to strong coupling when calculating the
speciSc heat. In Fig. 4, C/T is shown for the interband
reduction factor equal to the 0.25 case, as well as the ex-
perimental data of Ref. 44. One sees that the calculated
strong-coupling corrections seem to be in good agreement
with experiment. The calculated curve, though, is not as
broad as the experimental curve in the region
0.5T, ~ T ~ T„perhaps due to 6uctuation elects. It is
interesting to note that the gap function for the factor
equal to 1.0 case has nodes, whereas the factor equal to
0.25 does not, yet their two C jT curves are similar. This
illustrates the difhculties of determining gap nodes from
experiment in UBe, 3 (in the case of UPt3, the hne of zeros
is quite obvious).

At this point, we note the fact that the amount of ex-
perimental information on the susceptibihty function for
UBeI3 is considerably poorer than that for Upt3. The
published data have large error bars and were taken at a
temperature well above the accepted coherence tempera-
ture (getting reliable data on UBei3 is more difficult than

FIG. 4. The electronic speci6c heat for UBe» in the super-
conducting phase calculated for the interband reduction factor
equal to 0.25. A strong-coupling scaling factor of 0.69 has been
included (calculated from Fig. 3). The dashed line is the experi-
mental data of Ott et al. |,Ref. 44).

for UPt3}. One wonders, though, what experiments will
reveal at lower temperatures. Preliminary data of Mook
et a1. show additional strong structures at lower fre-
quencies ( & 2 meV) which peak at q vectors different than
the ( 222) ones considered here. It may take a consider-
able effort to get as complete information as we have for
UPt3, but the author feels such information is crucial in
making improvements over the current set of calcula-
tions. Also, several workers have emphasized that quad-
rupole fluctuations may be important for UBe» (Ref. 46};
these effects have not been included in this formalism.

%e now turn to a brief discussion of other heavy fer-
mion metals. Experimental data on the susceptibility
function are now known for U2Zn, 7 (Ref. 47), URuzSiz
(Ref. 48), and CeCu6 (Ref. 49}. The function for UzZn, 7

is similar to that of UPt3, with the difference being that
the product IN has exceeded one, leading to a sizable mo-
ment for UzZn, 7. Naturally, the system does not super-
conduct as the energy gain due to magnetic ordering
exceeds that for pair condensation. The case for URu2Si2
is diferent, however. The experimental data indicate
spin-density-wave (SDW) excitations, and the resulting
susceptibjlity' function has a spin-wave gap at low fre-
quencies. The moment of this state is very weak, being of
the order of 0.03@&. One concludes from this that the
factor IN is only exceeded in a small neighborhood of the
zone about the magnetic ordering vector, and therefore
regions away from there can still gain condensation ener-

gy via pair formation. Experimentally, URu2Si2 super-
conducts below 1.5 K (Ref. 50) (the SDW transition is at
17.5 K}. Although the susceptibility function is now
diferent because of the presence of an SOW gap, the in-
tegrals are probably still analytic, and one could proceed
in an analogous fashion to what was done before. The
major problem is determining a Fermi surface to use for
the SD% state. Experimentally, there appears to be a
sizable gapping of the Fermi surface in the SD%' state.
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The author has performed band calculations in the
paramagnetic phase for URuzSi2 (Ref. 38) which reveal
that the product IN barely exceeds one. Moreover, nest-
ing is observed with a wave vector equivalent to the ex-
perimental ordering vector. This hss led to an attempt to
treat the AF phase with the same moment-polarized for-
malism which was applied with success to the heavy-
fermion magnet NpSn3 (Ref. 10) (this includes orbital-
moment effects). The calculation has only been partially
converged, but the preliminary results indicate that the
calculated moment fsr exceeds the 0.03IM.b value, and
there appears to be little change in the density of states
[sizable gapping was found for NpSni (Ref. 10}, TmSe
(Ref. 51), and UCu5 (Ref. 38) in agreement with experi-
ment]. This implies that the SDW state may not be treat-
able by current methods, which means we have no reli-
able Fermi surface to input until the relevant dHvA data
become available.

Local-density studies on the heavy-fermion magnets in-
dicate that the product IN greatly exceeds one [NpSn3
(Ref. 10), UCu5 (Ref. 38), TmSe (Ref. 51)], whereas for
the superconducting systems, the product IN just exceeds
one [UPt~ (Refs. 4 and 7), UBe» (Ref. 5), URu2Si2 (Ref.
38)], with I being evaluated via the local spin-density
Vosko-Perdew formalism (questionable in the presence
of large spin-orbit terms}. This interesting correlation
brings up the question of the "vegetables, " those com-
pounds which are neither magnetic nor superconducting.
Band calculations on CeCu6 indicate that IN is about
0.64, smaller than that found for (nonmagnetic) mixed-
valent CeSn3. ' Calculations on superconducting
CeCu2Si2 indicate similar factors, ' but there were certain
spherical approximations made in those calculations
which were shown to be severe for URu2Si2, so the
identi5cation of vegetables remains unclear at this time.
Experimentally, strong AF correlations are seen in
CeCu6, so it is not clear why such a metal is not s su-
perconductor. A Fermi surface has been extracted from
band calculations, but only a limited amount of dHvA
data has been reported, which is insufficient to deter-
mine the validity of the LDA surface. The author is be-
ing careful at this point, since the Kondo magnet Ce86
[which has a y of about 260 mJ/mole K (Ref. 54)] has a
Fermi surface consistent with f electrons not being part
of the Fermi surface, s5 as seen in most rare-earth metals.
Even accepting the LDA surface, its extreme complexity
inhibits any simple modeling as was done in the previous
cases. Moreover, the surface was Calculated for the
high-temperature orthohombic phase, not for the low-
temperature monoclinic phase. The low symmetry of this
phase, coupled with the possible presence of some fer-
romagnetic correlations, might be responsible for the

absence of superconductivity. Moreover, the neutron line
width appears to be of the order of 0.25 meV, a factor
of 20 smaller than in UPt3.

VII. CONCLUSIONS AND SPECULATIONS

This paper and the previous one represent an attempt
to put the heavy-fermion superconductivity problem on s
more quantitative basis. It is encouraging that mass re-
normalizations of the correct value and superconducting
solutions with the appropriate anisotropy were obtained.
The calculated transition temperatures for UPt3 and for
UBe&3 are about correct. Of course, the history of cslcu-
latjng transition temperatures in superconductivity
theory hss certainly not been the most illustrious in con-
densed matter physics, so how much relevance one at-
taches to numbers at this stage is an open question.

From the theory side, the author feels there are two
areas where further work is de5nitely needed. The first is
the validity of the kernel in the integral equations snd the
correct extraction of I in the presence of spin-orbit in-
teractions. The second is the inclusion of momentum
derivative terms in the Eliashberg equations, as well as
the proper inclusion of matrix elements. The latter is
probably the more important, but will substantially in-
crease the computational effort. From the experimental
side, nore dHvA data and more neutron-scattering data
are needed to elucidate the correct Fermi surface and sus-
ceptibility function to use in the equations. The former
can also be used to check the overall mass renormaliza-
tion, as well as renornslizstion anisotropies. Both sets of
experiments are extremely difficult, but they are the most
important ones to consider at this stage. As of now, rela-
tively complete data are available only in the case of
UPt3.

In conclusion, the author hopes this work will inspire s
trend towards more quantitative theories for heavy-
fermion systems.
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