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Tight-binding study of the electron-phonon interaction in bcc transition metals and alloys
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The tight-binding method has been used to study the electron-phonon interaction in several bcc
transition metals and alloys. Slater-Koster Sts to self-consistent, scalar-relativistic, augrnented-

plane-wave band calculations have been employed and scaling relations were used in determining
gradients of the tight-binding matrix elements. The two-center integral parameters were adjusted
for alloys in a way which explicitly accounts for the change in lattice constant. Results for 3d and
4d transition-meta1 elements are in good agreement with rigid-mu5n-tin calculations. In addition,
the electron-phonon coupling in Mo„Nbl „ is evaluated from densities of states calculated by the
coherent-potential approximation. The measured variation of the superconducting transition tem-

perature as a function of x is reproduced well by this calculation.

I. INTRODUCTION

An understanding of the electron-phonon interaction
(EPI} in metals has been obtained by the rigid-muffin-tin
approximation (RMTA) of Gaspari and Gyorffy' and
from pseudopotential theory. 2 The RMTA has been used
in a systematic study of the superconducting properties
of cubic metals, and errors in the Gaspari-Gyorffy ap-
proximation for the simple metals were accounted for in
a study of the EPI by Zdetsis et al. For cubic transition
metals and compounds, the Gaspari-Gyorffy approxima-
tion appears to work weO. '

Another approach to the calculation of the EPI is the
tight-binding approximation (TBA}. ' This approach
has the advantage of ease of extension to hexagonal sys-
tems and alloys. The purpose of this paper is twofold:
first, to present an independent check of calculations of
the EPI in bcc transition-metal elements using an orthog-
onal TBA method. Second, to report the results of an ap-

plication of this method to binary transition-meta1 alloys
using rigid-band or virtual-crystal arguments as well as
the coherent-potential approximation (CPA).

Section II of this paper contains a description of the
general method used in calculating the matrix element
(I ), the EPI parameter, in the orthogonal TBA. Sec-
tion III contains a description of the specific application
of the TBA to transition metals, along with a discussion
of the scaling laws used in calculating gradients of the
tight-binding matrix elements. Results for several bcc
elements are presented. A description of the application
of the TBA to binary alloys is contained in Sec. IV. Con-
clusions are presented in Sec. V.

II. TIGHT-BINDING APPROXIMATION

The quantity to be calculated is the EPI parameter
(Ii), 's defined as

[~(E )p ~, Fs (V E„„[ Fs [V„E,„.~

~

This constitutes a Fermi-surface (FS) average of the
electron-phonon matrix element

gi,„i,„——g A„(k)[y „(k)—y „(k')]A„„(k'), (2)
m, n

ls' at k'. a refers to x, y, and z components, A„(k) is
the mth component of the eigenvector for band p, and

).„(k}=y(V., (e,.~H ~C,„)).'

for scattering between band ls at wave vector k and band +(+F} is the density of states at the Fermi energy. In Eq.
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(3), 4c~ is the mth atomichke basis function at the origin
and 4,„ is the nth function located at position R, in a
tight-binding representation of the Hamiltonian, H, for
the solid. Using transformation properties of the
spherical-harmonic orbital basis, Eqs. (1)—(3) result in

the stmplj. 5ed express&on

{I'&=2y. —2 y„c:„c„., (4)

48 d0"g

N(EF) ~ iFs [ViEi,„(
48 dai,

Di —— g g g A„„(k)y'„(k) t,
rn, a n

(S)

y f, ", y ~.„(P",.k)~..„(P, )y..„(P",k).
N E~ „ iFs

( Vi,Ei,„(

p; is the transformation matrix for the ith member of the
symmetry group of k. The integrals extend over the por-
tion of the Fermi surface in the irreducible wedge of the
first Brillouin zone (IFS). d& is the dimension of the Ith
irreducible representation of the cubic group, so that for
s, p, and d electrons, there are four subsets corresponding
to 1=1,2, 3,4 with dl ——1,3, 3,2 for the usual ordering: (s),
(x,y, z), (xy, yz, zx), and (x —y, 3z r)—

The success of the present work depended on the
availability of very accurate band structt)res of the ele-
mental bcc metals in a Sister-Koster representation, '

accurate numerical methods for performing Brillouin-
zone integration, and a simple, systematic method for
obtaining gradients of the potential matrix elements in
the TBA. These will be discussed in Sec. III.

were varied as R 2, the sd and pd as R ~, and the dd
as R 5, where R is the bond length. '

No other approximation was made in the calculation.
Group theory was used to avoid calculation of quantities
which are zero, or equal to a previously computed quanti-
ty. In this way the calculations were made feasible for a
number of elements. Most of the computer time was
spent evaluating the C integrals, given by Eq. (7), which
contribute only a few percent of the total in Eq. (4). De-
tails of the procedure are given elsewhere.

Results of the present calculation are shown in Fig. 1

for 3d and 4d transition metals, compared with the

IH. APPLtCA'rION TO TRANSi j.xON-METALS

Slater-Koster representations of the band structures of
the bcc transition metals have been obtained by 5tting
self-consistent, scalar-relativistic, augmented-plane-wave
(APW) calculations. The orthogonal, two-centered ver-
sion of the Sister-Koster method was employed in this
work and Srst, second, and third neighbor interactions
were retained in the tight-binding Hamiltonian. The typ-
ical rms deviation in these calculations was S mRy for the
Srst six bands.

The various Fermi-surface integrals were evaluated us-
ing the analytic-tetrahedron method, including full varia-
tion of matrix elements throughout the zone. Tests of
convergence of the integration grid size were Inade to en-
sure accurate results.

The scaling laws of Harrison' have been used to deter-
mine the gradients of the tight-binding Hamiltonian ma-
trix elements in Eq. (2). The advantage of the scaling
laws lies in the fact that it is not necessary to have band
structures at several lattice constants to calculate
electron-phonon matrix elements. The scaling laws may
be more reliable in estimating the gradients than band
calculations at two lattice constants dilering by a small
amount because of the numerical sensitivity of the latter.
In this scaling method, the ss, sp, and pp bond parameters

RMTA

TBA without C integral

o TBA with C integral

Q.D't

O.OD
'

Element

FIG. l. Electron-phonon interaction parameter {I) for
several transition-metal elements. Plotted are results from Ref.
4 (d ), present results without the contribution from Eq. (7) ( X ),
and present results with Eq. (7) included (o). All values of
{Ii)are in (Ry/a. u. )~.
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Gaspari-Gyorl'y results of Ref. 3. Agreement is quite sa-
tisfactory, as can be seen in the figure, and this supports
the general validity of both the TBA and the Gaspari-
Gyorffy formulations of the EPI for these elements. This
is because although both methods start with the same
first principles band structures, the approximations made
may be quite different. For obvious reasons both
methods fail for simple metals unless corrected. The
Gaspari-Gyorft'y approximation underestimates and the
TBA overestimates (I ) in simple metals unless correc-
tions are made.

A different set of scahng laws for the two-center in-

tegral parameters was suggested by Andersen. " In this
scheme, ss bond parameters vary as R ', pp and sd asR, dd as R, and pd as R . Table I contains a com-
parison of (I ) calculated with Harrison scaling and
with Andersen scaling. Results with and without the C-

integral contribution are presented. The difference be-
tween the two scaling methods can be seen to be small.

has a strong Fermi-surface dependence, will change with
the lattice constant.

Table II contains the results of a calculation' of (I )
for the binary alloy A„S, „using the rigid-band approx-
imation. The table contains the two extreme cases: that
.of increasing the number of electrons by one in the ele-

ment with fewer valence electrons and that of decreasing
the number of electrons by one in the element with more
valence electrons. Thus, for example, if the rigid-band
approximation was accurate, the results of (I~) for vana-

dium plus one electron would be the same as (I ) for
chromium, and so on. As can be seen from Table III, the
results for Cr„V, „and Mo„Nb, „are not encouraging.

A method which attempts to account for the di8'erent

band structures of the elements is the virtual-crystal ap-
proximation. In this approximation, the bond parame-
ters are taken to be the weighted sum of those of the con-
stituent elements. Thus, for A„B, „, the ith bond pa-
rameter is given by

A. TRANSnI. QN-METAL ALLOYS V;=xV;„+(1—x}Va . (8)

In this section the application of the tight-binding ap-
proach to the electron-phonon interaction for transition-
metal binary alloys is described. First, a description of
two methods previously used is given, namely, the rigid-
band approximation and the virtual-crystal approxima-
tion (VCA}. Then an improved method that combines
the VCA and the scaling laws is described. Finally we
present an evaluation of the EPI using the density of
states at the Fermi energy resulting from calculations
with the CPA.

A. Rigid-band ancl virtual-crystal ayyroximagons

In the rigid-band approximation to the tight-binding
method, it is assumed that the bond parameters will not
change significantly as a result of alloying and that the
effects of alloying can be accounted for by changing the
Fermi energy to accommodate the change in the number
of conduction electrons.

One weakness in this approximation is that the energy
bands are therefore the densities of states of the two com-
ponents are not identical. In addition, the energy bands
for the resulting alloy will not necessarily be the same as
those of the constituent elements.

An even stronger criticism, however, is that the change
in the lattice constant upon alloying is not included.
Since a change in lattice constant, due to pressure effects,
for example, can signi5cantly change the Fermi surface,
it is to be expected that a quantity such as (I ), which

However, this approximation does not address the prob-
lem of the change in lattice constant upon alloying.

8. Improved ayyroximation

The improved method discussed here combines the
VCA given in Eq. (8} with a scaling approximation. The
bond parameters for A„Bi „are written as
V, =xU;"+(1—x}U;,where the U, 's are the scaled bond
parameters. The basis of the Harrison scaling method,
which was discussed briefly in Sec. III, is that the quanti-

ty R '
V, is taken to be invariant under changes in the lat-

tice parameter. Therefore, Ro'V, =R 'V, , where Ro is
the equilibrium bond length, R is the new bond length,
Vo is the equilibrium bond parameter, V; is the new bond
parameter, and n; is chosen according to the kind of
bond parameter involved. (See Sec. III.} Thus, in deter-
mining the bond parameters for the binary alloys, the
variation due to the change in lattice constant is included
by defining

gA0 O

R

where R" is the new bond length. Then, the bond pa-
rameters used in the calculation of (I ) for A„S, „are

TABLE I. A comparison of the results of the present calcula-
tions using the Harrison scaling method and the Andersen scal-
ing method. All values are in units of I,'Ry/a. u.) .

Element (z) (I') (z) (I') (z + 1) (I')(z —& )

TABLE II. Results of the rigid-band approximation calcula-
tion of the electron-phonon interaction parameter from Ref. 12.
All values are in units of (Ry/a. u.) .

Scaling
method

Harrison
Andersen

0.0209
0.0210

0.0298
0.0300

(I'} without C integral
Cr Mo

0.0212
0.0217

0.0306
0.0314

(Iz) with C integral
Cr Mo 0.0137

0.0209
0.0183
0.0298

0.0173

0.0272
0.0172

0.0211
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TABLE III. Density of states per spin at the Fermi energy
for Mo„Nbl „. x is the concentration and the units are
(states/Ryspin).

0.022

0.020 C~~&x-x

0.0
0.1

0.3
0.5
0.7
0.9
1.0

Rigid band

9.53
8.41
7.05
5.04
3.00
3,00
3.33

9.53
8.42
7.23
3.67
3.18
3.38
3.80

CPA

7.83
6.69
5.17
3.79
4.46

0.018
(r*&

[(."')']„„

0.014

0.0}2

given by

gA
V;=xI V„+(1—x) 0

0.010

0.0 0.2 0.4 X 0.6 0.8 1.0

The results of the application of this method are shown
in Figs. 2 and 3. Figure 2 shows (I2) versus concentra-
tion x for Mo„Nb& „ for known lattice parameters. In-
cluded in the figure are the rigid-band approximation re-
sults of Ref. 6. The overall trend is the same, with the
present results systematically higher. Also included are
the results of a KKR-CPA calculation. ' Agreement is
good at the Mo end but the present results are higher at
the Nb end of the concentration plot. The dip in (I )
for 0.3&x &0.5 appears to be a Fermi-surface effect,
since it also was seen in a rigid-band calculation. Figure
3 shows a similar plot for Cr, V, „.The overall shape is
approximately the same as Mo„Nb, „, with a larger
jump at about x =0.6.

Nb —- —-
Mo

20.0 - To

x=0.3

10.0

FIG. 3. Results of the present calculation of the electron-
phonon interaction-parameter (I ) for the binary alloy

Cr„V&, for 0&x & l. All values of (I~) are in (Ry/a. u. )2.

C. Electron-yholaon couyhag using the CPA

The results presented in Secs. IV A and IV 8 were ob-
tained from a direct evaluation of the matrix element

00.0

fag

20.0—

0
Q

10.0—

1

I

x=0.5

P

0.030

[(")'1
0.025

Moxwby x 0
00.0

20.0

0.020 si

10.0—

0.015

00.0
O. l 0.3 0.5 0.7 0.9

0.010
0.0 0.8 1.0

FIG. 2. Electron-phonon interaction parameter (I~) for the
binary alloy Mo„Nb1 for 0&x & 1. Results from the present
calculation are plotted {), along with results from Ref. 6 ( g )
and Ref. 13 t 0 ). All values of (I~) are in (Ry/a. u.) .

ENERGY (Ry}

FIG. 4, Plots of densities of states for both spins as a func-
tion of energy for dilerent concentrations x in Mo„Nb1 „.The
total density of states is plotted as (—), the Nb contribution is
plotted as ( —-—-), and the Mo contribution as {—~ .—.-).
Units are in states/Ry.
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TABLE IV. Densities of states per spin at the Fermi energy decomposed into angular momentum components (s,p, d) for each ele-
ment in Mo„Nb& „.x is the concentration and the units are (states/Ry spin),

Mo

0
0.10
0.30
0.50
0.70
0.90
1.00

9.93
7.83
6.69
5.17
3.79

4.02

0
0.021
0.079
0.126
0.083
0.083
0.09

0
0.161
0.412
0.653
0.541
0.625
0.38

0
0.260
0.793
1.080
1.598
2.546
2A5

0
0.091
0.312
0.454
0.485
0.866
1.11

0.40
0.200
0.191
0.131
0.037
0.009
0

1.04
1.422
0.963
0.650
0.234
0.070
0

6.52
4.521
3.164
1.570
0.660
0.207
0

1.97
1.154
0.782
0.433
0.150
0.056
0

(I ) within VCA-like approximations for the band struc-
ture of the alloy. It is well known that such approaches
often fail to describe accurately the details of the density
of states (DOS) in alloys. The method that is best suited
for the evaluation of the DOS of an alloy is the CPA.
Thus, calculations of the DOS for the Mo„Nb, , system
have been performed using the TB-CPA method. The re-
sults of these calculations are shown in Fig. 4 where plots
of the DOS for Mo concentrations x =0.3,0.5 and 0.7
are displayed. It is clear that the gross features of the
DOS retain rigid-band characteristics for this system and
therefore this offers a justification for the approach used
in the previous sections. A more detailed comparison of
the CPA results with the other calculations is given in
Table III, where N(EF) as a function of x are listed. It
should be noted that in a quantitative sense there are sub-
stantial differences between the CPA and the other re-

sults. A more complete list of the CPA results with a
of N(EF } into alloy and angular momentum

components is given in Table IV. It would be desirable to
calculate rigorously the quantity (I ) from the results of
Table IV but such a formalism is not known in TB-CPA.

In order to gain an understanding of the physical pic-
ture emerging from these calculations, the electron-
phonon coupling A, and the superconducting transition
temperature T, were calculated. The McMillan-Dynes'4

equation

(co) 1.04(1+&)
1.2 A, —p~(1+0.062K, )

was used, where

First, Eq (10) ts in~erted to Snd the value of A, that corre-
sponds to the experimental value of T, at x =() and
x = 1. (r0) is set equal to 8& /~2 and p' is chosen to be
013 Since the Debye temperature eD as given by
McMillan' increases monotonically vnth x and the re-
sults of Fig. 2 also show an increase of (I~) with x, the
quantity (I ) /M(aP) is slowly varying and is taken to
be constant. This means that Eq. (11}becomes

A, ; =const&N, (EF}, (12)

where the index i indicates the alloy component. Equa-
tion (12) was used with the CPA results for N, (EF } and

T, was calculated from Eq. (10). The results are shown in
Table V, which. indicates that the rapid decrease of values
of T, is reproduced by this calculation.

V. CONCI. USIONS

A systematic study of the electron-phonon interaction
has been presented within the tight-binding approxima-
tion for body-centered-cubic transition metals. A com-
parison was made with a study of the EPI in which the
RMTA theory of Gaspari and GyorfFy was employed. It
is concluded that the two approaches are equivalent for
the 3d and 4d bcc transition metals, giving results which
are in agreement to within a few percent. Some of the
differences may be due to the fact that the Gaspari-
Gyorffy results are based on nonrelativistic band-
structure calculations whereas the Slater-Koster parame-
ters used here were obtained from scalar-relativistic band
calculations for the heavier elements.

The tight-binding method was applied to binary alloys

Etc««n-phonon coupling constant k and critical temperature T, for Mo„Nh, „. (~) is
taken «h«D /v 2 (s« text}. & ~ & and T, are in degrees kelvin and x is the concentration.

0
0.1

0.3
0.5
0.7
0.9
1.0

0.88
0.65
0.45
0.25
0.10
0.03
0.00

0.00
0.04
0.13
0.19
0.22
0.33
0.41

0.88
0.69
0.58
0.44
0.32
0.36
0.41

196
208
235
261
286

325

T theor

9.2
5.3
3.3
0.9
0.06
0.23
0.9

Texpt

9.2
6.3
2.4
0.2
0.02
0.3
0.9
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using an approximation which allows for the change in
lattice parameter due to alloying. This method is no
more diScult to implement than the rigid-band approxi-
mation or the VCA. However, it has a firm theoretical
foundation in the scaling method of Harrison.

CPA calculations were also performed for the
Mo„Nb, „alloys which are consistent with the results of
the above approaches and provide an evaluation of the

electron-phonon coupling and the transition temperature
in agreement with experiment.
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