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Single-particle orbitals in liquid-helium drops
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Drops containing 20 to 240 atoms of Bose liquid He and Fermi liquid 'He are studied by varia-
tional Monte Carlo methods as simple examples of correlated inhomogeneous quantum systems. In
the present work we report wave functions of natural, quasiparticle, and mean-field orbitals in these
drops. The wave functions of natural orbitals are determined by diagonalizing the one-particle den-

sity matrix. The condensate fraction and wave function in the Bose-liquid drops are calculated.
The quasihole states are defined in the spirit of Landau s theory, and their wave functions are calcu-
lated from the overlaps between states containing N and N —1 atoms, In Base-liquid drops the
wave function of the quasihole orbital is similar to that of the condensate; however, in Fermi-liquid
drops the quasihole wave functions are different from those of natural or mean-field orbitals. We
find that a simple local-density approximation provides an accurate relation between the mean-field

and quasihole wave functions for both Bose- and Fermi-liquid drops. The wave functions of natural
orbitals are very localized and simple methods to construct them from mean-field wave functions
are also discussed. The momentum distributions of atoms in the drops are calculated and compared
with those of extended liquids. The deviations of the momentum distributions from mean-field dis-

tributions are also discussed.

I. INTRODUCTION (N/2+ 1 & k & N) denotes spin-down particles; and

We have recently studied' the ground states of drops of
Fermi liquid He and Bose liquid He with the variational
Monte Carlo method. These drops provide simple exam-
ples of condensed states of —100 Bose or Fermi particles
that can be realistically studied at the microscopic level.
It has not yet become possible to investigate neutral
drops of helium liquids containing -100 atoms in the
laboratory' „however, we hope that the present work is of
interest in the fields of nuclear, small cluster, atomic, and
molecular physics.

The variational wave functions used to study the
ground states of liquid-hehum drops containing more
than 20 atoms have the form:

fz(r&)
i &j&N

II fi(r J r.k)@
i &j&k&N

where fz and f3 are two- and three-body correlation
functions. In Bose drops the single-particle correlation is
just a product:

ff f, (r; ), (1.2)

and in Fermi drops it is a product of determinants of the
spin-up and of the spin-down atoms:

4„=det[f;(r' )]det[f, (rk )] .

The f, (r) (1 &i &N/2) are the lowest N/2 single-particle
wave functions in a potential well; the subscript j
(1 &j & N /2) denotes spin-up particles, while k

where ri(r; ) is the backfiow correlation function. It has
been pointed out in Ref. 1 that because they are meant to
be used with the two- and three-body correlations, the
single-particle functions f, (r) do not by themselves pro-
vide a good description of single-particle properties, such
as the density distribution.

Single-particle wave functions can be defined so as to
reproduce a chosen observable property of the many-
body system. Thus, there are many difkrent ways to
de6ne single-particle wave functions. In the present work
we consider three different single-particle wave functions
called the natural orbitals, P, (r), the quasiparticle wave
functions, g;(r), and the mean-field wave functions, P, (r).
In extended liquids all these single-particle wave func-
tions are plane waves due to translational invariance, but
in a 6nite or inhomogeneous system they are generally
die'erent from each other.

The natural orbitals are obtained by diagonalizing the
one-particle density matrix:

p(r r',i)=XIql(')(w)%0(r', , w', )d~', (1.5)

n;; rl; r]

where ni are the occupation probabilities of the states
g;, and we use the symbols ~=r„r2, . . . , r~ and ~,

'

=r»r2, . . . , r; »r,-+». . . , rz. Here %'0 is the exact
ground-state wave function; in practice it is approxirnat-
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ed by the variational 4„. We have calculated the natural
orbitals P, in Bose- and Fermi-liquid drops containing 70
atoms. The methods and results are presented in Sec. III.
The density matrix p(r, r') also gives the distribution of
atoms in coordinate and momentum space:

p(r)=p(r, r)=gn,
~ f, (r)

~

~, (1.7)

p(k) =
& fe'"" ' 'p(r, r')d r d r',

(2n')

gn; ~P;(k)(

where

(1.10)

II »(, ) II f3(r;, r;k)@i
2&i & j&X 2&i & j&k &N

(1.12)

In Bose-liquid drops 4I, is obtained by omitting the fac-
tor f,(ri }in Eq. (1.2}and making a small shift of the oth-
er f,(r;), while in Fermi-liquid drops it is obtained by
omitting the row for particle 1, and the column for state
fi, in the first determinant in Eq. (1.3). When the excita-
tion energy of the single-particle or single-hole state is
large, it acquires a large width due to its couphng to
more complicated states. Hence, the quasiparticle wave
functions are more meaningful for the low-energy single-
particle or single-hole states. These wave functions are
discussed in Sec. V.

In the mean-field model the ground-state wave function
is approximated for Bose-liquid drops as

The p(r) of helium drops is given in Ref. 1, and the p(k)
is discussed in Sec. IV. The normalization is such that
their integral is the number of atoms in the drop.

The quasiparticle wave functions Xl, (r) of hole states
are obtained from the expression

Xi, (ri)~ f+i(ri)+o(r)dr', , (1.11)

where %1, are low-energy single-hole states of drops hav-

ing N —1 particles. We have approximated the %'i, as fol-
lows:

f (P;(r)
~

d r=l, (1.1S)

whereas the absence of a vector argument implies a radial
function with normalization:

f ~P(r) (
r dr=1 . (1.16)

II. MEAN-FIELD SINGLE-PARTICLE ORSITALS

P„(r)=[p(r)/N]' (2.1)

in Bose-liquid drops. The other mean-field orbitals P„i
having n ~0 or /~0 are not discussed here.

The shell structure of Fermi-liquid He drops has been
discussed by Stringari. The drops studied in Ref. 1 have
values of N that correspond to closed shells. The ground
states of these drops also have I.=I=0 as well as total
spin S =0. If we assume that the mean-field potential is a
local function V(r), then the P, can be obtained from the
Schrodinger equation

-0.650 -0.634

The rotational invariance of the Hamiltonian implies
that the total angular momentum I. and its projection M
are good quantum numbers. %e note that in the Hamil-
tonian of Ref. 1, the interaction between He atoms is in-
dependent of the spin of the atoms, and hence for the
most part the spin can be ignored. The ground states of
Bose systems have a nodeless wave function; thus they
have I. =M=0. The single-particle orbitals in these
spherically symmetric drops have I and ni as good quan-
turn numbers. In the mean-Seld model all N particles are
in the n =I =m =0 state 4„and by requiring that this
model reproduce the true density distribution p(r) we ob-
tain

@wF ff 4o(r)
i(N

and for Fermi drops as

4~„=det[P;(rj )]det[P,.(rl, )] .

(1.13)
-2.36

We choose to obtain the single-particle wave functions

P, (r) by reproducing the one-particle density p(r) as dis-
cussed in Sec. II. The last section includes a pedagogical
discussion of the one-particle Green s function in 5nite
systems.

Throughout this paper, lengths are expressed in terms
of cr (10 =2.556 A} and momenta in inverse a. Single-
particle wave functions with vector arguments [P;(r}]are
normalized such that

-3.I 7

-5.88
]

0 2
g

FIG. 1. The energies of single-particle states in the single-
particle potential V(r) shown in Fig. 2.
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0.25 III. NATURAL GRBITALS

A. Calculation of natural orbitals

'b 015— The drops being considered here are spherically sym-
metric and thus the one-particle density matrix may be
expanded as

0.05-
21+1

p{rl rl } y ~l(ri r 1)pl(rl r i }
4m

(3.1)

0. where PI(x) is a Legendre function and

pl(r„r', )=N J%',"( r)P 1(r, r', )

-2.0 Xqj„(rI,rI)d&i«'i I ~

q'„(r)
~

'« .

(3 2)

-5.0
0

V' + V(r) P;(r)=e, P, (r); (2.2)

FIG. 2. The density distribution p(r) (curves) obtained by
filling the lowest 70 states in the single-particle potential V(r),
compared with the p(r) obtained in Ref. 1 for the N =70 liquid
He drop by a Monte Carlo calculation with 4'„(data points).

The lower panel shows V(r). The solid curves are for the V(r)
used in this work and the dashed curves are for a Hat-bottom
well.

In Eq. (3.2) dQ, denotes an integration over the direc-
tions of r„and r i may be any 6xed direction. %e evalu-
ate PI(r, r') on grids of l values of r and r' values (the
same grid is used for both r and r') by making a Metropo-
lis random walk in the space ~ with the walk controlled
by

~

'P„(r)
~

. &t each configuration, we determine the
bin that

~
r,

~

is in and evaluate

4'„(r', , rI}lqI„(&)pl(r, r'i) (3.3)

for all values of l and r', and 6xed r ', . The average value
of expression (3.3) gives pI(r', ,r, ). Because PI(r, r') is in-

dependent of the direction r ', , we can evaluate (3.3) for
difFerent directions and average these values together to
reduce the statistical fluctuations. We used six direc-
tions, kx, +y, z, for each value of r &. Furthermore„be-
cause p&(r, r') is independent of which particle is moved
in Eq. (3.2},we calculate and average over all of them.

The one-particle density matrix is, of course, sym-
metf ic,

PI(r, r ') =p~(r', r ), (3.4)

the potential V(r) is chosen so that the mean-field model
density equals the true density p(r) Most of th.e present
work is focused on the N =70 Bose- and Fermi-liquid
drops. The mean-Geld energy eigenvalues- e; for the
Fermi-liquid N =70 drop are shown in Fig. 1. The po-
tential V(r) and the density distribution p(r) are shown
in Fig. 2. Note that the potential has oscillations that are
out-of phase with those of the p(r). These oscillations
reduce the shell fiuctuations in p(r). A V(r) with a fiat
bottom yields a p(r) that has too much shell fiuctuation
as illustrated by the dashed curve in Fig. 2.

In general, and in Hartree-Pock theory in particular,
the mean-field potential is a nonlocal function V(r, r'},
and

g, (r)=@„,(r)I; (r) . (3.5)

The radial orbitals and their occupation numbers are
then the eigenvectors and eigenvalues of PI(r, r'):

PI(r, r')=gn„&g„&(r)g„&(r') . (3.6)

We will often show results for the radial functions u„l(r):

but the method outlined above is not manifestly sym-
metric. %'e veri5ed that, within statistical errors,
PI(r, r')=PI(r', r) and then we symmetrized p&(r, r') by
forming a weighted average of pj (r, r') and PI(r', r ).

The spherical symmetry of the drops allows us to write
the natural orbitals of Eq. (1.6) as

V P, (r) +IV(r, r'}P;(r')d r' =e;P;(r} . (2.3) u„,(r}=ry„,(r) . (3.7)

In this case there is no unique one-to-one correspondence
between p(r) and the P;{r). We have not studied the am-
biguities in the P;(r}due to the nonlocality of V{r,r'). pi, ij =pl("(~ "J } . (3.8}

%'e have extracted these eigenvectors and the corre-
sponding eigenvalues by two methods. In the first, we
directly diagonalize the matrix
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This method has the advantage of introducing no bias
about the functional form of u„i(r) but has the disadvan-
tage„due to the relatively large samphng errors in p&(r, r')
for small r or r', of not producing radial functions with
the correct r'+' behavior at the origin. The statistical er-
rors in the so-extracted u„,(r} also make it difficult to
compute the Fourier transforms u«(k).

In the second method we expand the p&(r, r') in terms
of the oscillator functions h„1 fr):

M,' = J Jh, ,(r)p, (r, r')It;(r')dr dr' (3.9)

0.6

0.4

0.2
'1

-0 4-

t
)

I
f

i
)

I

for i,j &I with I less than the number of points on the
grid used to compute p&(r, r'). The eigenvectors of M'
may be used to construct u„l(r) with the correct behavior
at the origin.

Table I shows the eigenvalues of p& o(r, r') for the 70-
atom He drop computed by these methods. (Note that
the eigenvalues are twice the occupation numbers. } We
used a 28-element grid to compute p&(r, r') so method 1

gives us 28 eigenvalues. However, because of the statisti-
cal errors in po{r,r'}, eleven of these are negative (the sum
of the negative eigenvalues is —0.01). Column 4 of Table
I showers the ten largest eigenvalues. Columns 1 to 3 show
the corresponding eigenvalues computed using 11, 16,
and 21 oscillator functions, respectively. The Srst, third,
and fifth eigenvectors computed by method 1 (symbols}
and with 11 and 16 oscillator functions (curves} are
shown in Fig. 3. The curves for 21 oscillator functions
are indistinguishable from those for 16 functions. It can
be seen that the two methods are in good agreement and
that eigenvalues down to -0.01 are probably reliable. In
the rest of the paper we present results obtained using 16
oscillator functions.

-06-
08. i

0 I

I l l i I i I

2 3 4 5 6
r (o)

FIG. 3. The 1s, 3s, and 5s natural orbitals of the 70-atom 'He
drop obtained with 11 (dashed curves) and 16 (solid curves) os-
cillator functions. The symbols show the eigenfunctions ob-
tained by diagonalizing in coordinate space.

als are confined in the region where p(r)&0. Equation
(1.7) implies that the f;(r) are zero where p(r)=0. The
occupation numbers of the natural orbitals are given in
Table II. A significant fraction (36%%uo) of the particles are
condensed in the ls natural orbital of the 70-particle
drop, as against —10' in the extended liquid. The
dependence of the condensate fraction on the number of
particles is discussed in Sec. IV.

The partial density of the particles condensed in the ls
natural orbital is called the condensate density,

p. {r)=n i I l('i. (r)
I

(3.10)

8. Natural orbitals of the N =70 Liquid He Drop

Some of the s-eave natural orbitals of the 70-partic1e
Bose-liquid He drop are shown in Fig. 4 along with the
is mean-field orbital. We note that all the natural orbit-

and it is compared with the total density p(r) in Fig. 5.
We note that at the center of the drop p, (0)=0. lp(0), as
expected from studies of the extended liquid.

TABLE I. Eigenvalues of p~ 0(r, r') for 70 'He atoms.
Columns 1-3 show the eigenvalues computed in an oscillator
basis containing, respectively, the first 11, 16, and 21 oscillator
functions. The last column shows the eigenvalues resulting
from a direct diagonalization of pI 0(r, r') on a 28X28 point
grid in r space. In all cases only the first ten eigenvalues are
shown.

I
t

I
I

I
I

I
I

i t
I

t
I

2.0

1.0801
1.2565
1.6963
0.1476
0.0782

1.0803
1.2575
1.6987
0.1477
0.0784

I =21

1.0804
1.2580
1.6996
0.1477
0.0784

1.0816
1.2600
1.7066
0.1495
0.0799

0.4

-0.4
l I i I i I i l i l

l 2 5 4 5 6

0.0376
0.0160
0.0007
4.0X10-'

—1.0~10-'

0.0378
0.0197
0.0065
0.0010
0.0004

0.0382
0.0197
0.0067
0.0022
0.0010

0.0427
0.0232
0.0084
0.0071
0.0044

FIG. 4. The s-wave natural orbitals (1s to 4s) of the 70-
particle Bose-liquid He drop (solid lines). The dashed curve
shows the ls mean-field orbital. The t(i, and P~, have been mul-

tiplied by 8.
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TASI,E II. Occupation numbers of natural orbitals of the
N =70 Bose-liquid ~He drop.

ll, / 5~ (

0.9

0.8
FHNC
I
—0.45p/p0

1$25.33
1p 0.49
1d 0.44
2s 0.44
1f 0.37
2p 0.35
1g 0.30
2d 0.28
3s 0.30

1h 0.24
2f 0.22
3p 0.22
li 0.19
2g 0.17
3d 016
4s 0.19
lj 0.14
2h 0.12

3f 011
4p 0.11

1k 0.104
Zi 0.086
3g 0.078
4f 0.077
5s 0.100
1/ 0.063
2j 0.060
3h 0.046
4f 0.049
5p 0.046

0.7

0.6

0.5

O.4

0.3

O. I

0

I
- 0.68 p/p

+ HNC LIQUID

l I l I 1 t I l [ E

0.2 0.4 0.6 0.8 i.O

In Bose-liquid drops the ls natural orbital can be mell

approximated as follows:

1{„(r)= A [1—0.68p(r)/po]p„(r)

= 3 [1 0.68p(r)/—po]&p(r)/N, (3.11)

OAO
$ o

O Oo
io

+ Z p{r,r}
tao &

p (r)

0.24

where A is a normalization constant and po is the equilib-
rium density of liquid 4He {0.365cr 3). The wave func-
tion obtained from this approximation is practically in-
distinguishable from the fi, (r) in Fig. 4. The factor mul-

tiplying Qp(r)/N in Eq. (3.11) can be interpreted as

Qno[p{r)], where no(p) is the condensate fraction in

liquid He at density p, from the argument given in the
next paragraph. Since extended liquid at p ~po is unsta-
ble, only no(p) for p & po has been studied. In Fig. 6 we

show that the function (1—0.68p/po) provides a con-
tinuation of +no(p) for p ~po.

Consider an inhomogeneous Bose system with a densi-

ty distribution p(r). In mean-field theory, all the parti-
cles occupy the state Po(r) =&p(r)/N. In reality, a cer-
tain fraction of the particles are condensed in the natural
orbital go(r). Now let us pretend that the inhomogene-
ous system is a large tank of liquid He, with an external
potential applied to the x «0 half such that the density
distribution of the liquid in this tank is given by

PL, x ggG
p(r) = (3.12)

PZ s

(3.13)

Now the density of particles having momenta k -0 at
x &~0 is given by no(PL )pL, while for that at x &&0 it is

Ilo(pa )pa. Thus we have

FIG. 6. Condensate amplitudes +no as a function of density
for liquid He (lower curves and symbols) and the &z(p) for
liquid 3He (upper line and symbols). The solid lines are the ap-
proximations no(p) = (1—0.68p/po) ( He) and Z(p) = (1
—0.45p/po)' ('He). The plus signs are from Ref. 4, the )&'s are
from Ref. 5, and the circles are obtained by assuming that the
experimental efFective mass (Ref. 8) is given by 0.8/Z (Ref. 5).
The ratio X„{r}/&p(r},as described in the text, is shown for
the 20-atom (dotted), 70-atom (dashed), and 240-atom (dot-dash)
He drops.

o.t6

0.08

2 "o(PL, )PI.
N, fo(r) = ~

no(pa }pa»&0
(3.14)

(3.15)

C

2 3 4
r (a-)

~~+~+~
5 6

where N, is the number of particles condensed in the nat-
ural orbital c/io. This implies that when p(r) is a slowly
varying function of r, the natural orbital Po(r }is approxi-
mately given by

FIG. 5. The density p(r) of the 70-atom He drop (dots with
error bars) from Ref. 1. The curves show the cumulative contri-
butions of the natural orbitals up to a given /, „as obtained
from the oscillator expansions. The crosses and error bars show
the sum of pI(r, r) for / up to 10 and are to be compared with the
uppermost curve. The dashed curve is the condensate contribu-
tion p, (r).

go{r) = A Qno[p(r)]&P(r)/N = A Qno[P(r)]go(r) .

(3.16}

Equation (3.16) can be considered as a local-density ap-
proximation (LDA) for the condensate natural orbital. It
is a good approximation in all the Bose-liquid drops
(%=20—240) studied in this work.
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Ni ——(21 + 1 }gn„I(1—5„,510), (3.18)

are shown in Table III. The sum of n„and the EI for
1&10 is 65.3, which implies that -4.7 particles have
I g 10. The partial contributions,

pi(r)=(2I+ 1)gn„I(l —5„0510)
~
1(„1(r)~, (3.19)

In the LDA the number of particles in the condensate
is given by

n„=f no[p(r)]p(r)d r

=f [1—0.68p(r)/pii] p(r)der .

The n &, estimated from this is 26.0 in the X =70 drop, as
compared to 25.3 obtained by diagonalizing the density
matrix. In this approximation the normalization A of
1( „(r) [Eq. (3.11)J is simply QX/n „.

The number of particles that are not in the condensate
and that have a given angular momentum l,

bital for the I =3 (1I) and 4 (lg) states, and that for the
I =3 and 4 hole states the natural and mean-5eld wave
functions are qualitative1y similar in the sense that they
do not have radial nodes. In contrast there are two p (lp
and 2p) and two d (ld and 2d) hole orbitals. The conven-
tional mean-Seld lp and id orbitals are nodeless while the
2p and 21 orbitals have one radial node; in contrast, the
lp, 11, 2p, and 2d natural orbitals have all one radial
node. Similarly, the mean-5eld 1s, 2s, and 3s orbitals
have zero, one, and two nodes, while the natural 1s, 2s,
and 3s orbitals have two nodes each. The natural orbitals
are much more localized than the mean-Seld orbitals, and
we adopt a convention under which the orbital localized
closest to r =0 has radial quantum number 1.

The occupation numbers of the orbitals are given in
Table IU. The hole-state orbitals have significantly larger
occupation probabilities than the particle states. The
hole orbitals localized at small values of r ( is, for exam-
ple}, where the density is close to the equilibrium density
of liquid iHe (0.277o ), have occupation probabilities of

to the p(r) are shown in Fig. 5, and the sum of p, (r) and

pI(r) for I & 10 is compared with the total p(r). The error
bars shown for QI' ~&(r, r) indicate that the deviations
at small r are most likely due to sampling errors; the om-
itted contributions for /~10 are most significant for
1.50 &r &3.5e.

0+B r I r t
r t r

1
r l r I I t I

0.6

C. Natural orbitals of the N =70 Liquid 'He DI'oy

In the mean-field theory of Fermi-liquid drops, the
lowest Smean-field orbitals are occupied with unit prob-
ability, while the others are empty. In correlated normal
(as against superlluid) Fermi systems there are also N or-
bitals with occupation probabilities that are significantly
larger than those for the others. These are called the
hole-state orbitals while the others are called particle or-
bitals. We first discuss the hole orbitals.

The wave functions of natural s, p, d, f, and g hole or-
bitals are compared with those of the mean-field orbitals
in Figs. 7 and 8. %e note that there is only one hole or-

0.4

0.2

0.8-

0.4—

TABLE III. Number of particles having a given angular
momentum for the 70-atom ~He drop. The number of particles
in the condensate is shown separately.

0.2—
C:

Condensate
0
1

2
3
4
5
6
7
8
9

10
Total

25.33 ) 6.46

3.74
5.06
5.51
5.55
4.92
4.20
3.63
2.98
1.97
1.32

65.34

0.4—

0
0

FIG. 7. The 1s, 2s, and 3s natural (solid lines) and mean-field
(dashed, dotted, and dot-dash lines) orbitals in the 70-particle
liquid He drop. The figure shows (u„I) and {rP„&)'.
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FIG. 10. SonM natural particle-state orbitals of the 70-
particle liquid 38e drop. The Sgure shows u„l.

time limit of the one-particle Green's function:

p(r, r')=(N
~

a+(r)a(r')
~
N)

i li—m G(r', t'=t sr t), —
a~0+

(3.24}

(3.25)

f2(r) =exp[ ——,'(b lr)'], (3.26)

give localized natural orbitals even for b as small as 0.50..
The typical value of b in liquid He at equilibrium density

where
~

N ) is the N-particle ground state and a(r) des-
troys a particle at position r. It thus involves a sum over
all frequencies, and hence it is not surprising that the
single-particle wave functions which off'er a most con-
venient representation of p(r, r') are not eigenstates of the
mean-Seld Hamiltonian.

The natural orbitals for hole states are not very sensi-
tive to the details of the correlations in the wave function.
They are unaffected by the three-body and backflow
correlations. It appears that a small amount of pair
correlation is sufficient to give localized natural orbitals.
For example, calculations carried out with the McMillan
pair correlation,

FIG. 11. The partial contribution of hole-state natural orbit-
als to the density p&(r) compared with the total p(r) (error bars)
of the X=70 3He drop. The curves labeled 0 to 4 show contri-
butions of hole states with I =0 to 4.

is 1.170.
Some of the natural particle orbitals, which are occu-

pied with small probabilities (Table IV},are shown in Fig.
10. They have the conventional number of radial nodes,
and are confined to the region where p(r)&0. The num-
ber of atoms in hole and particle orbitals of a given l are
shown in Table V, from which we find that -70% of the
atoms are in hole states. The partial contributions of the
hole-state natural orbitals to the density are shown in
Fig. 11, where pt, (r) is the sum of all hole-state contribu-
tions to the p(r). As expected, near the center of the
drop, particles in the hole orbitals account for only ——,

'

of the total density, whereas at the surface they give a
more dominant contribution.

IV. MOMENTUM DISTRIBUTION

A. Calculation of momentum distribution

The p(k) of Eq. (1.8) can be directly evaluated as

p(k}= i f f+;(ri, rI)e

TABLE V. Number of particles having a given angular
momentum for the 70-atom 3He drop.

&&4,(r)d r', dr f ~
%„(~)

~

d~.

(4.1)

0
1

2
3
4
5
6
7
8

9
10

N& {hole)

4.04
8.06

14.28
9.65

13.46

N, (particle)

0.29
0.98
1.38
2.05
2.00
2.59
2.38
1.85
1.40
0.99
0.83

NI (total)

4.33
9.04

15.67
11.69
15.46
2.59
2.38
1.85
1.40
0.99

0.83

As in Sec. III A, the spherical symmetry of the drops be-
ing considered here allo~s us to simplify this to

p(k) =p(k)

%„(ri,wi)
X f Jo(k ir', —r, i

)

Total
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where r', is oriented in an arbitrary fixed direction.
The integril over v was again done by Monte Carlo

sampling, and the one-dimensional integral over r& ~as
done at each confIguration by using 24 Gauss-Legendre
quadrature points. The inner integral eras evaluated sep-
arately for particles 1,2, . . . , N and the results averaged
to obtain better statistics. Only one direction of r',

(r i
——z) was used.

0 ~ ~

N=20

8. Momentusn 4htributiom im Bose-liquid ~He croye

We have calculated the momentum distributions in
Bose-liquid He drops containing 20-240 atoms. Some
of the results are shown in Figs. 12 and 13. Figure 12, for
N=70, also shows that the pz{k) obtained from the
mean-field wave function does not give a good description
of p{k). The structure of P(k) at small k is similar to that
ofps'(k); hence, we can attempt to fit p(k) as

p(k}=QpsiF(k)+8 (k), {4.3)

insisting that the background 8(k) is smooth and does
not have any structure at small k. Such fits are not very
good (Fig. 12) because the first peak, at k=0, of the
p~z(k) is a little too wide„and the second peak is too
small and at too large k. The factor Q obtained from
such a fit has to be interpreted as the fraction of particles
in the condensate. In fact, N &(Q is systematically larger
than the number of particles in the condensate deter-
mined in Sec. III from natural orbitals. For example, in
the 70-atom drop, n i, ——25.3, whereas N X Q =33.5.

A simple and much more accurate explanation of p(k}
in hquid He drops is obtained by using the momentum
distribution

t P„(k) t

i of the Is natural orbital. The p(k)
can be expressed as

p(k)=n„ t Pi, (k) t +8(k), (4.4}

I

Ioo~
IO

and we can use the Fourier transform of the LDA g„(r)
[Eq. (3.11}]for calculating the Pi, (lt). The fits obtained
with Eq. (4.4) are almost perfect (Fig. 13), and the values

b IOOC
\

IOC

i I
i'
iI
it
il
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I

~ ~ ~ ~ ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~+g~jj

o.(—
lI 1]

l ]
la
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li
2

N =240

5
k {cr)

FIG. 13. The p(k) (data points) aud N
t
i(i„(lf.)

t

' (dot-dash}
in the N =20 (upper) and X=240 Gower) He drops. The solid
curve shows n „ t P„(k) t

i+8 (k), and the backgrauud 8 (k) is
shown by the dotted line.

of n„obtained by fitting the p(k) are accurate. For ex-
ample, the n i, obtained from Eq. (4.4} is 26.1 against 25.3
found in Sec. III by diagonalizing the density matrix.
Thus all of the structure in p(k) for small k is described
by the 1s natural orbital. As wi11 be seen in Sec. V, this is
efFectively the same as the quasihole orbital. The conden-
sate fractions (n„/N) obtained by various means are
given in Table VI.

The contributions of particles in the condensate and
other natural orbitals to the p(k) of the N =70 Bose-
liquid He drop are shown in Fig. 14. The sum of the
contributions of all particles having 1&10 is compared
with the total p(k). We see that particles having I & 10
contribute mostly to P(k) for k & 4o

The momentum distribution per atom [p(k)/N] of the
X =20, 70, and 240 drops is compared arith that of ex-
tended hquid He in Fig. 15. The p(k)/N for k &1.5a

O.l—

Q.ol—

I

I

lj
Ii

It, I I I

I 2
I i I

4 5
(a=')

TABLE VI. Estimates of the condensate fraction of Bose-
liquid drops. The columns give the values obtained from
pI{r,r') eigenvalues (DM), Eq. {3.24} {I.DA), Eq. (4.4) (MD} aud
Eq. (5.1) (Z).

LDA

FIG. 12. The p(k) (data points) and p~r(k) (dot-dash) of the
N =70 4He drop. The solid curve shows 0 48P~r(k)+B(k), .
and the background 8 (k) is shown by the dotted line.

20
70

240

0.49
0.37
0.29

0.55
0.37
0.29

0.52+0.02
0.35+0.02
0.29+0.02
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FIG. 14. Their(k) of the %=70~He drop (data points), p, (k)
(dashed line), and summed partial contributions for 0& I &I,„
(solid curves).
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0

k(o )

i, ( 'lii I

4

does not have a large dependence upon N when N ~20.
At large k the p(k)/N increases as N increases from 20 to
ao. We note that the kinetic energy per atom' in N =20,
70, 240, and ao systems is, respectively, 4.4, 7.0, 8.7, and
14.7 K.

C. Momeatsm distribution in Fermi-hquid 38e drops

The p(k) of Fermi-liquid He drops with 70 and 112
atoms is compared with the psrF(k) in Fig. 16. Both the
p{k) and psrF(k) have a rather sharp drop at k-2e
which is close to the value of kF (2.02cr ') of liquid He
at equilibrium density. At smaller values of k ( &2rr '),
the p(k) is smaller than the pz(k) by -20% in these
drops. In contrast, in the extended liquid for k &kz,

FIG. 16. The p(k) (error bars) and p~(k) (solid curves) in
the 70- and 112- atom 3He drops.

p(k)/N-0. 5, while psrF(k)/N =1. At larger values of k
the p(k) is much larger than the psrF(k), as expected.

The contributions, as computed from the P„&(k), of
various angular momenta to the p{k) of the N =70 drop
are shown in Fig. 17. We note that the contributions
from 1 &10 states account for most of the P(k) except at
very small and 1arge momenta. The differences at small k
are probably due to diSculties in numerically extracting
the pi(k ~0) from natural orbitals, whereas the p(k) at
large k should have contributions from natural orbitals
having 1~10. We note that the number of particles in
orbitals having l &10 is estimated to be 66.2 in the

f
I

I
I

I
I

t

IO

l
I
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b
IO

O. I

IO
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IO

I

k (cr ')

O.OI
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0

I

k (o. ')

I i il

FIG. 15. The p(k) /X of W =20 (dotted), 70 (dashed), and 240
(dot-dash} drops, compared with that of the extended hquid as
estimated from experimental (Ref. 9) (dash-chLsh-dot), and varia-
tional calculations (Ref. 4) (solid). The Green's-function Monte
Carlo calculations (Ref. 11) also give a very similar P(k)/N for
extended hquid 'He.

FIG. 17. The p(k) (error bars) for the 70-atom 'He drop and
natural-orbital contributions. The solid curves show the sum up
to the indicated I,„ofthe hole orbitals. The dashed curve is
the sum up to /=10 of all the particle orbitals. The dot-dash
curve is the sum of all natural orbitals up to I = 10.
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present calculation.
The calculated p(k)/N in N =40, 70, and 112 drops is

compared with the momentum distribution (per atom) in
liquid He in Fig. 18. The p(k)/N in the drops is much
larger than that in liquid at small k, and it is somewhat
smaller at large k. The total kinetic energy per particle is
3.9, 5.1, 5.8, and 12.3 K in systems having X =40, 70,
112, and ac, respectively. ' Note that at large values of k
there are signi5cant statistical sampling errors are indi-
cated in Fig. 16.

IG

IG

IG

V. QUASIHOI. E WAVE FUNCTIONS

A. Calculatjton of quasihole wave tlnctions
IG

G

I

2

k (cr)

In Bose-liquid drops the only quasihole state is the 1s
state; its wave function X& is calculated from the expres-
sion

FIG. 1S. p{k}/N for the 40-atom (dotted), 70-atom {solid),
and 112-atom {dashed} He drops. The dot-dash curve is for the
in6nite liquid (Ref. 5).

(5.1)

where %'z, and %'z are the ground states of the X and
N —1 particle drops, and Z is the normalization constant
determined from

f3 and f2 have a very small dependence on N, and hence
they are taken to be the same as in %~. The single-
particle function f ', , in the N —1 particle drop is taken as

fX„I(r)d r = 1 . (5.2)

In practice we calculate the Fourier-Bessel transforms of
X„using the following equations:

f', (r)=f, (r+s),

s =0.46[N' —(N —1)'~ ]o,
(5.6)

(5.7)

(5.3)

(5.4)

f I +w«)
I
'«I

r= d fif I+N i(&i) I'«i
(5.5)

The f„(k) are calculated by Monte Carlo integration.
The integration over drI in Vis done by the Monte Carlo
method, while that over d r, is done by Gauss-Legendre
quadrature. As is the case in Secs. III and IV, the spheri-
cal symmetry reduces this integral to a radial integral.

The variational wave functions of Ref. 1 are used to ap-
proximate the 4~{v}. The +~ &(~,') has the same form
as that of %'z. The triplet- and pair-correlation functions

where f, (r) is the one-particle function in %N. Equations
(5.6) and (5.7) take into account the smaller size of the
N —1 particle drop. The coefficient 0.46cr in Eq. (5.7) is
obtained by fitting the dependence of f, on ¹ The shift
s is rather small, and has little effect on the results. It is a
good approximation to take f ', in the N —1 particle drop
to be the same as f, in the N-particle drop.

We have studied the quasihole wave functions in the
N =70 Fermi-liquid He drop. This drop has a closed-
shell structure, and we do not expect it to have many
particle-hole-type excited states at energies less than 2'„
where co,(-0.8 K from Fig. 1) is the spacing between
shells. The X =69 drop is expected to have three almost
degenerate low-energy states (one of which, presumably
the 3s, is the ground state). These three states can be
thought of as the single-hole states, and the quasihole
wave functions X„& for nl =3s, 2d, and 1g can be obtained
from them:
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The wave function +~,[(n, l, rn, s) ', ~', ] of the hole
state is approximated by Eq. (1.12).

In practice, Eq. (5.9) can be used to calculate the X„,(r)
for all the hole states. However, the 1s, 1p, 2s, and 11
hole states are at energies of -3~, at which we can have
a large density of one-particle two-hole states. Thus the
single-hole states would mix with them and acquire large
widths. In general, the wave function +z, [(n, l, rn,
s) '] is not expected to be a good approximation for any
state of the N —1 particle drop when nl corresponds to a
3', or more excitation. If these problems are ignored,
and the above equations are used to calculate the X„I for
these high-energy hole states, it is found that X», Xz„
and X3, are not orthogonal to each other; similarly, X&z is
not orthogonal to X2&, etc. However, we may use Eqs.
(5.8} and (1.12) to calculate the wave functions X2 and

X» with marginal justification without facing ortho-
gonality problems.

In Fermi-liquid drops, both Z and F depend upon the
orbital quantum numbers n and l. We have not calculat-
ed the normalizations I' for the Fermi case, and only the
ratio I'/Z is determined by normalizing the X„I.

X„(r)= (N —1
I
a(r) IN),1

&NZ
(5.9}

and consider the coeScients of an expansion of X„(r) in

8. The quasihole wave function in Bose-liquid drops

The Fourier-Bessel transform of the quasihole wave
function X„ in the N =240 Bose-liquid He drop is
shown in Fig. 19 along with that of the natural orbital f„
calculated in the LDA [Eq. (3.11)]. We see that in this
case, and also in all the cases we have studied (N =20, 40,
70, 112, and 240), the X„ is very close to the f„ in Bose-
liquid drops. This is because almost all of the s-wave
natural-orbital occupation is in the ls orbital (Table III).
To see this, we express Xi,(r) in terms of the notation in-
troduced in Eq. (3.24):

terms of the s-wave natural orbitals:

q„=f g„*,(r)X&,(r)r dr

1 f f* {r)(N—1
I
a(r)

I
N )ld r .

NZ

(5.10)

(S.1 1)

By inserting a sum over all eigenstates
I
N l, a—) of the

N —1 particle system in Eq. (3.24) and using Eq. (3.6), we
obtain

fP' (r)(N l, a—
I
a(r)

I
N)d r =n, (5.12)

I q„ I &[n„,/(NZ)]'" .

However, the normalization of X„(r}requires that

X I e. I'=I

(5.13)

(5.14)

and, because NZ is not small while the n„, for n & 1 are
small, we see that q& must be nearly unity, and Nz —n &, .

Since X» {r) —P» ( r ), the LDA [Eq. (3.16)] im-

plies that the ratio X„(r)/&p(r) is proportional to
+no [p(r ) ]. The ratio Xi, (r)/&p(r), normalized to 0.907
at p=0. 137po, is shown as a function of p in Fig. 6.
Ideally, this ratio would be normalized to unity at p=0.
However, sampling errors make this impracticable so we
used the above normalization point. %e note that for
N =20, 70, and 240 this ratio is consistent with the LDA.

The fraction of particles in the condensate, as estimat-
ed from (i) diagonalizing the one-particle density matrix,
(ii) LDA [Eq. (3.17)], (iii) fits to the momentum distribu-
tion by Eq. (4.4), and (iv) the normalization Z calculated
by Eqs. (5.1)-(5.5), are shown in Table VI. These esti-
mates are in good agreement with each other. In particu-
lar, the agreement of the values of Z with the other esti-
mates of n„/N suggests that the ground state of the
N —1 particle drop is reached by removing a particle
from the condensate of the N-particle drop, when N R 20.

C. Quasihole wave functions of Fermi-liquid He drops

lO

Io

The X„, for nl =3s, 2d, lg, 2p, and 1f states are shown
along with the mean-field ((}„I and natural g„, in Figs. 8
and 20. In these figures we show that the LDA,

IO X„,(r) = [ 1 —0.45p(r)/po]P„I(r)/QZ„I, (5.15)

I

-l
IO

tO

IO

IO

FICx. 19. The X&,(k) (error bars) aud the LDA for i(„(k)
(solid curve) for the 240-atom He drop.

provides a good description of the quasihole wave func-
tions. The renormalization constant Z (p) in liquid He is
given by

Z(p)= lim [n(kF —E)—n(kr+s)],
F.~O+

(5.16)

as shown by Migdal. ' It has been estimated at p&po
from the momentum distribution of atoms in liquid He,
and it appears that the function [1—0.45p/po] provides
an approximate extrapolation of &Z(p} as shown in Fig.
6.

The nodeless lf and 1g quasihole wave functions are
rather close to the natural lf and 1g wave functions;
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however, the 2p, 2d, and 3s quasihole wave functions are
diff'erent from both the mean-field wave functions and
natural orbitals. Let us consider the I =0 wave func-
tions. We may expand Xi, in terms of the @ in the same
manner as was done for the boson case in Sec. V B. How-
ever, for the Fermi case, the occupation numbers of the
1s, 2s, and 3s orbitals are comparable, and hence there
are at least three signi6cant terms in the expansion.
Thus, -in general, quasiparticle orbitals are not equal to
natural orbitals, the exception being n =1 states that are
near the Fermi energy. Since the quasihole orbitals are in
between the natural and mean-field orbitals, their occupa-
tion numbers (X«

~ p ~
X«) are also in between the natu-

r» n„, and (y« I p I y«) as show»n Table VII

Oe8 r [ r ] 1 f
&

/ I
~

i I v
~

~

~ 1

OA

OA-'1
' 03-

Ol

O.2-

N
O.l—

0,

OA-

0.2-

FIG. 20. Same as Fig. 8 except for the 3$ (upper), 2p (middle),
and 2d (lower) orbitals.

TABLE VII. Occupation numbers of natural, quasihole, and
mean-SeM orbltals.

3$
2d
1g
2p
lf

0.85
0.84
0.75
0.77
0.69

0.76
0.77
0.74
0.72
0.69

0.72
0.74
0.74
0.71
0.69

UI. CONCLUSIONS AND DISCUSSION

One of the main conclusions of this work is that in
finite systems the mean-field, natural, and quasiparticle
orbitals are generally different. These orbitals will not be
identical in any inhomogeneous system such as electrons
in a crystal lattice. Only in homogeneous liquids are all
these orbitals plane waves, and the theory is simpler.

The main advantage of mean-field wave functions is
that they are easy to calculate from the experimental den-
sity distribution p(r), if it is known, or from a reasonable
energy-density functional, 'i' if that is known. It seeins
that the quasiparticle wave functions can be obtained
with reasonable accuracy from the mean-field wave func-
tions with LDA's such as those given here. The two-
particle distribution function can also be obtained from
p(r) with reasonable accuracy by using a LDA. '4

We have not investigated the problem of finding a sim-
ple way to generate all the natural orbitals from p(r) or,
equivalently, the P;(r) It app. ears that if, in the language
of mean-field theory, k states with angular momentum l
are occupied, then the natural orbitals i'«having n & k
have k —1 radial nodes each. When k ~ l, these natural
orbitals of the hole states are similar to Wannier-type lo-
calized functions formed from the occupied mean-field
wave functions. On the other hand, when k =1 the hole
state f, i is similar to the quasiparticle wave function X,i.
The natural orbitals g«of particle states are confined to
the region where p(r) & 0. On the other hand, the mean-
field P«are not confined when n or I is large enough so
that the orbital energy e„I is positive. Even bound
(e«& 0) mean-field orbitals for particle states have bigger
radii than the corresponding g«. It appears that devel-
oping simple methods to estimate the natural orbitals and
their occupation probabilities in a quantum-liquid drop is
an interesting and challenging problem. This problem
has recently received some attention in nuclear phys-
)cs 1s, 16

The main weakness of this work stems from using the
variational wave functions instead of the exact ground
state. These wave functions are the best available to date,
and comparisons with Green's-function Monte Carlo cal-
culations suggest that they give reasonable binding ener-
gies, ' momentum distributions, * density distributions, '

and pair-distribution functions. ' However, it may be
possible to improve upon them by, for example, allowing
the pair correlation fi(r; )to depend upon r; . and r. as
suggested by Krotscheck et al. ' The main conclusions
of this work, the localization of natural orbitals and the
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local-density approximation for the quasiparticle orbitals,
are not sensitive to the details of the correlations, and
they should exist even when exact ground states are used.

The one-particle Green's function of a finite or inho-
mogeneous system can be expanded following Lehmann's
method, "0

G (r, r', co)=Gq (r, r', ui)+ G,~,(r, r', co), (6.1)

where Gq (r, r', co) contains the contributions from the
quasiparticle states. The single-particle wave functions
associated with the quasiparticles are clearly the X;(r),
and

Z
Gqp(r, r', ~)=g . X,'(r)X;(r')

,. co—E, +ED+«g

0.3—
'1

0.2—
Wt

~Q
O.l—

0

-O.l—

-0.2—

I'

-/

I I i I i l i l s I i l I )

I 2 3 4 5 6 7
r (cr)

(6.2)

Here E; and F. are the energies of quasiparticle states in
drops with N + 1 and N —1 particles, respectively.

An expansion of the type (6.2) is generally used to
study the response of nucleic and jellium drops, i' but
with the mean-field wave functions P; instead of the
quasiparticle X;. The resulting calculated response of nu-
clei is typically too large at small r where the X,(r) are
smaller than the P;(r) (Figs. 8 and 20). Thus, the use of
the proper single-particle wave functions may be impor-
tant in studying the response of small systems.

The density distribution is given by

p(r)= lim JG(r, r, a)ei'""
0+

(6.3)

pz(r) pN, (r}=Z
~

X (—r)
~

+background . (6.4)

The volume integral of the background must be 1 —Zj.
If we assume that the background is proportional to
XJ(r}, the density difFerence is given approximately by

[X,(r) t'.
In Fig. 21 we compare the density dim'erence between

N =70 and %=69 liquid He drops with
We have assumed that the ground state of the

X =69 drop has I =0. In the actual Monte Carlo calcu-

Only those poles of G(r, r', co} that are above the real axis
contribute to p(r). Let us assume that the system with
N —1 particles has a hole in state j in its ground state.
The G(r, r', co) of the N —1 particle drop will differ from
that of the N-particle drop in two ways. The pole corre-
sponding to the quasiparticle state jwill go below the real
axis because j is a particle state in the drop havi. ng N —1

particles, and there will be small changes in the contribu-
tions from all other states. If we assume that all these
other changes provide a background, then

FIG. 21. The estimated density dilerence pN 70(I )
—p„~~(r) (data points) compared with

~
X3,(r) ~

' and

~
{()„(r)t

~ (dashed curve) The q. uantity 4nriikp(r) is plotted.

lation we removed both 3s states from the P„[Eqs. (1.1)
and (1.3)], and measured the p(r) of the resulting N =68
system. The resulting change in p(r) should be close to
twice the difference ppg 7Q(r) pz s9(r)—. We see that the
density difference produced by the removal of a particle
from a closed-sheB drop is better described by quasihole
rather than mean-field wave functions. The difFerence is
smaller at small r than expected from the mean-field

{()&,(r). Experimentally it is known that the difference be-
tween the charge densities of lead and thallium nuclei~ is
smaller than

t P&, (r} t
at r =0. A 3s proton is removed

from lead to reach thallium.
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