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The pair-breaking effect of inelastic scattering of electrons o8'boson fluctuations is examined for
anisotropic and isotropic superconductors. We show that the ratio g of the couplings of the boson
fluctuations to the pairing and normal electron self-energies is an important parameter. Phonon-
mediated s-wave superconductivity corresponds to a value of g =1, and spin-fluctuation-mediated
d-wave superconductivity to g & 1. For g & },there is a critical frequency co, —T,e ' in the boson
spectrum: bosons at ar geo, are pair breaking. We give an approximate expression for the pair-
breaking effect of low-lying bosons, We also study the dependence of T, upon g in an Einstein mod-

el in which the boson spectral weight is concentrated at a frequency co&. We show that for fixed
electron-boson coupling, T, /co+ decreases rapidly as g decreases from 1, and for g&1 T, /coE satu-

rates at a low value as the coupling tends to infinity. Applications to heavy-fermion superconduc-
tors and to the new high-T, materials are discussed.

I. INTRODUCTION

The recent interest in superconductivity in the heavy
fermion compounds' and the new "high-T, "oxide super-
conductors has reopened the question of the interplay
between normal state self-energy elects and the super-
conducting gap equation, and in particular of the possible
pair-breaking efFects of inelastic scattering.

It now appears that the superconductivity in the
heavy-fermion materials UPt3, UBe,3, CeCuzSi2 is spin
singlet and anisotropic3 and is probably mediated by ex-
change of antiferromagnetic spin ffuctuations. " How-
ever, the resistivity near the superconducting transition
temperature T, in CeCu2Si2 and UBe, 3 is large, tempera-
ture dependent, and presumably due to inelastic scatter-
ing of conduction electrons off spin fiuctuations. For
these materials the mean-free path one would estimate
from the resistivity at T, is of the order of coherence
length. It is known that elastic scattering from nonmag-
netic impurities is pair breaking for anisotropic supercon-
ductors. %e therefore wish to investigate the extent to
which inelastic scattering involving the bosons which
cause pairing is pair breaking in anisotropic supercon-
ductors.

The high-T, oxide supergonductors have a resistivity
which is large, and increases linearly with temperature
for temperatures higher than the superconducting T, . '

(Note the temperature dependence of the resistivity is
quite different from that of the heavy-fermion supercon-
ductors. ) Lee and Read' have pointed out that the

temperature-dependent resistivity implies strong inelastic
scattering, and they have also asserted that this inelastic
scattering would substantially reduce T, from its value in
a hypothetical material in which the inelastic scattering
were absent, but would not affect the magnitude of the
zero-temperature gap ho. Thus, they expect for the
high-T, materials a value of T, which is correlated with
the magnitude of the temperature-dependent part of the
resistivity, and a value of b,oiT, which is much higher
than the BCS value.

I.ee and Read based their conclusions upon the follow-
ing line of reasoning (also used elsewhere in the litera-
ture"): inelastic scattering leads to an imaginary part of
the electron self-energy, which increases the lower cutoff'
in the logarithmic divergence of the Cooper pair propa-
gator and therefore suppresses T, . This procedure, how-
ever, treats self-energy and vertex corrections at an un-
equal footing and is therefore dangerous. For the case of
the particle hole channel in-dirty metals it was shown by
Castellani et al. ' that proper inclusion of the vertex
corrections leads to a cancellation of the cuto8' term in
the particle-hole propagator. Using a method which does
not explicitly use the Cooper pair propagator, it has in
fact been sho~n by Bergmann and Rainer' that inelastic
scattering due to electron-phonon interactions does not
lead to a decrease in T, for conventional s-wave super-
conductivity. Low-lying phonons lead to a pairing in-
teraction in addition to inelastic scattering; the first effect
always overcomes the second and the effects exactly can-
cel at zero phonon frequency. This last result can be un-
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derstood as a consequence of Anderson's theorem' be-
cause in some respects very low-frequency phonons mim-
ic static lattice distortions. Thus the argument of Lee
and Read' that inelastic scattering per se is pair break-
ing is not generally correct, and it is of interest to investi-
gate the circumstances under which it might be so.

%e will consider the efFect on spin singlet supercon-
ductivity (both s wave and anisotropic, e.g., "d wave") of
low-lyigg Bose excitations. We use a general form of the
familiar Eliashberg equations. %e note that to derive
these equations one must make approximations which are
justified by Migdal's theorem' in the electron-phonon
problem, but which have not been proven correct in
heavy-fermion or high-T, materials. The Bose excita-
tions will be characterized by a spectral weight A(co)
which represents the combination of the boson propaga-
tor and an electron boson-coupling constant squared. %'e

assume that A (co) does not change when the electrons
become superconducting. In the case of phonons A (co } is
the well-known' ' function a F(co). To study spin fluc-
tuations in s-wave superconductors or anisotropic super-
conductivity it is necessary to introduce a new coupling
constant g. This coupling constant characterizes the
dilference in the boson coupling to the normal and anom-
alous parts of the electron self-energy. The constant g
can be frequency dependent, but for simplicity we will
only consider the frequency-independent case in this pa-
per. It would not be diacult to extend our results to the
more general case. For the case of phonons in isotropic
superconductors the coupling constant g is identically
one. In the models of anisotropic superconductors so far
considered, 0 gg g 1. Spin fluctuations in isotropic super-
conductors' lead to a value of g = —1.

The case g =1 has been previously studied by Berg-
mann and Rainer. ' They showed that no frequency re-
gime in A (co) leads to a suppression in T, . More precise-
ly, increasing A (co) in the neighborhood of any frequency
cu leads to an increase in T, . However, introducing large
spectral weight in A(co) at frequencies co & T will obvi-
ously lead to strong inelastic scattering of electrons of en-
ergy e-T in the normal phase. The analysis in Ref. 13
shows that this increase in inelastic scattering will not
lead to a decrease in T, . In this paper we extend this
analysis to g g1. %'e find that for g ~1 there exists a
critical frequency co, —T,e' ~ such that for ~ &m„an in-
crease in A (co) leads to a decrease in T, . We estimate the
amount by which T, decreases per unit of Bose 6uctua-
tion at e &e, and show how to infer a pair-breaking pa-
rameter from the resistivity at T, . We argue that a
reasonable measure of the low-frequency boson spectral
weight is the mean-free path of an electron at the Fermi
surface due to electron-boson scattering; we show for d-
wave superconductivity with g g 1 that spin fluctuations
at frequencies co~m, have essentially the same pair-
breaking efFect per unit mean-free path as do nonmagnet-
ic or magnetic impurities. Because the mean-free path of
electrons at the Fermi surface due to scattering ofF of
low-frequency Bose fluctuations is temperature depen-
dent, the pair-breaking parameter due to a Sxed distribu-
tion of low-frequency bosons has a difterent temperature
dependence than that due to impurities. If this tempera-

ture dependence is taken into account then the suppres-
sion of T, and the change in the temperature dependence
of the gap by low-lying spin Auctuations is mell described
by the standard theory, ' ' provided the pair breaking is
weak in a sense defined more precisely in Sec. V.

%e also study the dependence of the superconducting
T, upon the parameter g. For fixed electron-boson cou-
pling and a boson energy scale we find that the supercon-
ducting T, decreases rapidly as g decreases from unity.
Surprisingly, for g g1 we find that the superconducting
T, saturates at a relatively low value as the electron-
boson coupling constant increases.

The outline of this paper is as follows. In Sec. II we
give the necessary formalism. In Sec. III we review the
results of Bergmann and Rainer' for g =1 and the re-
sults of Ramakrishnan and Varma' for spin fluctuations
in a conventional superconductor. In Sec. IV we study
the Eliashberg equations arising from a simple model for
anisotropic singlet superconductivity which has previous-
ly appeared in the literature.

In Sec. V we present and justify by numerical calcula-
tions expressions for the pair-breaking efect on d-wave
superconductivity of conventional and magnetic impuri-
ties and low-lying boson modes and discuss the applica-
tion of our results to the heavy-fermion materials UPt3
and UBe&3. There is a brief conclusion and an appendix,
in which the numerical methods are outlined.

II. FORMALISM

%e begin by establishing notation. The electron Green
function is written in standard notation

iZ(k, ro„)r0„+skr3+ W(k, ro„)~2cr2
G(k, ro„)=

[Z(k, ro„)] r0„+ek+[8'(k, ro„)]
(2.1)

Here co„=(2n +1)mT is a Matsubara frequency, ek is
the electron energy measured from the Fermi surface,
ice„[1—Z(k, co„)] is the normal part of the electron self-
energy, and W(k, co„) is the anomalous part. The gap
function h(co„)= W(co„)/Z(co„), r3 and rz are Pauli ma-
trices acting on the particle-hole degrees of freedom,
while o 2 acts on the spin degrees of freedom. In writing
Eq. (2.1) we have assumed singlet superconductivity and
that the interactions renormalize only the frequency scale
and not the momentum scale. Thus we assume Z and 8'
depend only on the direction of k and not on its magni-
tude.

%e represent the electron-boson interactions by the
efFective interaction Hamiltonian

H; =Hd+H, , (2.2}

where the density (d} and spin (s) channel interactions are

Hd ————,
' g n (k, co„)a D ( k, co„)n ( —k, —a)„), (2.3a)

~, = ——,
' g S;(k,co„)I XJ(k,co„)SJ(—k, —co„) . (2.3b)

k, cd

lJ

Here D(k, co„) is the propagator and a the coupling
constant for the bosons such as phonons which couple to
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electron density; g,j and I pertain to the spin interaction.
We write the electron density n and spin density S in
Nambu notation as

n (k, co„)= g fz+k(co„+Q„)r3$~(Q„), (2.4a)

S, (k, io„)= g Pt+k (io„+Q„)a'f~ (Q„),
p, Q„

where the spin matrix a' is given by

a'= —,'(1+r3)cr' ——,'(1 —r3)(0')

(2.4b)

(2.5)

Here o' is one of the usual Pauli spin matrices and T

denotes the transpose.
In the standard superconductivity theory' D is the

phonon propagator, a is the electron-phonon coupling
constant, and I =0. In the theories believed to describe
heavy-Fermion superconductivity 7; is related to the
electron spin susceptibility, I is a phenomenological in-
teraction constant, and a =0

%e also include nonmagnetic and magnetic impurity
scattering in the standard way. %e denote the nonmag-
netic impurity potential U, (p) and the magnetic impurity
potential u, (p).

From Eqs. (2.1)-(2.4) one may easily derive the self-
consistent one-loop equations for the self-energies,

i Q„Z(p, Q„)
[1—Z(k, co„)]in)„=—f ~T g8~ Up n„+[Q„Z(p, Q„)]2+[ W(p, co„)]t

X a D(k —p, io„—Q„)+I X(k —p, ~„—Q„)

+
2 T[ IU;« —p) I'+ IU, (k —p) I']

4

(2.6a)

d Sp W(p, Q„)
W(k, co„)= f 3

nTQ.
877 Up n Q[Q Z(pQ )] + W(p Q )

X a~D(k —p, co„—Q„)—I X(k —p, u„—Q„)+ ™
[ i U;(k —p) i

—
i v, (k —p) i ]

(2.6b)

X(q,~„)=Xo(q)4(co„) . (2.7)

Here X(q, ro„)=TrX;J.(q, co„). The p integral is over the
Fermi surface, U =Be jap is the unrenormalized veloci-
ty.

If one assumes s-wave superconductivity (so W is iso-
tropic) and I =0 one recovers the familiar Eliashberg
equations. If one assumes d-wave superconductivity and
a=0 one obtains equations previously considered in the
context of heavy-fermion superconductivity. If one
assumes a&0, I&0 but W is isotropic and takes the limit
8 ~0 one obtained the equations previously considered
by Ramakrishnan and Varma' in their study of T,
reduction by inelastic spin-flip scattering in conventional
superconductors.

To simplify the subsequent analysis without affecting
the essential conclusions we assume that D is independent
of momentum while 7 has the separable form

Further, it will be convenient to write D and 4 in spec-
tral representation,

A, ( )d
Noa D(co„)=-

CO„+M
(2.8a)

cil A t(co}dci)
NOI Ci(co„)=-

Nz+N
(2.8b)

No =f (dS~ lgm U ), is the electron density of states.
To conclude this section we show that for T & T, . Eq.

(2.6a) gives the standard expression2 for the scattering
rate of electrons scattering oF bosons. The rate is given
by the imaginary part of the self-energy. By combining
(2.6a) (2.7}, and (2.8) and neglecting the impurity contri-
butions U; and U, we easily 6nd

2' I I

'(co, T)= —2 Imp(co, T }=m f [A, (co'}+A2(ro'}] coth ——,
' tanh ——,

' tanh (2.9)
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Suppose A)(o))+A&{co)=0 for o)&co . Then for
T~ru~, „,r '(o), T)-T while for co~co and T&c0

'-const. This frequency and temperature scattering
rate w'ill lead to a texaperature-dependent resistivity. But
if Ai(co)+ A2(co)=0 for ra&m, then for T,co~co;„
r '=0 Low-lying (compared to I) boson spectral
weight therefore gives rise to electron-boson scattering.
Note that the frequency dependence of r ' is always
small.

By substituting this form for ~ into standard expres-
sions one finds that for temperatures T R co,„/4,

Indeed, if static impurity scattering and umklapp scatter-
ing are important, one may write the resistivity p as

Ae SFI
p (2.13}

12m. A

where SF is the area of the Fermi surface (SF ——4mkz for a
spherical Fermi surface). A is a numerical factor of order
unity. It is, e.g., equal to one in the case of a spherical
Fermi surface and scattering from pointlike impurities. I,
the mean-free path of an electron at the Fermi surface, is
given by

~-)(T)=2~XT, (2.10) l =u~r(T) . (2.14)

„g~ A)(co)+ Ai(co}
A, =2

0 CO

However, for T =0 and ~~a,„,

(2.11)

Note that I, ~, and u are all "renormalized" quantities
which do not depend on the renormalization factor Z.
This follows from our convention for the Green function,
Eq. (2.1).

'(o))=2~ f A)(o))+ A2(o)) .
0

(2.12)

In the rest of the paper we shall assume I, is an ap-
propriate measure of the magnitude of the lifetime of an
electron at the Fermi surface, and also of the contribu-
tion of electron-boson scattering to the resistivity.

III. ISOTROPIC SUPERCONDUCTIUITY

In this section we use arguments devised by Bergmann
and Rainer'3 to study the efFect on T, of various func-
tional forms of A )(co) and A2(co). We begin with the s-

wave case. Beginning from Eq. (2.6), assuming W is iso-
tropic, linearizing in 8' and rearranging yields

co'[A)(co')+ A2(co')] sgnco„sgnco„
co„Z(co„)=c0„+n.T g sgn(Q„) f 2,2 + +

o n(c0'—Q ) +co'
(3.1)

(3.2)

Here, as usual, the impurity scattering rates are given by

d Sp
& (.) =& (.), I

U t )(p} I

8'1T Up

The superconducting order parameter b(co„)=W(co„)/
Z(co„).

Bergmann and Rainer have sho~n that analysis of this
system can be considerably simplifMd if (3.2) is cast in the
form of an eigenvalue equation for the eigenvector
h(co„)/ I co„ I,

I
co„ I

Z(co„)
I(. (co„,Q )—

m

(3.3)

W(Q ) „2cf~ co'[ A ) (c0') —
A

q(co') ] 5„

I
Q

I
Z{Q } o ir (co„—Q)2+o)'2 2mTr;

f

largest eigenvalue increases and crosses zero at T, .
From Eqs. (3.1} and (3.3) one sees immediately that

nonmagnetic impurity scattering cancels between K and
Z while magnetic impurity scattering does not. By
transferring the v, ' term to the right-hand side of Eq.
(3.3) one sees that magnetic impurity scattering makes an
additive contribution to 4. Thus it is clear that for
T&T„ the largest eigenvalue 4 corresponds to the
amount of pair breaking necessary to reduce the critical
temperature to T.

%e are interested in changes in T, arising from

5(Q } changes in the lifetime of electrons at the Fermi surface.
5„ This may be calculated from a consideration of the func-

tional derivatives c05T, /5A)(co), c05T, /5Hz(co). By the
chain rule these may be represented in the form, e.g.,

where
C

5A) 2(co) d4/dT
I T

(3.5)

„gc0' co'[A i(co') —A2(co')]
K (co„,Q )=2

(co„—Q ) +ct)'

5„
(3.4)

2m'TT 2m T~

At high temperatures the eigenvalues of Eq. (3.3) are the
negative odd integers. As the temperature is lowered the

As 4 is a pair-breaking parameter, d4/dT is negative.
Therefore, we may determine whether increasing A)(co)
or Ai(co} at a certain frequency c0 will increase or de-
crease T, by determining if the functional derivative
54/5A)(co)[54/5Hz(co)] is positive or negative. Apart
from an unilnportant normalization constant this func-
tional derivative may easily be evaluated to yield
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h(co„)h(co )
54=+coz g

ra I n I I ~m I oi +(ni„—oiIII ) cii +(I'o„+cd~ )

1

co +(io„—cot) cd +(co„+cog)
(3.6)

Here the upper sign pertains to 54/5A, and the lower
sign to 5qI/5 A i. Consider first the expression for
54/5A, . Bergmann and Rainer' proved that if all the
b,(co„)&0, and h(ra„) decreases with increasing Iso„ I,
then 54/5At &0. They also proved that b, has these
properties in the pure phonon model where Az ——0, and
by numerical solution of the equations showed
54/5A»0 also when realistic values of the Coulomb
pseudopotential p,

' are allowed for. Note that the first
term in Eq. (3.6) comes from differentiating the interac-
tion kernel which leads to pairing, while the second term
comes from difFerentiating the self-energy. If all of the
b, (ro„)& 0, the first term makes a positive contribution to
5IZI/5A i,'this refiects the obvious fact that adding pho-
non spectral weight in any frequency range increases the
pairing interaction. The second term makes a negative
contribution to 54'/5A, ; this refiects the fact that adding
phonon spectral weight changes the electron self-energy
(both mass enhancement and scattering rate) in such a
way as to decrease T, . The argument presented in the in-
troduction that inelastic scattering from low-lying bosons
suppresses T, is now seen to be incorrect in general: a
low-lying phonon mode mill contribute also to the pairing
interaction and the net effect is to raise T, .

It is instructive to examine (3.6) analytically using a
simple BCS model in which A, (co) =(nkcoD/2)5(co —coD )

and Az(co)=0. Then, to leading logarithmic order one
may write Z(co„)=(1+A) 8(coD —oi„), 5(o)„)=doe(ioD
—co„), and T, =eon exp —(1+A, }/A, . Turning now to Eq.
(3.6}one finds for co »coD

IV. ANISOTROPIC SUPERCONDUCTIVITY

In this section we mill apply the Bergmann-Rainer
analysis of the Eliashberg equations to the case of aniso-
tropic even-parity singlet superconductivity. As pointed
out by Emery, Scalapino et al. , and Miyake et al. the
antiferromagnetic correlations in a Fermi liquid near an
antiferromagnetic instability can lead to anisotropic sing-
let superconductivity.

For concreteness we adopt the model of Ref. 6 but add
impurity scattering; we thus study Eqs. (2.6)-(2.8) with
D (k, co„)=0 and

I Xo(q)=Jo —Jiyq

y =2(cosq„a+cosq a+cosq, a) .

(4.la)

(4.1b)

I I I I
I

I I I I
f

I & I I
)

I I I I
I

I I I I

tions is shown in Fig. l. A more detailed discussion for
the case of antiferromagnetically coupled spins was given

by Ramakrishnan and Varma. ' Our results are
equivalent to theirs; however, we have normalized our
changes in A

&
to changes in k while they have normal-

ized in such a way that a sum rule is preserved. Our re-
sults therefore difFer from theirs by a frequency-
dependent factor.

54/5A, (oi)-bo &0,'
A,

2
(3.7)

-2.5

mhile for co~0 the leading terms in the positive 6rst and
negative second terms diverge as 5„ /A@2. These two
divergences cancel, leaving

5III/5A, (co)-co b,o &0 .2 1+k
(3.8)

This cancellation of the 1/~ divergences is a special
feature of the electron-phonon interaction. It may be un-
derstood as a consequence of Anderson's theorem' that
nonmagnetic impurity scattering does not aSect T, be-
cause a very low-frequency phonon is in many mays
equivalent to a static lattice distortion.

Now consider 54/5Ai(oi }. From (3.6) one easily sees
that (provided the conditions on b, specified above are
satisfied} 5III/5A2 &0. Thus for s-wave superconductivi-
ty spin-Aip scattering is a1mays pair breaking. The efFect
on T, of adding an in6nitesimal amount of spin Auctua-

- 3.5

FIG. 1. The functional derivative of the critical temperature
T, for an s-wave superconductor with respect to the spin-
fluctuation spectral ~eight Az4', ca) plotted against ~/T, . The
derivative has been normalized so that each frequency makes an
equal contribution to the scattering rate defined in Eq. (2.10) of
text.
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%'hen it is necessary to assume a form for the anomalous
self-energy W(p, co„),we shall use

W(p, co„}=W(co„)t)(p) . (4.2)

+ 1/2r;, (4.3a)

2dco co A (co)
Xg

o n' (co„—Q„) +co

gc W(co„)
+

2r;
~
co„Z(co„)

~

(4.3b)

Here we have introduced two new couplings and have
dropped the subscript on A2(co) for convenience.

The coupling constant g is given by

~p ~km' n I'&ox' —k
g= (4.4a)f dSpdSi, I Xo(p —k)

According to our conventions, S~g p =1. If, as is

usually assumed in the heavy-fermion problem, the in-

teraction is repulsive for all q (i.e., I Xo(q)~0), then

g ~ 1. For the model of Ref. 6, g ~0.25.
The coupling constant gI is similarly given by

fdS dSkt)(p)rl(k)
i u, (k —p) i

t
(4.4b)

JdS dSk ( u,.(k —p)
~

gl=

Note —1~gl &1. For isotropie impurity scattering
g~=0; in general, one expects ~gi ~

&&1. By retracing
the standard analysis it is easy to see that the presence
of impurity scattering leads to a pair-breaking parameter
4=(1—gi)/(2mTr, ) Magnetic imp. urities in an s-wave
superconductor would lead to a pair-breaking parameter
4= 1/n Tr, .

Before discussing the sensitivity of T, to boson spectral
weights at various frequencies, it is of interest to discuss
the value of T, predicted by Eqs. (4.3). For simphcity we
assume an Einstein model, in which

A (co) =(m /2) Jocox5(co —co~ ); (4.5)

The function t}(p}is a basis function for a representation
of the crystal symmetry group and gives the angular
dependence of the superconducting order parameter.
One tl(p} considered in Ref. 6 is ri(p)=v 6[cos(p„a)
—cos(p„a}].

Combining Eqs. (2.6)-(2.8} and (3.1) and (3.2) and
linearizing the Eliashberg equations one finds

co„Z(co„)=co„+m T g sgn(Q„)
0„

2dco coA(co)

(co„—Q„) +co

and we set ~, =oo. In the model of Ref. 6 one has

g =J, /Jo. In the weak coupling (Jo «1) limit, the BCS
approximation is presumably valid and one has

Z (co„)= 1+Jo, (4.6)

1+Jo
(4.7)

gJo
From this weak-coupling analysis one infers that, because
g & 1, anisotropic superconductors have intrinsically
much lower critical temperatures than s-wave supercon-
ductors with the same interaction scale and coupling con-
stant. This inference is confirmed by numerical solution
of the Eliashberg equations for various values of g and Jo;
some typical results are shown in Table I. Very similar
conclusions have been reached by Levin and Valls25 in a
study of the superfiuid transition temperature of He,
which is a p-wave superfiuid with (in our notation)
g 50.33.

It is aim instructive to consider the strong coupling
limit. In this limit the s-wave problem was solved by Al-
len and Dynes2s who assumed b, ( co)=dS r and

solved the Eliashberg equations variationally. Extending
their procedure to the case g & 1 we find

Jo(2g —1)—1
T, =0.183cog (4.8)1+Jo 1 —g

Equation (4.8) is a variational lower bound for T, .

T, =nEexp—

BCS AD

1.0
0.8
0.4

0.115
0.068
0.005

0.135
0,082
0.007

0.61
0.66
0.78

1.0
0.8
0.4

0.212
0.135
0.019

0.223
0.153
0.024

0.68
0.60
0.75

1.0
0.8
0.6
04

0.558
0.274
0.150
0.057

0.333
0.253
0.160
0.064

0.549
0.183
0.082

1.37
0.81
0.61
0.68

1.0
0.8
0.6
0.4

1.82
0.360
0.185
0,074

0.364
0.283
0.186
0.080

1.82
0.31
0.12

1.90
0.97
0.67
0.66

TABLE I. Superconducting transition temperature, calculat-
ed by numerical solution of Eliashberg equations (4.3a) and
(4.31) of text, and compared to two approximate expressions.
The Einstein form given in Eq. (4.5} is assumed and co@ has been
set equal to 1. BCS is the weak-coupling value
T, =exp —(1+J)/gJ and AD is the generalized Allen-Dynes
value T, =0.183 V[(2g —1}J—1]/1+(1—g}J. P is related to
pair breaking and is discussed in Sec. V. The values for J=10
and J=100 are of mathematical interest only; for these values
of J we suspect the Eliashberg equations are not physically
relevant.
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This equation has three noteworthy features: (i) for

g g 1 ii saturates,

(ii) for large Jo and g near 1, it shows a rapid decrease as

g moves away from 1, and (iii) Eq. (4.8) predicts at fixed

Jo, T, goes to zero at g =g, =(1+Jo)/Jo y 0.5. Now Eq.
(4.8) is a lower bound; the actual T, is of course nonzero;
however, as g decreases from unity, T, rapidly becomes
more accurately approximated by Eq. (4.7) than by Eq.
(4.8}. This analysis has been confirmed by numerical
solution of the Eliashberg equations; typical results are
given in Table I, where the numerical value of T, is also

l

J~ dco co A(co ) gl nm

0 Ir (co„—Q„) +co'~ 2m'T7'c

From (3.3) and 4.9 we then find

(4.9)

compared to that predicted by Eqs. (4.7) and (4.8). Note
that for the case g &0.25, which, it has been argued, is
relevant to heavy-fermion materials, Eq. (4.7) is always
appropriate and T, is limited by co@exp( —1/g), no
matter how large J0 is.

The techniques discussed in Sec. III may be used to
evaluate the sensitivity of T, to the boson spectral
weight. We cast (4.3b) in the form, (3.3), of an eigenvalue
equation. The kernal K (Q„,co„) is now given by

b (co„)b(co ) g g=2co 2+ 2
co +(co„—co ) co +(co„+co )

a)„)0 a) &0

coI

a)( y0

1 1

co +(co„—coi) co +(co„+coi)
(4.10)

54 54
M.(co) 5A (co)

(4.11)

Thus at low enough frequencies 54/5A (co) is negative, if
g g 1, and so there must exist a critical frequency cu, ; spin
fluctuations at co ~ ~, promote pairing, spin fluctuations
at co~co, inhibit it. The precise value of co, depends
weakly on the spectrum A(co) and strongly upon g. In
the simple BCS approximation given above one Ands
analytically that for co0 & co & T„

5T, /5A(co)-(g ln co/T, lnco/T, +const)—

so that co, —T,expl/g. The g dependence of co, for a
more general model may be easily computed numerically;
the nearly exponential dependence of m, on 1/g is shown
in Fig. 2 for an Einstein model of arbitrary J0. It is
perhaps surprising that ~, is essentially independent of
Jo. However, the only J dependence in Eq. (4.9) (apart
from that of T, } is via the gap function b(co„), and we
have verified that the form of h(co„) is insensitive to J.

The value of co5@/5A (co) may be easily calculated nu-
merically for general m. Results for various values of g
calculated using the Einstein model of Eq. (4.5) for Jo=—2

where again we have Propped an unimportant normaliza-
tion constant.

We now consider the high- and low-frequency limits of
Eq. (4.10). Clearly as co~ oo, the term in Eq. (4.9) pro-
portional to 5„scales as co (because g„b,(co„)/

~
co„~

converges as co„~oo) while the positive terms go as co

Thus at large enough co, 54/5 A (co) & 0. This is physical-
ly obvious; the superconductivity is supposed to be medi-
ated by spin fluctuations.

However, as co-+0 the situation is different. The co

terms do not cancel and one finds

are shown in Fig. 3. The curves for J=1 and J =10 are
very similar.

For g &0.5 (and certainly for the g &0.25 case which
may be relevant for heavy fermions} one sees from the
curve'in Fig. 3 that co54/5A (co) is constant for frequen-
cies less than several times T, . One infers from this that
boson fluctuations in this frequency range have the same
pair-breaking ePect as static impurities.

V. PAIR BREAKING

In this section we give a quantitative analysis of the
pair-breaking effects of low-frequency spin fluctuations

I I I I
l

I I I I
t

I I I I
l

I I I I
l

I I I I

OI-

3 2—
C

I I I I l I I I I } I I i I l I I I I l I I I I I

1.5 2 2.5 5.5

FIG. 2. The logarithm of the ratio (co, /T, ) plotted against
the coupling constant 1/g. ~, is the frequency at which
5@/5 A {~) crosses zero in an Einstein model of a spin-
fiuctuation mediated d-wave superconductor.
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I f I ) I 1 ~ I
I

l I t I
I

r I I I
I

l f i ) Zo 1

T, rr
i
d4/dT

i

(5.3)

0,5—

g 0.5

and static magnetic and nonmagnetic impurities upon @-

wave superconductivity. %'e discuss the applicability of
our results to UPt3 and UBe» and make a few remarks
about the new high T, materials. As far as possible, we

shall formulate our results in terms of experimentaHy
measurable quantities.

We define a coherence length go by

Up

ko (5.1)

The factor Zo =lim oZ(co) is the usual mass
enhancement factor; u is the "unrenormalized" velocity.
This definition is sensible if one is interested in tempera-
tures and energies much less than a typical spin-
Iluctuation frequency roz. For ro-coE, Z(ni} depends on

frequency and it is not clear how to define a length. Al-

though we do not know whether the Eliashberg equations
are valid in the very strong coupling limit, we present
some results in this limit below. Throughout, we use Eq.
(5.1) to define a coherence length.

We first ask the question: given a spin Quctuation
mediated d-wave superconductor of given T, and essen-
tially infinite mean-free path for electrons of energy
EST„how does T, change when a small amount of
scattering of electrons of energy c. & T, is added'7

We begin by assuming that the scattering is due to stat-
ic, nonmagnetic impurities. The physically relevant mea-
sure of scattering is the mean-free path, which may be in-
ferred from the measured resistivity via Eq. (2.13). We
therefore write, using (2.14), (3.3), (4.8a), and (4.9)

t i s l I I i I I I I I I I i I I i I I I I I

1 2 5

laic

FIG. 3. The functional derivative of the critical temperature

T, for a d-wave superconductor with respect to the spin-
fiuctuation spectral weight A {co),plotted against the ratio ~/T,
for various values of g. The Einstein model of Eq. (4.5) with

Jo ——2 has been used. The results for J=1 or 10 are very simi-

lar.

TABLE II. Pair-breaking rate P, calculated using the Ein-
stein model of Eq. (4.5) with ruE ——1, is shown to depend only on
the ratio of the superconducting T, to Einstein frequency co+.

0.563
1.45
6.9

0.9
3.3

10.0

T, =0.05

1.0
0.6
0.4

T, =0.10

1.0
0.6
0.5

0.69
0.69
0.70

0.61
0.62
0.63

For comparison, we note that for a weak-coupling s-wave
superconductor with an infinitesimal amount of magnetic
impurity scattering one finds

d lnT, /mgorI(1/I ) =2I3sr,

with Psr =n /4=0. 785. We have computed P numerical-

ly in the Einstein model of Eq. (4.8); some typical results
are given in Table I. One sees that for g g 1, P never
difFers by more than 20% from Psr. Surprisingly, we

have also found numerically that within the Einstein
model P depends only on the value T, /cos, and not on g
or J separately for g &1. As expected, P tends to the
value P as T, /roE tends to zero. The dependence of P
on T, /co@ is shown in Table II.

Equations (5.2} and (5.3) show —as has been known for
many years —that conventional impurities are pair
breaking for d-wave superconductors. The explicit ex-
pressions are apparently new and show that the pair-
breaking rate for conventional impurities in a d-wave su-
perconductor is of the same order as that for magnetic
impurities in an s-wave superconductor.

One may make a similar analysis for magnetic impuri-
ties, obtaining an equation analogous to (5.2) but with
(1+g,) replacing (1—gi). The quantity g, is defined by
Eq. (4.4b), but with the spin-flip scattering amplitude v,
replacing UJ. Note —1 ~g, &1 also. Thus magnetic im-
purities are also pair breaking for d-wave superconduc-
tors.

The mathematical similarity between the cases of con-
ventional (or magnetic) impurities in nt-wave supercon-
ductors and magnetic impurities shows that the stan-
dard ' ' analysis of the suppression of T, for finite im-

purity density or for the temperature dependence of the
gap for T & T, carries over to the d-wave case provided
one multiplies the pair-breaking parameter p defined in
Ref. 20 by the factor (1—gr )/2 or ( I+g~ ) /2 is appropri-

1 ~~c

T,m god(1/I}
(5.2) 1.85

4.0
9.0

T, =0.2
1.0
0.8
0.7

10.66
0.67
0.67
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ate. Note that in the present work it is necessary to as-
sume that the d-wave superconductor is in the clean lim-

it, so that go=uFp/T, ZO; were this not the case, T,
would have been reduced to zero by pair breaking.

%'e now consider the case in which electrons scatter o8'

spin Suctuations at co&co, . The situation here is more
subtle than in the impurity case. Consider for example
the case g ~~1; then ~, &~T, so that adding spin-
Suctuation spectral weight at, say, coo ——co, /2 will reduce
T„yet will cause no change in the resistivity at T, .
Rather, this added spectral weight will change the mass
enhancement of electrons of energy s & tao and the
scattering rate of electrons with e & F00. Both elfects will

presumably contribute to the decrease in T, . This work
was motivated, however, by the existence of supercon-
ductors with a large, temperature-dependent resistivity at
T, . Within the models we have considered such resistivi-

ty is produced by boson spectral weight at frequencies
comparable to T, . We therefore focus on the pair-
breaking efFect of such low-lying (e-T, ) Bose Suctua-
tions in what follows. For such bosons mass enhance-
ment is only changed for electrons of e &co; these give a
negligible contribution to the gap equation.

Note that for fixed temperature and iL, Eq. (2.10} is an

upper bound for the scattering rate of electrons of energy
z- T. Thus by combining Eqs. (2.10), (2.14), (3.3), (4.3a),
and (4.9}we may write an inequality for the efFect on T,
of introducing an infinitesimal quantity of Bose Suctua-
tions at a frequency e & r0, :

1 dTc 54
n T, god(1/I) 5A (~0)

{5.4}

Now co54/5A (c0) was discussed in Sec. IV. Its prop-
erties were shown to be very sensitive to the value of g;
however, for g & 0.8, one sees that for co- T„ it is.essen-

tially equal to its zero-temperature value (1 —g}. From
this one may conclude that, for the models so far pro-
posed for d-wave superconductivity, weak scattering
is pair breaking regardless of whether it is due to interac-
tion of electrons with static impurities or with spin Suc-
tuations; further, the pair-breaking rate is comparable to
that for magnetic impurities in an s-wave superconductor
up to factors of order unity, provided the ratio of T; to
the pairing boson frequency is not too large. Recall also
that T, /cps -e '~g for g &0.8.

The extension of these results to a finite boson spectral
~eight at m~m, and to T~T, is of interest; however,
this extension also is more subtle than in the impurity
case. Imagine adding boson spectral weight at a frequen-
cy coo&as, to a d-wave superconductor with a given T, .
As the low-frequency boson spectral weight is mcreased,
T, and co, will decrease. Eventually one will have

~,~no and the decrease in T, wiH cease. The situation
for T & T, is also problematic for two reasons. In the @-

wave case the boson is believed to be a spin Nuctua-
tion of the conduction electrons. %'hen the conduction
electrons become superconduciing one expects the low-
frequency, pair-breaking part of the spin-8uctuation spec-
trum to change, because of the superconducting gap. %e
have not investigated this issue in detail. The second

W(n„)

(5.5a)

f ~ 216)
0

co A (Ql)

(r0„—Q„) +co
(5.5b)

These equations ignore the mixing of the anisotropic gap
function with other representations of the cubic group
and, as mentioned above, changes in the boson spectrum.
We add a pair-breaking part to the Einstein model
defined above, writing

A(co) = Ap(co)+ Ax(co), (5.6)

where AE{co) is given by the right-hand side of Eq. (4.5)
and

A (cu)= —J co 5(co —co ) .P 2 P P P
(5.7)

%e assume ~P gu„coP 5 T„where T, is the critical
temperature corresponding to the spectral weight A (co)
in {5.6).

%e 6nd that our results are to good approximation de-
scribed by the standard analysis, but with the pair-
breaking parameter given by

="-g'" '..tp= coth (5.8)

To see why Eq. (5.8) is justified, consider the contribu-
tion of the pair-breaking part, A (co), to the gap equa-
tion, (5.5b). One obtains

8'(Q„) scopgn. T g
( Q„Z(Q„) ) (Q„~„)2+~2

If ~P ~cT the second factor is sharply peaked about
co„=n„,while if pair breaking is not too strong, co(n„)
and Z(n„) will vary with frequency only on the scale of
coE »co~, T. Thus one may extract the co/Z term and
perform the sum, obtaining

reason, of more interest here, is that as T~0, the scatter-
ing rate for electrons of c & ~0 o8'an Einstein mode at fre-
quency coo changes from 2nA, T to mMO. (Again, if
mo'-T„electrons with energy c~aoo give a negligible
contribution to the gap equation. ) Thus, the efFective
pair-breaking parameter has a diI'erent temperature
dependence than in the impurity case.

To illustrate this point we have studied the case
coo&co, with T, -coo and (assuming that the boson spec-
tral function does not change when the electrons become
superconducting} T & T, . We use the model equations

Q„Z(n„)
cil+Z {co„)=alz +'lTT g

n. QQ„Z~{n„)+W (Q„)
2dco co A (N)

0 n' (co„—Q„) + m
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FIG. 4. The temperature dependence of the zero-temperature
order parameter h. The outermost line represents the solution
with no pair breaking A(~)= Az(~). Cases (a), (b), and (c)
represent three values for the pair-breaking part A~(~). The
solid lines represent the complete numerical diagonalizations of
Eqs. (5.5), (5.6), and (5.9) vrhile the dashed lines indicate the re-
sults obtained by introducing a pair-breaking parameter p given

by Eq. {5.8).

Comparison of (5.9) and {4.3} shows that the low-

frequency bosons enter the Eliashberg equations exactly
as do impurities with a scattering rate of
mJ ~ cothco /2T and gI ——g. Eq. (5.8}thus follows.

%e calculate the superconducting T, and ihe ratio of
the superconducting order parameter bo(T)/T, . Here

8'(co)so= lim
ru~o coZ(r0)

It is not the energy gap, which may or may not vanish.
%e choose parameters ~E ——1, g =0.67, and aE ——1.2;

in the absence of pair breaking these yield a supercon-
ducting transition temperature T,o——0.053 and a critical
frequency u, =0.22m4T, o. %'e discuss three choices for

A~ (co): (a) co~(a) =0.0003, J (a)= 10—this yields

T, =0.0069„(b) mz(b ) =0 01, J.z (b)=3—this yields

T, =0.019; (c) ~ (c)=0.03, J~(c)=1—this yields

T, =0.035. The results are plotted in Fig. 4. The outer-
most line represents the solution with A (co)=0. For
cases (a), (b), and (c) the solid lines represent the solutions
of the full equations (5.5), (5.6},and {5.7) while the dashed
lines represent the solution to the same equations with
A(co)= A, (co), and an additional pair-breaking parame-
ter p given by Eq. (5.7). For case (a},the dashed and solid
lines are superposed indicating that the approximation is
essentially exact. In case (a) we have co~ && T„explaining
the success of the approximation. For cases (b) and (c)
we have co~ =1/2T, and co =T„respectively. Despite
this, the approximation [Eq. (5.8)] is valid to within a
10% accuracy throughout the entire temperature range.

We now consider applying these results to the heavy-
fermion materials UBe13 and UPt3. A serious difficulty is

the absence of a microscopic theory of heavy-fermion su-

perconductivity so that the all important parameter g is
unknown. It is even unknown whether the inequality

g ~1 need apply, much less whether the more stringent
inequality g &0.25 which follows from the previously
proposed models is appropriate. Nevertheless, we as-
sume in what follows that a spin-fluctuation model with

g & 0.8 applies to the heavy-fermion materials.
For UPt3, the resistivity near T, is low. The mean-free

path may be estimated from the Fermi surface area/7 the
measured resistivity, ' and Eq. (2.13) to be in excess of
2000 A, while, using the measured quasiparticle veloci-
ty, 2 one Snds g'0-150 A.. I.inearizing Eq. (5.4) and as-
suming g =0.25 and p=psi we estimate that the scatter-
ing has reduced the observed T, of UPt3 from the T,o of a
hypothetical material with no scattering by less than
10%,

TcO Tc
g0. 1 .

cO

(5.9}

VI. CONCI. USIQN

We have examined in this paper the differences in the
nature of pair breaking due to inelastic scattering of elec-
trons off boson fluctuations in anisotropic and isotropic
superconductors. %'e have also studied the supercon-

The pair breaking seems to be weak in UPt3. However,
the resistivity of UBe&3 at T, is -50 times larger than
that of UPt3, ' thus the ratio of the mean-free path to the
coherence length for UBe» must be larger than in UPt3.
Indeed an analysis (using, it should be noted, a theory
appropriate for s-wave superconductivity) of the upper
critical Seid in UBe,3 has yielded the values (0=150 A
and I =60 A. This difFerence of at least 30 in the g'0/I ra-
tio implies that for UBe13 one has

TcO Tc
~1 (5.10)

cO

indicating that the pair breaking in UBe&3 is strong We
therefore suggest that if UBe» were a spin-fluctuation
mediated d-wave superconductor, it would have a gapless
region near T, and a large value of the ratio of the zero-
temperature gap to T, . %'e note, however, that in Ref. 7
the specific-heat jump at T, was shown to be in good
agreement with a theoretical model which presumably in-
cluded no pair breaking; this is perhaps evidence against
gaplessness.

Of course, Eq. (5.11) was obtained by extrapolating Eq.
(5.4) far beyond its region of validity. In a more detailed
analysis, T, could be computed for a boson spectrum ex-
tended to low frequencies and for arbitrary impurity
scattering. However, what has been computed suSces
for a rough estimate; in view of the sensitive dependence
of our results upon the (uncertain) value of g, such an
analysis does not seem worthwhile.

Were the high-T, materials spin-fluctuation mediated
d-wave superconductors, a similar analysis could be
made. Again, the issue of the elasticity or otherwise of
the scattering would be irrelevant if g &0.8.
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ducting transition temperatures predicted by an Eliash-
berg equation for d-wave superconductivity. We have
identified a parameter g which measured the difference in
the coupling of boson fluctuations to the normal and
pairing self-energies. For conventional phonon supercon-
ductors g =1. For models with purely repulsive interac-
tions, g &1 for d-wave superconductivity. For models
which have appeared in the heavy-fermion literature,
g ~0.25. %e know of no fundamental reason why mod-
els which yield d-wave superconductivity must have

g g 1, but we have only studied this case in this paper.
Our principal results are that for spin-fluctuation medi-

ated d-wave superconductors: (i) there is a critical fre-
quency co, -T,e' g in the spin-fluctuation spectrum.
Spin fluctuations with co ~co, are detrimental to d-wave

superconductivity; spin fluctuations with ~ & co, increase
T, . (ii} For fixed interaction strength and frequency T, is
a rapidly decreasing function of g. For g g1, T, satu-
rates, independent of the magnitude of the coupling con-
stant, J. For g &0.8, T, in an Einstein model is well fit

by the form T, =cuEe "+ '~s independent of the magni-
tude of J. (iii) Provided g ~ 0.8 it is essentially correct to
infer a pair-breaking parameter from the measured resis-
tivity, whether the scattering is elastic or inelastic. As-
suming UBei3 is a d-wave superconductor with g ~0.8
we suggest it is in the strong-pair-breaking regime, and
its T, has been substantially reduced by the low-
frequency spin fluctuations (or impurities) which produce
the measured resistivity at T, . Similar considerations
would apply to the high-T, materials, were they d-wave
superconductors. However, because our results are so
sensitive to the precise value of g, and because it seems
difficult to determine the appropriatly value of g for
UBe», it is diflicult to draw firm conclusions.

Our results have important imphcations for any micro-
scopic calculation of T, in UBe&3. First, it is crucial that
the microscopic model produce a reliable value of g.
Second, the model must produce the observed resistivity
at Te'

Concerning the general question of the effect of inelas-
tic scattering we have reiterated the result of Bergmann

and Rainer that it is necessary to consider the effect of
the inelastic scattering mechanism on the pairing interac-
tion as well as on the normal-state self-energy, before one
can draw conclusions about the variation of T, .
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APPENDIX

In the Appendix we outline the numerical methods
used. From (3.3) and the ensuing discussion one immedi-
ately sees that to find T, one must diagonalize a real sym-
metric matrix. We have searched until a temperature
yielding an appropriately small largest eigenvalue is ob-
tained. T, and d4/dT are then calculated by quadratic
interpolation using three temperatures bracketing T„' the
results are accurate to at least a part in 10 .

A straightforward extension of this method to T ~ T,
[Eqs. (5.5a) and (5.5b)] yield a matrix which depends self-
consistently upon the gap and is nonsymmetric. To
proceed it is convenient to define

I'(Q„)= W(Q„)

QQ'„Z'(Q„)+ W'(Q„)
(A 1)

Then, proceeding in close analogy to the derivation of
(3.3) from (3.1) and (3.2) one may write (5.5a) as an equa-
tion for Z(co„) in terms of +1—I (Q„}and (5.5b) as an
eigenvalue equation for I (Q„) involving a matrix de-

pending on I'. We being with a guess for I (Q„},deter-
mine Z(oi„},solve the matrix equation to find the eigen-
vector corresponding to eigenvalue 4=0, and iterate. In
practice we find that a solution accurate to a part in 10 is
obtained in five or six iterations.
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