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Drops containing 20 to 240 atoms of Bose liquid “He and Fermi liquid *He are studied by varia-
tional Monte Carlo methods as simple examples of correlated inhomogeneous quantum systems. In
the present work we report wave functions of natural, quasiparticle, and mean-field orbitals in these
drops. The wave functions of natural orbitals are determined by diagonalizing the one-particle den-
sity matrix. The condensate fraction and wave function in the Bose-liquid drops are calculated.
The quasihole states are defined in the spirit of Landau’s theory, and their wave functions are calcu-
lated from the overlaps between states containing N and N —1 atoms. In Bose-liquid drops the
wave function of the quasihole orbital is similar to that of the condensate; however, in Fermi-liquid
drops the quasihole wave functions are different from those of natural or mean-field orbitals. We
find that a simple local-density approximation provides an accurate relation between the mean-field
and quasihole wave functions for both Bose- and Fermi-liquid drops. The wave functions of natural
orbitals are very localized and simple methods to construct them from mean-field wave functions
are also discussed. The momentum distributions of atoms in the drops are calculated and compared
with those of extended liquids. The deviations of the momentum distributions from mean-field dis-
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tributions are also discussed.

I. INTRODUCTION

We have recently studied' the ground states of drops of
Fermi liquid *He and Bose liquid “He with the variational
Monte Carlo method. These drops provide simple exam-
ples of condensed states of ~ 100 Bose or Fermi particles
that can be realistically studied at the microscopic level.
It has not yet become possible to investigate neutral
drops of helium liquids containing ~ 100 atoms in the
laboratory; however, we hope that the present work is of
interest in the fields of nuclear, small cluster, atomic, and
molecular physics.

The variational wave functions used to study the
ground states of liquid-helium drops containing more
than 20 atoms have the form:

\Pu= II fZ(rij) H f3(rij,rik)‘1>,, ’

i<j<N i<j<k<N

(L.1)

where f, and f; are two- and three-body correlation
functions. In Bose drops the single-particle correlation is
just a product:

@, = J1 fi(ro),

i<N

(1.2)

and in Fermi drops it is a product of determinants of the
spin-up and of the spin-down atoms:

@, =det[ f,(r})]1det[ f;(r})] . (1.3)

The f;(r) (1<i <N /2) are the lowest N /2 single-particle
wave functions in a potential well; the subscript j
(1<j<N/2) denotes spin-up particles, while &k
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(N/2+41<k < N) denotes spin-down particles; and

=+ % r;nr;),
JGED

(1.4)

where 7)(r;;) is the backflow correlation function. It has
been pointed out in Ref. 1 that because they are meant to
be used with the two- and three-body correlations, the
single-particle functions f;(r) do not by themselves pro-
vide a good description of single-particle properties, such
as the density distribution.

Single-particle wave functions can be defined so as to
reproduce a chosen observable property of the many-
body system. Thus, there are many different ways to
define single-particle wave functions. In the present work
we consider three different single-particle wave functions
called the natural orbitals, ¥,(r), the quasiparticle wave
functions, X;(r), and the mean-field wave functions, ¢;(r).
In extended liquids all these single-particle wave func-
tions are plane waves due to translational invariance, but
in a finite or inhomogeneous system they are generally
different from each other.

The natural orbitals? are obtained by diagonalizing the
one-particle density matrix:

p(r,r)=N [ W3(r)¥(r},7))d 7}
=7 (r)Y;(ry)

(1.5)
(1.6)

where n; are the occupation probabilities of the states
¥;, and we use the symbols 7=rr,,...,ry and 7;
=r,f ..., _pfi, ..., fy. Here ¥, is the exact
ground-state wave function; in practice it is approximat-
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ed by the variational ¥,. We have calculated the natural
orbitals ¥; in Bose- and Fermi-liquid drops containing 70
atoms. The methods and results are presented in Sec. III.
The density matrix p(r,r’) also gives the distribution of
atoms in coordinate and momentum space:

p(r)=p(r,r)=3n; | ¢¥;(r)|?, (1.7

plk)= (2;)3 [ e = p(e,0')d dr" (1.8)
=3n | $:k)|?, (1.9)

where
)= —— [~y (r)d% . (1.10)

(2m)3/?

The p(r) of helium drops is given in Ref. 1, and the g(k)
is discussed in Sec. IV. The normalization is such that
their integral is the number of atoms in the drop.

The quasiparticle wave functions X,(r) of hole states
are obtained from the expression

X)) [ W WG(T) T, (1.11)

where ¥, are low-energy single-hole states of drops hav-
ing N —1 particles. We have approximated the ¥, as fol-
lows:

"I/hz H fz(rij) H

2<i<j<N 2<i<j<k<N

Sa(rrg )@y,

(1.12)

In Bose-liquid drops @, is obtained by omitting the fac-
tor f,(r,) in Eq. (1.2) and making a small shift of the oth-
er f,(r;), while in Fermi-liquid drops it is obtained by
omitting the row for particle 1, and the column for state
[ in the first determinant in Eq. (1.3). When the excita-
tion energy of the single-particle or single-hole state is
large, it acquires a large width due to its coupling to
more complicated states. Hence, the quasiparticle wave
functions are more meaningful for the low-energy single-
particle or single-hole states. These wave functions are
discussed in Sec. V.

In the mean-field model the ground-state wave function
is approximated for Bose-liquid drops as

Pyr= [I ¢o(r), (1.13)
i<N
and for Fermi drops as
¢MF=det[¢,(rj)]det[¢,(rk)] . (1.14)

We choose to obtain the single-particle wave functions
¢,(r) by reproducing the one-particle density p(r) as dis-
cussed in Sec. II. The last section includes a pedagogical
discussion of the one-particle Green’s function in finite
systems.

Throughout this paper, lengths are expressed in terms
of o (10=2.556 A) and momenta in inverse o. Single-
particle wave functions with vector arguments [¢;(r)] are
normalized such that
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[ g0 %=1, (1.15)
whereas the absence of a vector argument implies a radial
function with normalization:

[ 16| 2r2dr=1. (1.16)

II. MEAN-FIELD SINGLE-PARTICLE ORBITALS

The rotational invariance of the Hamiltonian implies
that the total angular momentum L and its projection M
are good quantum numbers. We note that in the Hamil-
tonian of Ref. 1, the interaction between *He atoms is in-
dependent of the spin of the atoms, and hence for the
most part the spin can be ignored. The ground states of
Bose systems have a nodeless wave function; thus they
have L =M =0. The single-particle orbitals in these
spherically symmetric drops have / and m as good quan-
tum numbers. In the mean-field model all N particles are
in the n =1 =m =0 state ¢,, and by requiring that this
model reproduce the true density distribution p(r) we ob-
tain

é1,(r)=[p(r)/N1? 2.1

in Bose-liquid drops. The other mean-field orbitals ¢,
having n >0 or I > 0 are not discussed here.

The shell structure of Fermi-liquid *He drops has been
discussed by Stringari.> The drops studied in Ref. 1 have
values of N that correspond to closed shells. The ground
states of these drops also have L =M =0 as well as total
spin S =0. If we assume that the mean-field potential is a
local function ¥ (r), then the ¢; can be obtained from the
Schrodinger equation

0 T T T T T
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L -1.37 — 4
-1.50
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_3-—— —
=-3.17
-3.88
-4 3 | ] 1 |
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£

FIG. 1. The energies of single-particle states in the single-
particle potential ¥ (r) shown in Fig. 2.
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FIG. 2. The density distribution p(r) (curves) obtained by
filling the lowest 70 states in the single-particle potential V(r),
compared with the p(r) obtained in Ref. 1 for the N =70 liquid
*He drop by a Monte Carlo calculation with ¥, (data points).
The lower panel shows V(r). The solid curves are for the V(r)
used in this work and the dashed curves are for a flat-bottom
well.

ﬁl
2m

V4V (r) |b(r)=e;¢,(r) ; 2.2)

the potential V' (r) is chosen so that the mean-field model
density equals the true density p(r). Most of the present
work is focused on the N =70 Bose- and Fermi-liquid
drops. The mean-field energy eigenvalues. e; for the
Fermi-liquid N =70 drop are shown in Fig. 1. The po-
tential V' (r) and the density distribution p(r) are shown
in Fig. 2. Note that the potential has oscillations that are
out-of phase with those of the p(r). These oscillations
reduce the shell fluctuations in p(r). A V(r) with a flat
bottom yields a p(r) that has too much shell fluctuation
as illustrated by the dashed curve in Fig. 2.

In general, and in Hartree-Fock theory in particular,
the mean-field potential is a nonlocal function V(r,r’),
and

ﬁz ’ ’ ’
——E—r;V2¢,A(r)+fV(r,r )b, (£ )d3r =e;¢,(r) . (2.3)

In this case there is no unique one-to-one correspondence
between p(r) and the ¢,(r). We have not studied the am-
biguities in the ¢,(r) due to the nonlocality of V(r,r’).
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III. NATURAL ORBITALS

A. Calculation of natural orbitals

The drops being considered here are spherically sym-
metric and thus the one-particle density matrix may be
expanded as

+1

p(r,,r',>=§”Tp,ﬁ,-?',)p,(r,,r;) : 3.1)
where P;(x) is a Legendre function and
pir,ri)=N [Wi(DPRF))
xwv(r;,r;)dnldfg/f |W,(r) | 2dr .
(3.2)

In Eq. (3.2) dQ, denotes an integration over the direc-
tions of r,, and T | may be any fixed direction. We evalu-
ate p,(r,r') on grids of / values of r and r’ values (the
same grid is used for both r and r’) by making a Metropo-
lis random walk in the space 7 with the walk controlled
by |¥,(7)|2 At each configuration, we determine the
bin that | r;| is in and evaluate

W, (), 7)) /%, (1)PF,F)) (3.3)

for all values of / and r} and fixed T|. The average value
of expression (3.3) gives p,(r},r,). Because p,(r,r’) is in-
dependent of the direction T}, we can evaluate (3.3) for
different directions and average these values together to
reduce the statistical fluctuations. We used six direc-
tions, X, =¥, £Z, for each value of r}. Furthermore, be-
cause p,(r,r’) is independent of which particle is moved
in Eq. (3.2), we calculate and average over all of them.

The one-particle density matrix is, of course, sym-
metric,

pir,r ) =p,(r',r), (3.4)

but the method outlined above is not manifestly sym-
metric. We verified that, within statistical errors,
pi(r,r')=p,(r',r) and then we symmetrized p,(r,r’) by
forming a weighted average of p;(r,r') and p,(r',r).

The spherical symmetry of the drops allows us to write
the natural orbitals of Eq. (1.6) as

1/),‘(1'):1",,[(?')}’1,"(?) . (3.5)

The radial orbitals and their occupation numbers are
then the eigenvectors and eigenvalues of p,(r,7'):

U )= B (P (r) (3.6)

We will often show results for the radial functions u,,(r):

u(ry=r,(r) . (3.7)

We have extracted these eigenvectors and the corre-
sponding eigenvalues by two methods. In the first, we
directly diagonalize the matrix

prij=pilri,r;) . (3.8)
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This method has the advantage of introducing no bias
about the functional form of u,,(r) but has the disadvan-
tage, due to the relatively large sampling errors in p,(r,r’)
for small r or r’, of not producing radial functions with
the correct ' *! behavior at the origin. The statistical er-
rors in the so-extracted u,(r) also make it difficult to
compute the Fourier transforms #,,(k).

In the second method we expand the p;(r,7’) in terms
of the oscillator functions A,,(r):

M1’,=ffh,-,(r)p,(r,r')hj,(r’)dr dr’ (3.9)

for i,j <I with I less than the number of points on the
grid used to compute p,(r,7'). The eigenvectors of M’
may be used to construct u,,(r) with the correct behavior
at the origin.

Table I shows the eigenvalues of p; _(7,r’) for the 70-
atom 3He drop computed by these methods. (Note that
the eigenvalues are twice the occupation numbers.) We
used a 28-element grid to compute p,;(r,r’) so method 1
gives us 28 eigenvalues. However, because of the statisti-
cal errors in py(r,r'), eleven of these are negative (the sum
of the negative eigenvalues is —0.01). Column 4 of Table
I shows the ten largest eigenvalues. Columns 1 to 3 show
the corresponding eigenvalues computed using 11, 16,
and 21 oscillator functions, respectively. The first, third,
and fifth eigenvectors computed by method 1 (symbols)
and with 11 and 16 oscillator functions (curves) are
shown in Fig. 3. The curves for 21 oscillator functions
are indistinguishable from those for 16 functions. It can
be seen that the two methods are in good agreement and
that eigenvalues down to ~0.01 are probably reliable. In
the rest of the paper we present results obtained using 16
oscillator functions.

B. Natural orbitals of the N =70 Liquid *He Drop

Some of the s-wave natural orbitals of the 70-particle
Bose-liquid “He drop are shown in Fig. 4 along with the
1s mean-field orbital. We note that all the natural orbit-

TABLE 1. Eigenvalues of p,_o(r,r’) for 70 *He atoms.
Columns 1-3 show the eigenvalues computed in an oscillator
basis containing, respectively, the first 11, 16, and 21 oscillator
functions. The last column shows the eigenvalues resulting
from a direct diagonalization of p;_o(7,r’) on a 28X 28 point
grid in r space. In all cases only the first ten eigenvalues are
shown.

n I=11 I=16 =21 2828
1 1.0801 1.0803 1.0804 1.0816
2 1.2565 1.2575 1.2580 1.2600
3 1.6963 1.6987 1.6996 1.7066
4 0.1476 0.1477 0.1477 0.1495
5 0.0782 0.0784 0.0784 0.0799
6 0.0376 0.0378 0.0382 0.0427
7 0.0160 0.0197 0.0197 0.0232
8 0.0007 0.0065 0.0067 0.0084
9 4.0x10™ 0.0010 0.0022 0.0071

10 —1.0X10~ 0.0004 0.0010 0.0044
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FIG. 3. The ls, 3s, and 5s natural orbitals of the 70-atom *He
drop obtained with 11 (dashed curves) and 16 (solid curves) os-
cillator functions. The symbols show the eigenfunctions ob-
tained by diagonalizing in coordinate space.

als are confined in the region where p(r)s£0. Equation
(1.7) implies that the y;(r) are zero where p(r)=0. The
occupation numbers of the natural orbitals are given in
Table II. A significant fraction (36%) of the particles are
condensed in the 1ls natural orbital of the 70-particle
drop, as against ~10% in the extended liquid. The
dependence of the condensate fraction on the number of
particles is discussed in Sec. I'V.

The partial density of the particles condensed in the 1s
natural orbital is called the condensate density,

pr)=n |, ()%, (3.10)

and it is compared with the total density p(r) in Fig. 5.
We note that at the center of the drop p . (0)~0. 1p(0), as
expected from studies of the extended liquid.
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FIG. 4. The s-wave natural orbitals (1s to 4s) of the 70-
particle Bose-liquid “He drop (solid lines). The dashed curve
shows the 1s mean-field orbital. The v, and ¢,; have been mul-
tiplied by 8.
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TABLE II. Occupation numbers of natural orbitals of the
N =70 Bose-liquid *He drop.

nl n,, nl n, nl n,,
1s 2533 1k 0.24 1k 0.104
1p 0.49 2f 022 2i 0.086
1d 0.44 3p 022 3g 0.078
2s 0.44 1 0.19 4d 0.077
1f 0.37 2g 0.17 5s  0.100
2p 0.35 3d 0.16 1/ 0.063
1g 0.30 4 0.19 2j  0.060
2d 0.28 1j 0.14 3 0.046
3s 0.30 2h  0.12 4f 0.049
3f 011 5p  0.046
4p 0.11

In Bose-liquid drops the 1s natural orbital can be well
approximated as follows:

Yy,(r)~ A[1—-0.68p(r)/pold,(r)

~ A[1—0.68p(r)/po]Vp(r)/N , (3.11)

where A is a normalization constant and p, is the equilib-
rium density of liquid *He (0.3650 %). The wave func-
tion obtained from this approximation is practically in-
distinguishable from the ¢, (7) in Fig. 4. The factor mul-
tiplying 1/p(r)/N in Eq. (3.11) can be interpreted as

nglp(r)], where ny(p) is the condensate fraction in
liquid “He at density p, from the argument given in the
next paragraph. Since extended liquid at p <p, is unsta-
ble, only ny(p) for p > p, has been studied.* In Fig. 6 we
show that the function (1—0.68p/p,) provides a con-
tinuation of V' ny(p) for p < p,.

Consider an inhomogeneous Bose system with a densi-

0.40
0.32]

0.24

plr) (o)

Loeovo baa o b v o by vy

0.08

1

1

FIG. 5. The density p(r) of the 70-atom *He drop (dots with
error bars) from Ref. 1. The curves show the cumulative contri-
butions of the natural orbitals up to a given [ ,, as obtained
from the oscillator expansions. The crosses and error bars show
the sum of p,(r,r) for / up to 10 and are to be compared with the
uppermost curve. The dashed curve is the condensate contribu-
tion p.(r).

LEWART, PANDHARIPANDE, AND PIEPER 37

O T T s e S

0.9

x FHNC

0.8 —_— l—0.45p/,¢zJ ]

T

0.7 <
& *He

I

0.6}

05 X =

+/ no(P) 14/ Z(P)
E3

N=20 N

------ N=70
0.3 - —-N=240 N

- I-O.Gap/po +
+ HNC LIQUID

[oX] O TR S S
0] 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2~

FIG. 6. Condensate amplitudes V/ n_o as a function of density
for liquid “He (lower curves and symbols) and the V'z(p) for
liquid *He (upper line and symbols). The solid lines are the ap-
proximations ny(p)=(1—0.68p/p,)* (*He) and Z(p)=(1
—0.45p/p,)* (CHe). The plus signs are from Ref. 4, the X’s are
from Ref. 5, and the circles are obtained by assuming that the
experimental effective mass (Ref. 8) is given by 0.8/Z (Ref. 5).
The ratio X,,(r)/V p(r), as described in the text, is shown for
the 20-atom (dotted), 70-atom (dashed), and 240-atom (dot-dash)
“He drops.

ty distribution p(r). In mean-field theory, all the parti-
cles occupy the state ¢o(r)=Vp(r)/N. In reality, a cer-
tain fraction of the particles are condensed in the natural
orbital ¢y(r). Now let us pretend that the inhomogene-
ous system is a large tank of liquid “He, with an external
potential applied to the x >0 half such that the density
distribution of the liquid in this tank is given by

pL » x<<0

plr)= [ (3.12)

pr» x>0.

(3.13)

Now the density of particles having momenta k ~0 at
x <<0 is given by ny(p; )p,, while for that at x >>0 it is
no(pg)pg- Thus we have

(3.14)
(3.15)

nolprlpr » x <<0

N.j(r)=
Yo {"o(PR or » x>0,

where N, is the number of particles condensed in the nat-
ural orbital 1, This implies that when p(r) is a slowly
varying function of r, the natural orbital ¥(r) is approxi-
mately given by

Yo(r) = AV no[p(r)]Vp(r) /N = AV ny[p(r)]1dy(1) .
(3.16)

Equation (3.16) can be considered as a local-density ap-
proximation (LDA) for the condensate natural orbital. It
is a good approximation in all the Bose-liquid drops
(N =20-240) studied in this work.
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In the LDA the number of particles in the condensate
is given by

ni = [ nolp(n)lp(r)d’r

~ [[1-0.68p(r)/poPp(r)d°r . (3.17)
The n, estimated from this is 26.0 in the N =70 drop, as
compared to 25.3 obtained by diagonalizing the density
matrix. In this approximation the normalization A4 of
¥,,(r) [Eq. (3.11)] is simply V' N /n ;.

The number of particles that are not in the condensate
and that have a given angular momentum /,

Ny=QI+1)3n,(1—8,,8,) , (3.18)

are shown in Table III. The sum of n,; and the N, for
1 <10 is 65.3, which implies that ~4.7 particles have
! > 10. The partial contributions,

p(N=21+ )31, (1=8,08,0) | ¥u(r) |2,  (3.19)

to the p(r) are shown in Fig. 5, and the sum of p (r) and
p;(r) for I <10 is compared with the total p(7). The error
bars shown for 3] p,(r,r) indicate that the deviations
at small 7 are most likely due to sampling errors; the om-
itted contributions for /> 10 are most significant for
1.50 <r<3.50.

C. Natural orbitals of the N =70 Liquid *He Drop

In the mean-field theory of Fermi-liquid drops, the
lowest N mean-field orbitals are occupied with unit prob-
ability, while the others are empty. In correlated normal
(as against superfluid) Fermi systems there are also N or-
bitals with occupation probabilities that are significantly
larger than those for the others. These are called the
hole-state orbitals while the others are called particle or-
bitals. We first discuss the hole orbitals.

The wave functions of natural s, p, d, f, and g hole or-
bitals are compared with those of the mean-field orbitals
in Figs. 7 and 8. We note that there is only one hole or-

TABLE III. Number of particles having a given angular
momentum for the 70-atom *He drop. The number of particles
in the condensate is shown separately.

! N,

25.33
1.13
3.74
5.06
5.51
5.55
4.92
4.20
3.63
2.98
1.97

A1.32

65.34

Condensate 26.46

Swoo\lc\u-.hwp.—o

Total

4955

bital for the / =3 (1) and 4 (1g) states, and that for the
=3 and 4 hole states the natural and mean-field wave
functions are qualitatively similar in the sense that they
do not have radial nodes. In contrast there are two p (1p
and 2p) and two d (1d and 2d) hole orbitals. The conven-
tional mean-field 1p and 1d orbitals are nodeless while the
2p and 2d orbitals have one radial node; in contrast, the
1p, 1d, 2p, and 2d natural orbitals have all one radial
node. Similarly, the mean-field 1s, 2s, and 3s orbitals
have zero, one, and two nodes, while the natural 1s, 2s,
and 3s orbitals have two nodes each. The natural orbitals
are much more localized than the mean-field orbitals, and
we adopt a convention under which the orbital localized
closest to » =0 has radial quantum number 1.

The occupation numbers of the orbitals are given in
Table IV. The hole-state orbitals have significantly larger
occupation probabilities than the particle states. The
hole orbitals localized at small values of r (1s, for exam-
ple), where the density is close to the equilibrium density
of liquid *He (0.2770 ), have occupation probabilities of

o
[+ ]
)
)
.

o
o)

lvlrfv

3
17117-

0.2

T

llllllelJlllAl

[0 0]) [ 0] (0

lllJllllA

4
g
—

FIG. 7. The 1s, 2s, and 3s natural (solid lines) and mean-field
(dashed, dotted, and dot-dash lines) orbitals in the 70-particle
liquid “He drop. The figure shows (u,,)? and (ré,,; )%
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'2‘[4’2' xzn "’2] (0'-')

FIG. 8. The X(r) (error bars), ¢(r) (dot-dash), ¢¥(r) (dotted),
and LDA [Eq. (5.15)] for X(r) (solid curve), for the 1f (upper
curves) and 1g (lower curves). The figure shows r2x?, r24?, and

rig’.

~0.5 that are typical for the hole states (k < ky) of the
liquid.> The hole orbitals localized at the surface (3s, for
example) have much larger occupation probabilities be-
cause they are at much lower density.

It is obvious that when there is more than one hole
state for a set of angular momentum quantum numbers
I,m and spin projection o, the natural orbitals are quali-
tatively different from conventional mean-field orbitals.
However, it is well known in the mean-field theory that
we can make any orthogonal linear combination of the
mean-field hole orbitals without changing the mean-field
density matrix p(r,r’'). Let ¢;(r) denote localized mean-
field orbitals. These are obtained by the following con-
struction illustrated for p orbitals:

TABLE IV. Occupation numbers of natural orbitals of the
N =70 Fermi-liquid *He drop.

nl n,,; ml n,, nl n,,
1s 054 1h  0.059 1k 0.024
1p 0.58 2f 0.074 2i  0.022
id 0.60 3p 0.081 3g 0.028
2s 0.63 1i  0.048 4d 0.038
1f 0.69 2g 0.062 5s  0.039
2p 077 3d 0.071 17 0.018
1g 0.75 4s 0.074 2j 0.016
2d 0.84 1j 0.034 3 0.013
3s 085 2h  0.033 4f 0.019
3f 0.039 5p 0.022
4p 0.045
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$1,(F)=cos(0)dy, (r)+sin(0)g,, (r) , (3.20)

¢35, (r)=—sin(0)d,,(r)+cos(8)d,,(r) . (3.21)

The angle 6 is chosen to maximize the peak heights of
(A
%{max[r¢'1p(r)]2+max[r¢'2p(r)]2} =0. (3.22)
r r

The s-wave localized mean-field orbitals are compared
with the natural hole orbitals in Fig. 9. They are obvi-
ously closer to the natural orbitals than the conventional
mean-field orbitals. The agreement between localized
mean-field and natural orbitals for the p and d waves is
equally good.

The density matrix is not diagonal in the basis of
mean-field orbitals. For example, the matrix elements for
s-wave hole states are

0.59 —0.058 0.0091
($nolp|buo)=|—0.058 0.66 —0.115
0.0091 —0.115 0.72

(3.23)

The natural and mean-field hole-state orbitals are, to a
good approximation, linear combinations of each other.
This implies that (i) the nondiagonal elements
(¢, |p|d,) are of the order of the differences between
occupation numbers n,; of natural orbitals for hole states,
and (ii) the n,; for hole states can be estimated approxi-
mately by diagonalizing the density matrix in the sub-
space of mean-field hole states. For example, by di-
agonalizing the matrix (3.23) we obtain n,;;~0.54 (0.54),
nyy~0.62 (0.63), and n3;~0.82 (0.85), where the exact
values from Table IV are given in parentheses.

The localized mean-field orbitals are similar in spirit to
the Wannier functions in solid-state physics.® It should
be noted here that the density matrix p(r,r’) is the short-

0.8
%

~ 0.6

~N

e
. €

< o4
=
—

< 0.2
(3
=

o
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FIG. 9. The 1s, 2s, and 3s natural (solid lines) and localized
mean-field (dashed lines) orbitals in the 70-particle liquid *He
drop. The figure shows (u,,;)? and (ré,; )%
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FIG. 10. Some natural particle-state orbitals of the 70-
particle liquid 3He drop. The figure shows u,,;.

time limit of the one-particle Green’s function:’

p(r,r’)=(N1a+(r)a(r')lN) (3.24)
=—i lim G(r',t'=t—¢g;r,t), (3.25)
e—~071

where | N) is the N-particle ground state and a (r) des-
troys a particle at position r. It thus involves a sum over
all frequencies, and hence it is not surprising that the
single-particle wave functions which offer a most con-
venient representation of p(r,r’) are not eigenstates of the
mean-field Hamiltonian.

The natural orbitals for hole states are not very sensi-
tive to the details of the correlations in the wave function.
They are unaffected by the three-body and backflow
correlations. It appears that a small amount of pair
correlation is sufficient to give localized natural orbitals.
For example, calculations carried out with the McMillan
pair correlation,

falry=exp[—1(b/r)’], (3.26)

give localized natural orbitals even for b as small as 0.50.
The typical value of b in liquid *He at equilibrium density

TABLE V. Number of particles having a given angular
momentum for the 70-atom *He drop.

l N, (hole) N, (particle) N, (total)
0 4.04 0.29 4.33
1 8.06 0.98 9.04
2 14.28 1.38 15.67
3 9.65 2.05 11.69
4 13.46 2.00 15.46
5 2.59 2.59
6 2.38 2.38
7 1.85 1.85
8 1.40 1.40
9 0.99 0.99
10 S 0.83 0.83
Total 49.49 16.74 66.23

0.24} . _
0.20- .
016

0.12

el (™)

0.08|

0.04

FIG. 11. The partial contribution of hole-state natural orbit-
als to the density p,(r) compared with the total p(r) (error bars)
of the N =70 *He drop. The curves labeled O to 4 show contri-
butions of hole states with /=0 to 4.

is 1.170.

Some of the natural particle orbitals, which are occu-
pied with small probabilities (Table IV), are shown in Fig.
10. They have the conventional number of radial nodes,
and are confined to the region where p(r)0. The num-
ber of atoms in hole and particle orbitals of a given / are
shown in Table V, from which we find that ~70% of the
atoms are in hole states. The partial contributions of the
hole-state natural orbitals to the density are shown in
Fig. 11, where p,(r) is the sum of all hole-state contribu-
tions to the p(r). As expected, near the center of the
drop, particles in the hole orbitals account for only ~;
of the total density, whereas at the surface they give a
more dominant contribution.

IV. MOMENTUM DISTRIBUTION
A. Calculation of momentum distribution

The p(k) of Eq. (1.8) can be directly evaluated as

plk)= (21:)3 f f\l’:(t'p‘r'l)eik‘('l_’n’

X W, (r)d’r, dr/f |W,(r)| 2 .

4.1

As in Sec. IIT A, the spherical symmetry of the drops be-
ing considered here allows us to simplify this to

Ak)=p(k)

=_2-1Y7f | W, (r)?
o

f VY, (r}, 7))

v, (1) Jolk | Fj—1y])

dr /[ [ 1w,

(4.2)

X (ry)dr}
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where rj is oriented in an arbitrary fixed direction.

The integral over 7 was again done by Monte Carlo
sampling, and the one-dimensional integral over rj was
done at each configuration by using 24 Gauss-Legendre
quadrature points. The inner integral was evaluated sep-
arately for particles 1,2, ..., N and the results averaged
to obtain better statistics. Only one direction of r}
(f | =%) was used.

B. Momentum distribution in Bose-liquid *He drops

We have calculated the momentum distributions in
Bose-liquid *He drops containing 20-240 atoms. Some
of the results are shown in Figs. 12 and 13. Figure 12, for
N =70, also shows that the g,(k) obtained from the
mean-field wave function does not give a good description
of p(k). The structure of g(k) at small k is similar to that
of pyr(k); hence, we can attempt to fit p(k) as

pk)=Qppr(k)+B(K) 4.3)

insisting that the background B (k) is smooth and does
not have any structure at small k. Such fits are not very
good (Fig. 12) because the first peak, at k=0, of the
Pur(k) is a little too wide, and the second peak is too
small and at too large k. The factor Q obtained from
such a fit has to be interpreted as the fraction of particles
in the condensate. In fact, N X Q is systematically larger
than the number of particles in the condensate deter-
mined in Sec. III from natural orbitals. For example, in
the 70-atom drop, n; =25.3, whereas N X Q =33.5.

A simple and much more accurate explanation of g(k)
in liquid “He drops is obtained by using the momentum
distribution | ¢,,(k) | 2 of the 1s natural orbital. The p(k)
can be expressed as

pk)=n, | ¥,,(k)|*+B(k), (4.4)

and we can use the Fourier transform of the LDA ,,(r)
[Eq. (3.11)] for calculating the ¥,,(k). The fits obtained
with Eq. (4.4) are almost perfect (Fig. 13), and the values

100

0.1

0.0l

k (o

FIG. 12. The p(k) (data points) and gy (k) (dot-dash) of the
N =70 *He drop. The solid curve shows 0.485,(k)+B(k),
and the background B (k) is shown by the dotted line.
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FIG. 13. The p(k) (data points) and N | ¢,,(k) | ? (dot-dash)
in the N =20 (upper) and N =240 (lower) “He drops. The solid
curve shows n,, | ¥,,(k) | 2+ B (k), and the background B (k) is
shown by the dotted line.

of n,, obtained by fitting the p(k) are accurate. For ex-
ample, the n,; obtained from Eq. (4.4) is 26.1 against 25.3
found in Sec. III by diagonalizing the density matrix.
Thus all of the structure in g(k) for small k is described
by the 1s natural orbital. As will be seen in Sec. V, this is
effectively the same as the quasihole orbital. The conden-
sate fractions (n,;/N) obtained by various means are
given in Table VL.

The contributions of particles in the condensate and
other natural orbitals to the (k) of the N =70 Bose-
liquid *He drop are shown in Fig. 14. The sum of the
contributions of all particles having / <10 is compared
with the total p(k). We see that particles having / > 10
contribute mostly to g(k) for k > 40~

The momentum distribution per atom [g(k)/N] of the
N =20, 70, and 240 drops is compared with that of ex-
tended liquid *He in Fig. 15. The 5(k)/N for k >1.50 !

TABLE VI. Estimates of the condensate fraction of Bose-
liquid drops. The columns give the values obtained from
pi(r,r') eigenvalues (DM), Eq. (3.24) (LDA), Eq. (4.4) (MD) and
Eq. (5.1) (Z).

N DM LDA MD VA

20 0.49 0.55 0.52+0.02

70 0.36 0.37 0.37 0.351+0.02
240 0.29 0.29 0.29+0.02
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FIG. 14. The p(k) of the N =70 *He drop (data points), g (k)
(dashed line), and summed partial contributions for 0 </ < /.,
(solid curves).

does not have a large dependence upon N when N 2 20.
At large k the p(k)/N increases as N increases from 20 to
. We note that the kinetic energy per atom' in N =20,
70, 240, and o systems is, respectively, 4.4, 7.0, 8.7, and
14.7 K.

C. Momentum distribution in Fermi-liquid *He drops

The p(k) of Fermi-liquid *He drops with 70 and 112
atoms is compared with the gy(k) in Fig. 16. Both the
plk) and pyp(k) have a rather sharp drop at k ~20 !,
which is close to the value of ky (2.020 ~!) of liquid *He
at equilibrium density. At smaller values of k (<207Y),
the p(k) is smaller than the Fy(k) by ~20% in these
drops. In contrast, in the extended liquid for k <k,

F(K)/N (o)

k (o)

FIG. 15. The p(k)/N of N =20 (dotted), 70 (dashed), and 240
(dot-dash) drops, compared with that of the extended liquid as
estimated from experimental (Ref. 9) (dash-dash-dot), and varia-
tional calculations (Ref. 4) (solid). The Green’s-function Monte
Carlo calculations (Ref. 11) also give a very similar p(k)/N for
extended liquid “He.
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FIG. 16. The p(k) (error bars) and pyr(k) (solid curves) in
the 70- and 112- atom *He drops.

plk)/N ~0.5, while 5yz(k)/N =1. At larger values of k
the (k) is much larger than the gy, (k), as expected.

The contributions, as computed from the ¥,,(k), of
various angular momenta to the g(k) of the N =70 drop
are shown in Fig. 17. We note that the contributions
from I < 10 states account for most of the p(k) except at
very small and large momenta. The differences at small k
are probably due to difficulties in numerically extracting
the g;(k —0) from natural orbitals, whereas the g(k) at
large k should have contributions from natural orbitals
having /> 10. We note that the number of particles in
orbitals having /<10 is estimated to be 66.2 in the

0.1

(k) (o)

0.01

0.001

k (o™

FIG. 17. The p(k) (error bars) for the 70-atom *He drop and
natural-orbital contributions. The solid curves show the sum up
to the indicated /,,,, of the hole orbitals. The dashed curve is
the sum up to /=10 of all the particle orbitals. The dot-dash
curve is the sum of all natural orbitals up to / =10.
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present calculation.

The calculated p(k)/N in N =40, 70, and 112 drops is
compared with the momentum distribution (per atom) in
liquid 3He in Fig. 18. The p(k)/N in the drops is much
larger than that in liquid at small k, and it is somewhat
smaller at large k. The total kinetic energy per particle is
3.9, 5.1, 5.8, and 12.3 K in systems having N =40, 70,
112, and oo, respectively.! Note that at large values of k
there are significant statistical sampling errors are indi-
cated in Fig. 16.

V. QUASTHOLE WAVE FUNCTIONS

A. Calculation of quasihole wave functions

In Bose-liquid drops the only quasihole state is the 1s
state; its wave function X is calculated from the expres-
sion

W _ (TN (T)d T
Xy (r)= 1 f N-I\T ¥y 1
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F (k) (o3)
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FIG. 18. p(k)/N for the 40-atom (dotted), 70-atom (solid),
and 112-atom (dashed) *He drops. The dot-dash curve is for the
infinite liquid (Ref. 5).

vz [f1w,v_,(r;)|2df;]”2»[f|wN<T)1

where Wy _; and ¥y are the ground states of the N and
N —1 particle drops, and Z is the normalization constant
determined from

[xndr=1. (5.2)

In practice we calculate the Fourier-Bessel transforms of
X, using the following equations:

X1, (K)=VY/Z Xy, (k) , (5.3)
_ 1 [ Wy \(#)jolkr Wy (r)d T
Xis(K)=" . (5.4
1 N i=EI,N f |Wy(r)|2dT
[ 1y 27,
ry (5.5)

r=J T ¥y e 2ar

The X, (k) are calculated by Monte Carlo integration.
The integration over d7} in Y is done by the Monte Carlo
method, while that over d’r, is done by Gauss-Legendre
quadrature. As is the case in Secs. III and IV, the spheri-
cal symmetry reduces this integral to a radial integral.
The variational wave functions of Ref. 1 are used to ap-
proximate the Wy(7). The Wy _,(7}) has the same form
as that of Wy. The triplet- and pair-correlation functions

J

1/2 »

2dr

f3 and f, have a very small dependence on N, and hence
they are taken to be the same as in Wy. The single-
particle function f, in the N —1 particle drop is taken as

fin=fir+s),
s=0.46[N'*—(N —1)'"]0 ,

(5.6)
(5.7)

where f(r) is the one-particle function in ¥,. Equations
(5.6) and (5.7) take into account the smaller size of the
N —1 particle drop. The coefficient 0.46¢0 in Eq. (5.7) is
obtained by fitting the dependence of f; on N. The shift
s is rather small, and has little effect on the results. Itis a
good approximation to take f] in the N —1 particle drop
to be the same as f in the N-particle drop.

We have studied the quasihole wave functions in the
N =70 Fermi-liquid *He drop. This drop has a closed-
shell structure, and we do not expect it to have many
particle-hole-type excited states at energies less than 2w,
where w,(~0.8 K from Fig. 1) is the spacing between
shells. The N =69 drop is expected to have three almost
degenerate low-energy states (one of which, presumably
the 3s, is the ground state). These three states can be
thought of as the single-hole states, and the quasihole
wave functions X,; for nl =3s, 2d, and 1g can be obtained
from them:

Xulr)=vV'Y,/Z,

I P RIRE

S5 il Lm,s) = m YR GOy (1 Tid R,

(5.8)
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The wave function ¥y _,[(n,l,m,s)”',7]] of the hole
state is approximated by Eq. (1.12).

In practice, Eq. (5.9) can be used to calculate the X ,;(r)
for all the hole states. However, the s, 1p, 2s, and 1d
hole states are at energies of ~ 3w, at which we can have
a large density of one-particle two-hole states. Thus the
single-hole states would mix with them and acquire large
widths. In general, the wave function ¥y _,[(n,l,m,
5)7!] is not expected to be a good approximation for any
state of the N — 1 particle drop when n!/ corresponds to a
3w, or more excitation. If these problems are ignored,
and the above equations are used to calculate the X, for
these high-energy hole states, it is found that X, X,,
and X, are not orthogonal to each other; similarly, X, is
not orthogonal to X,,, etc. However, we may use Eqgs.
(5.8) and (1.12) to calculate the wave functions X,, and
X,; with marginal justification without facing ortho-
gonality problems.

In Fermi-liquid drops, both Z and Y depend upon the
orbital quantum numbers n and /. We have not calculat-
ed the normalizations Y for the Fermi case, and only the
ratio Y /Z is determined by normalizing the X ;.

B. The quasihole wave function in Bose-liquid drops

The Fourier-Bessel transform of the quasihole wave
function X,; in the N =240 Bose-liquid *He drop is
shown in Fig. 19 along with that of the natural orbital v,
calculated in the LDA [Eq. (3.11)]. We see that in this
case, and also in all the cases we have studied (N =20, 40,
70, 112, and 240), the X, is very close to the ¥, in Bose-
liquid drops. This is because almost all of the s-wave
natural-orbital occupation is in the 1s orbital (Table III).
To see this, we express X (r) in terms of the notation in-
troduced in Eq. (3.24):

1
X ()= NG (N—1|a(r)|N),

and consider the coefficients of an expansion of X,(r) in

(5.9)

2 3 4 5

k (o)

FIG. 19. The X,,(k) (error bars) and the LDA for ¢,,(k)
(solid curve) for the 240-atom “He drop.
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terms of the s-wave natural orbitals:
q,,=f¢,*,s(r))(ls(r)r2dr (5.10)
1 . 3
= St (XN —1la(0) | N)d’r . (5.11)

By inserting a sum over all eigenstates | N —1,a) of the
N —1 particle system in Eq. (3.24) and using Eq. (3.6), we
obtain

2
S| [earAN=Lala) |N)dr| =n, , (.12
a
and thus
g | <[n,/(NZ)]'2. (5.13)
However, the normalization of X ;(r) requires that
(5.14)

Slg, %=1,

and, because NZ is not small while the n,, for n > 1 are
small, we see that g; must be nearly unity, and NZ ~n ;.

Since X, (r)~1,,(r), the LDA [Eq. (3.16)] im-
plies that the ratio X, (r)/Vp(r) is proportional to
V' nolp(r)]. The ratio X,,(r)/V p(r), normalized to 0.907
at p=0.137p,, is shown as a function of p in Fig. 6.
Ideally, this ratio would be normalized to unity at p=0.
However, sampling errors make this impracticable so we
used the above normalization point. We note that for
N =20, 70, and 240 this ratio is consistent with the LDA.

The fraction of particles in the condensate, as estimat-
ed from (i) diagonalizing the one-particle density matrix,
(i) LDA [Eq. (3.17)], (iii) fits to the momentum distribu-
tion by Eq. (4.4), and (iv) the normalization Z calculated
by Egs. (5.1)-(5.5), are shown in Table VI. These esti-
mates are in good agreement with each other. In particu-
lar, the agreement of the values of Z with the other esti-
mates of n, /N suggests that the ground state of the
N —1 particle drop is reached by removing a particle
from the condensate of the N-particle drop, when N = 20.

C. Quasihole wave functions of Fermi-liquid *He drops

The X, for nl =3s, 2d, 1g, 2p, and 1f states are shown
along with the mean-field ¢,;, and natural ¥,; in Figs. 8
and 20. In these figures we show that the LDA,

X(r)~[1—0.45p(r) /po1b () /N Z,

provides a good description of the quasihole wave func-
tions. The renormalization constant Z (p) in liquid *He is
given by

(5.15)

Z(p)= lim [n(kp—e)—n(kp+e)] , (5.16)

e—0

as shown by Migdal.!® It has been estimated® at p > p,
from the momentum distribution of atoms in liquid He,
and it appears that the function [1—0.45p/p,] provides
an approximate extrapolation of V'Z (p) as shown in Fig.
6.

The nodeless 1/ and 1g quasihole wave functions are
rather close to the natural 1f and 1g wave functions;
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however, the 2p, 2d, and 3s quasihole wave functions are
different from both the mean-field wave functions and
natural orbitals. Let us consider the / =0 wave func-
tions. We may expand X, in terms of the ¢, in the same
manner as was done for the boson case in Sec. VB. How-
ever, for the Fermi case, the occupation numbers of the
1s, 2s, and 3s orbitals are comparable, and hence there
are at least three significant terms in the expansion.
Thus, in general, quasiparticle orbitals are not equal to
natural orbitals, the exception being n =1 states that are
near the Fermi energy. Since the quasihole orbitals are in
between the natural and mean-field orbitals, their occupa-
tion numbers {X,; | p| X,;) are also in between the natu-
ral n,, and (@, |p | #, ) as shown in Table VII.

2x[¢2 X% ¥E] o

FIG. 20. Same as Fig. 8 except for the 3s (upper), 2p (middle),
and 2d (lower) orbitals.
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TABLE VII. Occupation numbers of natural, quasihole, and
mean-field orbitals.

n:I nn,l (Xn,I|P|Xn,l) <¢n,l |p|¢n1)
3s 0.85 0.76 0.72
2d 0.84 0.77 0.74
1g 0.75 0.74 0.74
2p 0.77 0.72 0.71
1f 0.69 0.69 0.69

VI. CONCLUSIONS AND DISCUSSION

One of the main conclusions of this work is that in
finite systems the mean-field, natural, and quasiparticle
orbitals are generally different. These orbitals will not be
identical in any inhomogeneous system such as electrons
in a crystal lattice. Only in homogeneous liquids are all
these orbitals plane waves, and the theory is simpler.

The main advantage of mean-field wave functions is
that they are easy to calculate from the experimental den-
sity distribution p(r), if it is known, or from a reasonable
energy-density functional,'>!? if that is known. It seems
that the quasiparticle wave functions can be obtained
with reasonable accuracy from the mean-field wave func-
tions with LDA’s such as those given here. The two-
particle distribution function can also be obtained from
p(r) with reasonable accuracy by using a LDA.'

We have not investigated the problem of finding a sim-
ple way to generate all the natural orbitals from p(r) or,
equivalently, the ¢,(r). It appears that if, in the language
of mean-field theory, k states with angular momentum /
are occupied, then the natural orbitals ¥, having n <k
have k —1 radial nodes each. When k > 1, these natural
orbitals of the hole states are similar to Wannier-type lo-
calized functions formed from the occupied mean-field
wave functions. On the other hand, when k =1 the hole
state ¥, is similar to the quasiparticle wave function X;.
The natural orbitals ¥, of particle states are confined to
the region where p(r)>0. On the other hand, the mean-
field ¢,, are not confined when n or [ is large enough so
that the orbital energy e, is positive. Even bound
(e,; <0) mean-field orbitals for particle states have bigger
radii than the corresponding ¢,;. It appears that devel-
oping simple methods to estimate the natural orbitals and
their occupation probabilities in a quantum-liquid drop is
an interesting and challenging problem. This problem
haslsrleé:ently received some attention in nuclear phys-
ics.”>

The main weakness of this work stems from using the
variational wave functions instead of the exact ground
state. These wave functions are the best available to date,
and comparisons with Green’s-function Monte Carlo cal-
culations suggest that they give reasonable binding ener-
gies,! momentum distributions,*> density distributions,!
and pair-distribution functions.!” However, it may be
possible to improve upon them by, for example, allowing
the pair correlation f,(r;;) to depend upon r; and r; as
suggested by Krotscheck et al.'®* The main conclusions
of this work, the localization of natural orbitals and the
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local-density approximation for the quasiparticle orbitals,
are not sensitive to the details of the correlations, and
they should exist even when exact ground states are used.

The one-particle Green’s function of a finite or inho-
mogeneous system can be expanded following Lehmann’s
method,”%0

G(r,r',0)=Gy(r,1'0)+G (o), (6.1)

where G,(r,1',@) contains the contributions from the
quasiparticle states. The single-particle wave functions
associated with the quasiparticles are clearly the X;(r),
and

qu(r,r',w)—z X‘(r)X(r’)

(6.2)

+2 nX}‘(r)Xj(r’) .

C()+E0 E
Here E; and E; are the energies of quasiparticle states in
drops with N + 1 and N — 1 particles, respectively.

An expansion of the type (6.2) is generally used to
study the response of nuclei?® and jellium drops,?! but
with the mean-field wave functions ¢; instead of the
quasiparticle X;. The resulting calculated response of nu-
clei is typically too large at small r where the X;(r) are
smaller than the ¢;(r) (Figs. 8 and 20). Thus, the use of
the proper single-particle wave functions may be impor-
tant in studying the response of small systems.

The density distribution is given by

lim fG(r,r m)e‘"“’% .

n—0*

plr)= (6.3)
Only those poles of G(r,r’,w) that are above the real axis
contribute to p(r). Let us assume that the system with
N —1 particles has a hole in state j in its ground state.
The G (r,r',w) of the N —1 particle drop will differ from
that of the N-particle drop in two ways. The pole corre-
sponding to the quasiparticle state j will go below the real
axis because j is a particle state in the drop having N —1
particles, and there will be small changes in the contribu-
tions from all other states. If we assume that all these
other changes provide a background, then

pn(N—py_(N=2Z; | X;(r) | 2t background . (6.4)

The volume integral of the background must be 1—-2Z;.
If we assume that the background is proportional to
Xz(r) thze density difference is given approximately by
lX (r)]“

In Fig. 21 we compare the density difference between
N =70 and N =69 liquid *He drops with |¢,; |* and
| X35 | 2. We have assumed that the ground state of the
N =69 drop has / =0. In the actual Monte Carlo calcu-
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FIG. 21. The estimated density difference py_7o(7)
—pn-es(r) (data points) compared with |X3(r)|? and

| #35(r) | * (dashed curve). The quantity 4mr?Ap(r) is plotted.

lation we removed both 3s states from the ¢, [Egs. (1.1)
and (1.3)], and measured the p(r) of the resulting N =68
system. The resulting change in p(r) should be close to
twice the difference py _1o(r) —py _go(7). We see that the
density difference produced by the removal of a particle
from a closed-shell drop is better described by quasihole
rather than mean-field wave functions. The difference is
smaller at small » than expected from the mean-field
¢3,(r). Experimentally it is known that the difference be-
tween the charge densities of lead and thallium nuclei*
smaller than | ¢5,(r)|2 at r =0. A 3s proton is removed
from lead to reach thallium.
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