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Dilute Bose gas in two dimensions
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The weakly interacting Hose gas in two dimensions is considered in the dilute limit n ' a ~~1„
where n is the particle density and a is the range of the potential. The standard many-body pertur-
bation theory for this system has two separate divergences: the 6rst, associated with classical phase
fiuctuations, is responsible for the vanishing of the long-range order; the second is quantum
mechanical and is connected with the vanishing of the scattering t matrix at long wavelengths and
lour energies. An earlier diagrammatic theory of Popov, which provides a consistent description of
the system in the dilute limit, is rederived heuristically from a quasiparticle picture, and also using

the renormalization group. It is shown that the super8uid transition temperature is

T, =4m(R /2m}n/[1n ln( 1 /na )], and the condition of validity of the dilute limit is
ln in(1/na'} »1. The connection to the dilute Bose gas in dimensions d & 2 and the universal be-

havior beyond the extreme asymptotic low-density domain are also discussed.

ln ln(1/y) «&1,

where

(1.2a)

p =nQ (1.2b)

and a is now the range of the interaction (to be defined
more precisely below).

The purpose of the present paper is to explain Popov's
theory in a heuristic way, based on Bogoliubov quasipar-

I. INTRODUCTION

It is well known' that Bose-Einstein condensation
occurs in the ideal Bose gas for any dimension d & 2. A
weak interparticle interactioni only changes the behavior
significantly at low temperatures and long wavelengths~ 1

on the one hand, and near the transition temperature on
the other Both. of these efFects are confined to narrow re-
gions of temperature in the dilute limit

n""a ~~1,
where n is the particle density and a is a length scale as-
sociated with the potential, e.g., a scattering length or the
radius of a hard sphere. In two dimensions, Bose conden-
sation does not occur in either the ideal or the interact-
ing system, but a phase transition to a superfluid state is
expected in the latter case. The purpose of the present
paper is to discuss the dilute limit (1.1) in two dimen-
sions, where both the Bose-Einstein condensation temper-
ature and the scattering length for binary collisions '

vanish. These two singularities, the first of classical ori-
gin and the second purely quantum mechanical, imply
that the usual dilute gas expansion ' must be modified in
an essential way.

This problem was in fact solved some time ago by Po-
pov, using a diagrammatic formalism based on function-
al integrals. Popov did not, however, explicitly ask what
the diluteness condition analogous to (1.1} should be,
though his theory can be used to show that (1.1) is re-
placed by

p, /p= 1 —T/Ttt .
The low-temperature phonon corrections to (1.4),

p, /p= 1 —T /Tttlj, (0),

(1 4)

appear only for T &p(0) =
Ttt /ln(1/y), where p(0) is the

chemical potential at T =0. The 6uctuation corrections
associated with the Kosterlitz-Thouless transition, on
the other hand, are confined to a critical region of order

(T Ttt)/Ttt ~ 1/—lnin(1/y) .

In Sec. II the dilute Bose gas in dimensions d & 2 is re-
viewed and it is shown that Eq. (1.1) is the condition that
a low-temperature phonon region will be well separated
from the critical region, with free-particle behavior at in-
termediate temperatures. Section III presents Popov*s
theory of the dilute gas in two dimensions, and a similar
separation of temperature regions is shown to follow
from condition (1.2). The theory is rederived in Sec. IV
from a renormalization-group treatment consisting of
two steps: Srst a quantum-mechanical renormalization
which efectively replaces the two-body interaction by a t
matrix, and then a classical renormalization to eliminate
the divergence associated with the absence of Bose con-
densatlon ln two dlmenslons. Section V discusses the
general scaling behavior and concludes with some re-
marks on universality beyond the extreme asymptotic

ticles, and to rederive it using a modern renormalization-
group argument' ' which clearly exhibits the origin of
the double logarithm appearing in (1.2). We show that
when (1.2} is satisfied the critical temperature is well ap-
proximated by its value in the Bogoliubov theory

Ttt
2m ln ln(1/y)

(1.3)

and over most of the temperature range 0& T 5 T~ the
super8uid density p, has a "free-particle" form expected
from the Landau-Bogoliubov quasiparticle theory"
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domain, as well as on possible physical applications of the
theory. The main results for the superfluid density are
suIIlIDarized in Flg. 1.

B. THE MI.UTE GAS FQR d «2

We begin with the second-quantized Hamiltonian in d
dime nslons

H= — "x x V x

+—,'xxxxVx —xxx
(2.1}

where V is a two-body interaction with strength u and
range a. For a deflnite example we will sometimes take a
repulsive potential of the form

if(r) =ue (2.2)

but the results are valid more generally. For a system
with number density n, the standard Bogohubov quasi-
particle theory, '3" generalized from d =3 to any d & 2,
consists of the following elements. (i} The quasiparticle
excitation spectrum s(k) is given by'2

e (k}=eo+2pso ~ (2.3a)

with

d
«lti it2»=~(

I
ltl —lt2 I )—I (2~)'

x(2k,' —z) 'r(it, ,lt, z, ),

(2.4)

where iT'(k) is the Fourier transform of tf(r) and z is an
internal frequency. In the limit lt„k2~0 we have, for
the potential (2.2),

Ci UQ

r(0,0,z)=
1+c2ua Ae(za /&)

(2.5)

where c i and c2 are nonsingular numerical constants and

(cf —2 }/2 —x
A„(a}=pf dx . (2.6)

For d & 2, A&(0)= I ( —,'(d —2) ) & 0, we can define

r (0,0,0)=r, (2.7)

as the i matrix at zero k and ~, so for uaz»1, to-ad 2-
For more general potentials than (2.2) the same relation
holds with a equal to the scattering length. (iii) The num-
ber density can be vvritten as

ec ——k 2 (2.3b)
Pt = If 0 +7l (2.8)

where p, is the chemical potential. (ii} For strong two-
body scattering, e.g., hard spheres, '3 we replace the po-
tential by a r matrix' 's'9 p=noto,

and the noncondensate part n' by

(2.9)

where the condensate part nc is to lowest order given by

d~k so+0
(2ir)'

+P I
e~' —l

(2.10)

ICLE S

Equations (2.7}-(2.10) can be used to calculate p(n, T)
and nc(n, T) and thus to obtain the complete thermo-
dynamics of the dilute Bose system. The superfluid den-

sity is given by a Landau quasiparticle formula" based on
the Bogoliubov spectrum (2.3),

1/tntn (1/y}
I

1/fn($/y}

/gag n(1/y}

I

TC/TS
REDUCED TEMPERATURE T/Ts

FIG. 1. Schematic representation of the temperature depen-
dence of the superluid density in the dilute Bose gas in two di-
mensions. There are three diFerent regimes; a low-temperature
phonon region for T/T ~1/in{1/nu~)—= 1/ln(1/y), an inter-
mediate free-particle region for 1/In(1/y) ~ T/T 51, and a
critical region I

T T I /Te 5 1/lnln{1/y}—, where p, /p ex-
periences a universal jump of order 1/In la(1/y) at a critical
temperature T, which is disphaced from Tz Qy a quantity of or-
der

I T, Te I /T 1e/1n1 (1/ny—}. The dilute hinit is deflned
by the condition lnln(1/y) ~~1, which guarantee that the
three regions will be weH separated.

Ps
1

P dk z
e'

P Pd (2u') (e~' —1)
(2.11)

where p=(ksT) ' and p=mn =n/2 is the mass densi-
ty 16

The Bogohubov theory (2.7)-(2.11) forms the basis for
a systematic expansion of the dilute Bose gas in the
weak-couphng limit

g'=n(d-'"dt (~ l (2.12)

is the microscopic scale associated with the potential;

(2.14)

To see that the single coupling constant g is an appropri-
ate expansion parameter at all temperatures ~e de5ne the
following temperature scales:

(2.13)
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is the temperature scale associated with the density; and
the Bose-Einstein transition temperature of the ideal gas
is given by'

TE ——bd T„, (2,15)

where bz ——[g(d/2)], with g(x) the Riemann zeta
function.

At T =0 we have'

n'(0)/n -1,'"n"-""-g'«1,
p, ( 0) = nt 0- g T„. (2.17)

The excitation spectrum is phononlike for k & 2p'~z and
free-particle-like for k &2@'~. At low temperatures,
T &p(0), the superfluid density (2.11} has the phonon
form

g(d+2) (2.18}

and the density of noncondensed particles behaves like

n'(T) T 1

n T„g2
n'(0)

(2.19)

The transition temperature Ta defined from the condi-
tions p, =0 or n'= n is in lowest order given by the Bose-
Einstein temperature (2.15), with corrections coming
from additional terms in (2.9) and (2.10), which vanish as
powers of g. Over most of the temperature range
IJ{0)& T & Ta„ the densities p, and no are approximately
equal to their free-particle values'

Ps "o T—1= —1= (2.20)
p Pl TE

Equations (2.10) and (2.11) are uniformly valid for all T
up to Ta TE as lollg as g « 1. The crossover ffo111

(2.18) to (2.20) can be calculated numerically using the
basic formulas (2.7)-{2.11}.

Near Ta and for d & 4 there are fluctuation corrections
coming from critical phenomena associated with the
two-component Bose order parameter. ' ' These occur
in a critical region of width'

Ai(a)- —lna, a~0 . (3.1)

This result implies that the couphng constant g cannot be
defined via Eqs. (2.7) and (2.12).

(ii) The Bose-Einstein condensation temperature (2.15)
vanishes' {since b~ =[((d/2)] ~ diverges logarithmic-
ally as d~2) due to classical phase fluctuations. This
efFect can be seen in the expression for n', Eq. (2.10),
which has a logarithmic divergence in its lo~er-
momentum cutofF in both the interacting (@&0) and
noninteracting cases (p, =0).

A heuristic way to derive a consistent theory is to no-
tice that the quasiparticle forinula for p„Eq. (2.11),
remains well behaved for d =2, so long as p, is positive.
However, the integral diverges for small p, , since Eq. (2.3)
implies that the integrand has the form k /(k +2@k ) in
this limit. Of course there is no condensate so p cannot
be obtained from (2.9). Instead we will make the ansatz
that p is given by

p, =n
( t(0,0,z =p, } [

-n/
(
in(a2p)

~
(3.2)

thus providing a lower cutofF ko-p, ' which regularizes
the integral expression for p, in Eq. (2.11) at all tempera-
tures. As in the previous case of dimension d & 2, ko is
the momentum below which interaction eff'ects are im-
portant and above which the system behaves like an ideal
gas. In the present case, however, it is also clear that the
logarithmic divergence in Eq. (2.11) will yield a transition
temperature Ta, determined by setting p, =0 in Eqs.
(2.11}and using (2.3) and (3.2), which will be of the form

Ta-n/( ln(koa)
~

-n/~ in(pa2)
~

-n/lnln(1/na2) .

It turns'out that our conjectured Eq. (3.2) is essentially
the result obtained earlier by Popav, fram a careful
analysis of the diagrams associated with the Hamiltonian
(2.1). Popov introduced a momentum-space sphere of ra-
dius ko, and considered all k &ko as contributing to a
quasicondensate no(ko) and all k & ko as contributing to
n'(ko). In order to eliminate all divergences in lnko, he
found it necessary to introduce another cutoff ko &ko,
and to consider all diagrams which were second order in 1

as corrections to Eq. (3.2). In the end he obtained a for-
mula for n from which the singular dependence on ko
and ko was eliminated:

and they cause a shift in transition temperature from Ta
to T„as well as a change in the critical exponents from
their mean-field values iven in (2.18} and (2.19) to the
usual scaling exponents' " inside the region (2.21). For
d &4 the mean-field theory holds, with merely a shift in
T, proportional to g .

III.. DII.UTK GAS FQR d =2:
QUASIPARTICLE THEQRV

The foregoing derivation clearly breaks down in two
dimensions for two dilerent reasons.

(i) The quantum-mechanical t matrix (2.4) vanishes
at low k and ~, since according to (2.6),

n = — [ln(a p/2)+ 1 j—f —,(3.3)
Sm' (2m) e e~' —1

where the quasiparticle energy is still given by (2.3); the
superfluid density is obtained from (2.11), for d =2. It
can be shown moreover (see the Appendix), that to lead-
ing order Eqs. {3.2) and (3.3) are identical, so in a sense
our heuristic guess in Eq. (3.2) represents a simple deriva-
tion of Popov's result.

Equations (2.3), (3.3), and (2.11) constitute a self-
consistent theory of the Bose gas in two dimensions and
it is natural to ask what the condition analogous to (1.1)
is, which deflnes the range of validity of the theory. In
the Appendix we rewrite the equations in a form con-
venient for asymptotic evaluation, and we obtain the fol-
lowing results.
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In addition to the microscopic temperature scale T„
Eq. (2.13), and the scale T„, Eq. (2.14), which are related
by

1/4m@ —= T, /T„ (3.4)

[cf. Eq. (1.2}], the critical temperature in the limit
lnln(l/y) ~~1 is

Ts = T„ /ln ln( 1/y )=T„/ln ln( 1/na ) . (3.5)

There is also a fourth temperature scale @{0},separating
the low-temperature phonon region from the "free-
particle" region, and given by

p,(0)=2T„/in(1/y) . (3.6)

The behavior of the superfiuid density in the two regions

[T & p,(0) and p(0) 5 T 5 Ts ] is given by Eqs. (1.5) and
(1.4},respectively.

Finally, we may ask at what temperature fiuctuation
effects associated with the critical behavior will modify

p, . Since the critical point is expected to be of the
Kosterlitz-Thouless type for an interacting Bose system
in d =2, we may estimate that p, will be perturbed when
it reaches a magnitude which is of the order of its univer-
sal value' just below the Kosterlitz-Thouless tempera-
ture T,

2m T, 4p, (0)
n ln ln(1/y)p, (T=T, )= (3.7)

Since, according to Eq. (1.4), p, behaves linearly for
T 5 Ts we fiild

I T, —Ts I /Ts —1/ln in(1/y) . (3.8)

We now derive the foregoing results, particularly Eq.
(3.5), using the renormalization group. ' We begin by
transforming the path-integral representation for the par-
tition function appropriate to the Hamiltonian (2.1} to
the form4

TF= ——ln[Tr exp( —L)],
V

(4.1)

where L is an imaginary-time Lagrangian with spatiaj
cuter" a =1,

&= f dx I dr I 'g' +IVQI2
0 dr

Thus the dilute limit is indeed given by Eq. (1.2), which
guarantees that there will be a well-defined free-particle
domain (1.4) for p(0) 5 T 5 Ts with a phonon region (1.5)
at low temperatures T &p(0), and a critical region close
to T„which is itself close to the mean-field Ts according
to Eq. (3.8). The superfluid density as a function of tem-
perature is shown schematically in Fig. 1.

IV. RENORMAI-1ÃATIGNWRQUP TREATMENT

a Ji {T,p, u,f, 1") .
p

(4.3)

The fixed point which describes the ideal-gas transition
from zero density to the superfluid at zero temperature is
the noninteracting fixed point with u =0 and l =0 in Eq.
(4.2). This is the controlling fixed point for the low-
temperature almost-ideal behavior and we therefore ex-
pand around this point. The basic idea is to divide the re-
normahzation into two stages: first a regime in which the
quantum fiuctuations dominate and then, when the re-
normalized temperature becomes large enough, a classi-
cal regime where the quantum fiuctuations are negligible.
We shall find that for d =2 the renormalized interaction
will tend towards zero in the quantum regime, justifying
the expansion in powers of u.

The renormalization transformation is carried out by
integrating over a momentum shell' of width dl and
summing over all frequencies. At wave vector k and
Matsubara frequency co„=2n n T the bare propagator is

=PS„+„5g~i(—iF' 'a)„+k2—y} (4.4)

The momentum integrals yield a factor JC&dl where
Ez 2' "m ~ P——d /2), and the frequency sums are
equivalent to the integral f dc@/2m at zero temperature.
After integrating out the degrees of freedom in the
momentum shell we rescale according to

x xe',
ate&',

v.e",

(4.5a)

(4.5b)

(4.5c)

and adjust a combination of g and z so that the coefficient
of

I Vg I
in (4.2) remains identically one, yielding

2$+z =2—d+0(uj ), (4.6a)

where l subscripts denote renormalized quantities. The
other parameters of the renormalized Lagrangian are
given by

tions and is initially equal to 1. The classical limit is
1 =0. The interaction u -V(r =a) is the two-body poten-
tial at short distances, and f is the constant part of the
free-energy density which absorbs efFects due to the cutofF
a. The other parameters have essentially the same mean-
ing as above except that the field g is now a e number,
since Eq. (4.1) involves a sum over all classical paths.
[The chemical potential in Eq. (4.2) formally difFers by a
(u-dependent) constant from that in Eq. (2.1) due to the
self-interaction impUed by the form of Eq. (4.2). Since
this term will just be canceled by the zero-temperature
self-energy we can ignore its effects, which we have thus
dropped out of Eq. {4.2).] The density is given by

V is the volume of the system, and I is an energy param-
eter which controls the strength of the quantum fiuctua-

dI I

dl
= —(d +2/)I I +0 (uI ),

dT)
zTf

(4.6b)

{4.6c)
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dp(
dl

=(~+z+2g)p, —C U, +O(U,'),
dUI 2 3

11
=(1+z+4$)ui —C ui +O(ui ),U

(4.6d)

(4.6e)
and

+O(U, ),
2

z =2+0(u, ) .

(4.8b)

and

1
=(&+z)fi+Cf, (4.6f)

Since TI g& 1 we can use the approximation

d Ey UI=(2—d)U)—
dl 2(1 —pi )

(4.9)

where the coefficients C„, C„, and C&„which depend on

)u&, I i, and Ti, are calculated from the diagrams in Figs.
2(a), 2(b), and 2(c), respectively. The result is

(4.7a)

C„=Eel i coth[I'i(1 —pi)/2T)]
1

2 1 —pi

+ each [I i(1 izi)/—2Ti]

Cf =JCeT([ln(1 —e ' ' ') —ln(1 —e ' ')] .

(4.7c)

We have dropped an additive constant from Cf which
can be adjusted by changing the original definition off in
Eq. (4.2). We now have the freedom to choose the rescal-
ing factor z, or equivalently by Eq. (4.6), g.

A. Quantum regime

In the low-temperature regime, T &~ 1, the spectrum of
the dominant fiuctuations is strongly quantum in charac-
ter. It is thus convenient to keep the controlling parame-
ter for these fiuctuations fixed so we set

(4.8a)

y|eldIng

and thus U fiows to zero for d & 2, implying that after an
initial transient perturbation theory in Ui is justified. In
the regime of interest p, i ~&1, so that we can ignore the

)u& in Eq. (4.9) and obtain in two dimensions

K2

21 4irl ' (4.10)

for large 1. We are thus justified in neglecting everywhere
terms of relative order U& since f Ui g oo for d & 2, and

hence only finite renormalizations will arise from these
factors. Equation (4.10) is just the statement that the
scattering rate is renormalized by multiple scattering at
low frequencies and long wavelengths, and is equivalent
to (3.1).

From Eq. (4.7) it is apparent that nonzero temperature
elects will start to appear when T&-1. We therefore
stop the first stage of renormalization at a scale Tgiven by

T&
——e T=1, (4.1 la)

where the absence of a subscript denotes bare parameters,
i.e., Ti 0= T. Note that until this scale is reached we are
justified in using the T =0 limit of Eq. (4.7} with only
overall constant multiplicative errors arising from the re-
gime where T&

——O(l). From Eq. (4.7a) we see that the
corrections to the trivial renormalization of p, &

from C„
are exponentially small for small Ti, so that to the desired
order we simply have

Py =@8 (4.11b}

where pI 0=@

(o)

8. Classical regime

At scales of order 1 and larger, the temperature depen-
dence of the fluctuations becomes important. In particu-
lar, the fiuctuations will be dominated by the lowest
Matsubara frequency, ~„=0. In order to make the re-
normalization asymptotically classical it is convenient to
make a diN'erent choice for the rescaling factor and let the
coeScient I"& in Eq. (4.2) vary. We now fix Ti at unity for
1 & T, although this choice is certainly not unique. In this
classical regime we then have

(c)

FIG. 2. The diagrams necessary for calculating the
coeScients (a) C„, (1) C„,and (c) Cf appearing in Eq. (4.6).

z =0+0(vi },
g=-,'(2 —a)+O (U,'),
T

d I'I

dl
= —2I, +O(ui ) .

(4.12a)

(4.12b)

(4.12c)

(4.12d)
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With T( ——1 the important coeflicient in Eq. (4.6f} is

Cf —E—e fin(1 —e ' ' )—ln(1 —e ')] (4.13a)

(4.13b)=Ed ln(1 p—()+O(I () .

Using the recursion relations Eqs. (4.6) and {4.12) we re-
normahze until a scale I» is reached, at which

UIy= 1 (4.14)

where we have ignored the negligible efl'ects of the 0 (u( )

term in Eq. (4.6e) in the classical regime. From Eq. (4.14)
we require

I' —T=-,' lnT . (4.16)

We now focus on the renormalization-group equations
far the chemical potential and free-energy density in
d =2. To the required order these are obtained from
Eqs. {4.6), (4.7), (4.12), and (4.13) in the limit of small I (..

p]
2p( —2Eiu( (4.17a}

and

I

I
=2f( 2K2p(, —

where we have dropped terms of relative order p( since
they will remain small during almost all the classical part
of the renormalization. We note that p, f, and u all have
the same growth rate so there are "resonances" in the
solutions to Eq. {4.17) which give rise to singular contri-
butions to f(». We integrate Eq. (4.17a) using Eq. (4.15)

for u( and then substitute into Eq. (4.17b), obtaimng for
f(» a part independent of p& and a singular p~dependent
part&

{I») E e2(! —()p e2(l T)dI—
= —e 2" 1)Ezp~(I ' T) . —(4.18)

From Eq. (4.18), using Eqs. (4.16) and (4.11a) for I' and T,

Ei ——1/2n, and Eq. (4.11b) for p&, we find

f„„(1)=—(4n) 'e . p, lnln(l/T) . (4.19)

We can now obtain the original free energy from the in-
variance of the partition function via the relation

Ii(Tp, u,f =O, I =1)
=Te ' F[T(»——l,p.(», u, » ——l,f,», I (»

——0] . (4.20}

To Snd the critical density, we difFerentiate both sides
with respect to p, . There are three terms involving, re-

We then expect the renormalized critical chemical poten-
tial to be p, ,—1 since there are no longer any small pa-
rameters in the efFective Lagrangian (except the strongly
irrelevant I'}. In tu(o dimensions we have, from (4.6e},
(4.10), and (4.12),

e 2(l —()u e 2(l T)(4~—T)
i—

—2Ispectively, derivatives of e ', p(', and f(*. However,
since I is independent of p, the first term vanishes and
the second yields an uninteresting constant because
BE/Bp(» —— n(,—is of order unity at the critical point.
We are thus left with only the singular contribution from
Bf(» /Bp, which yields

n, = ( T/4ir) ln ln(1 lT) . (4.21}

We can invert this to obtain, at fixed density (restoring
the units ),

(1 /2(n)4mn

lnln(1/na )
{4.22)

which agrees with Eq. (3.5). The behavior of the
superfluid density in the difFerent regimes discussed above
can be derived by similar methods.

V. DISCUSSION AND CONCLUSION

The results we have derived in this paper for the transi-
tion temperature and superfluid density are only valid in
the limit that lnln(1/naz) is large, which is, of course,
impossible to achieve in any physical system. We will ar-
gue, however, that there is a much larger regime in which
the behavior is universal up to the single parameter,

(5.1)

where a is a length parametrizing the range of the in-
teractions. Quite generally, the universality of scaling
functions results from the slowness of a renormahzation-
group Now as it passes near a particular fj.xed point. A
weH-known example is the Wilson-Fisher flxed point near
four dimensions, which describes the usual universality of
critical phenomena. ' Another example is the ideal Bose
gas Sxed point (T =p, =u =0}discussed in the previous
section, which controls the low-temperature thermo-
dynamics of the dilute system. In the interacting case
there is also a Sxed paint associated with the critical be-
havior (for 2&d &4} or a Sxed line describing the
Kosterlitz-Thouless transition in two dimensions. (The
renormalization-group Sows associated with the above
behavior are difFicult to represent in a flow diagram be-
cause of the unphysical nature of the ideal Bose gas at
positive chemical potential. )

The universality of the low-temperature thermodynam-
ics is due to the irrelevance, near the zero-temperature
noninteracting Sxed point, of all other possible interac-
tions and wave-vector dependences in the Harniltonian
relative to the slow transients associated with y. Provid-
ed the renormalization-group Rows pass near to this 5xed
point (which wiH be the case when the system is
sufflciently dilute) the behavior will be controlled by the
slow flows into and away from the fixed point calculated
in the previous section. In the limit

(5.2)

the other irrelevant operators will decay rapidly and will
yield negligible contributions. We therefore expect that
for 2&d &4 (i.e., down to and including d =2) the
superfluid density will obey a universal scahng form
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P(~, (y ),y )= (4/~)r, (y ),
and a phonon regime for v-+0, as shown in Fig. 1.

The results we have obtained in this paper yield

r, (y ) =1/ln ln(1/y),

for y extremely small such that

~, (y) «I .

(5.7)

(5.8)

(5.9)

Some form of logarithmic dependence on y should have
been anticipated since the exponent g in Eq. (5.5) van-
ishes as d ~2. In this true asymptotic regime, with Eq.
(5.9) satisffed, the relative width of the phonon region at
low temperature is 1/ln(1/y) and the relative width of
the Kosterlitz-Thouless critical region is 1/lnln(1/y).
In this region we have

r, (y ) rr, (y—)
P(~, y ) = P, 2

. (5.10)
[ln ln(1/y )]

The crossover function P, will, in d =2, contain both the
universal jump' at y =y, and a square-root cusp as

p, (&)/p=P(2 /2„, y) (5.3)

In dimensions d ~ 2, this is equivalent to the expression
derived by Weichman et ai. In this case, P(w„O) is the
ideal-gas result with P(r, O}=0 for r) r,o and

r,o-(d —2) . (5.4)

For small but nonzero y the main changes are for x &~1
and v, —~ ~~1. In these regimes, there will be crossovers
controlled by y, to a phonon regime and to an X-Fcriti-
cal regime, respectively. Thus, for example, near to v,
the superffuid density will have the scaling form

P(r, y)=[(r,o ~)/r, o]P,((~,0 ~)/y~}, (5 5)

where P=(d —2) /2(4 —d) =(d —2)/2P, with P=(4
—d)/(d —2) the crossover exponent away from the
ideal-gas behavior. 's The function P, (y) will vanish for

P, (y)-(y —y, ) (5.6)

where y, yields a shift in r, (y) and v„~ is the d-
dimensional X-F correlation length exponent. The de-
tails of the crossover function P, can only be calculated
perturbatively in d =4—s. 's

In two dimensions the behavior is quite diferent al-
though the form in Eq. (5.3) will still obtain. In this case
there is no small parameter, and it is not known how to
evaluate the ffows analytically from the neighborhood of
the zero-temperature fixed point to the Kosterlitz-
Thouless fixed line which controls the ordered phase,
though the behavior resulting from these flows should
still be universal for sufficiently small y. If we set y =0 in
Eq. (5.3), the superffuidity must disappear at any nonzero
temperature so that P(r&0,0)=0. Thus, in contrast to
d & 2, the interactions parametrized by y are needed to
obtain any nontrivial result at all. For nonzero y there
will be a critical value r, (y) above which P vanishes, a
Kosterlitz-Thouless critical region for ~~a, (y) from
below, with"

y ~y+. %e cannot, however, calculate its detailed form
since this would require a solution of the two-dimensional
X-7 model in a regime near T, where the vortex fugacity
is of order unity.

Away from the asyinptotic region (5.9) which we have
studied, but still with y ~&1, we expect P to be a very
slow function of y. Thus for a large range of densities,
the form of p, (T)jp as a function of T will be almost
universal, that is it mill depend very weakly on y. This
quasiuniuersality is associated with the existence of an al-
most marginal line in the hyperspace of Hamiltonians
with T =0, @=0,but nonzero interaction coeScients U,

w, u, etc., in Eq. (4.2). For y «1 the renormalization-
group ffows will rapidly approach this line and will vary
slowly along it, thus providing the quasiuniversality
defined by weak dependence of the superfiuid density on
the parameter y, over a large range of temperatures and
densities. On the other hand, in contrast to the behavior
in the extreme asymptotic region (5.9), both the phonon
and the critical regimes will occupy a signi6cant fraction
of the temperature range. Away from the dilute limit,
i.e., for y=o(1), the behavior of p, depends in general
on the details of the interactions, and universality only
appears in the critical behavior near T„and in the pho-
non region T &&p. Even there, only the exponents and
certain amplitude ratios are universal but the amplitudes
themselves are not.

A potential apphcation of the quasiuniversality we
have found is to thin films of He, studied by Reppy and
co-workers. In this system, the ffrst few layers of heli-
um appear to be inert, or at least not super6uid. A natu-
ral (although certainly questionable) assumption is that
there is an active density p —pi, with pr the inert density,
which behaves like a Bose gas with a mass rn ' and an in-
teraction range a'. We can then use the results obtained
above with m~m', a~a', T„~T„' (determined by
m'}, and p~p —pi. We thus expect that as long as

p —pi is small so that, say, r, « 1 K, the superfluid den-
sity normalized by p, (0), which by assumption is p —pz,
will be quasiuniversal over a wide range of T, values.
Eventually, if T, could be reduced to the asymptotic re-
gime with lnln(1/y)»1, the form would change, but
this is certainly not feasible experimentally. Both the
effects of the underlying "He layers and potential effects
of disorder ' are an interesting and important area for fu-
ture theoretical and experimental investigation.

We conclude by noting that another system which has
been conjectured to exhibit two-dimensional dilute Bose
gas behavior occurs in the resonating-valence-bond
theory of high-T, superconductors.
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The dilute gas in d =2 is described by Eqs. (2.3), (3.3},
and (2.11) which we rewrite as
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2,T—1 — I&(p/T),
p

0(T& T&. At T=0 the second term on the right-hand
side of (Al) dominates and we have

(Al)
ls(0) =Se n /ln(1/y ) =2T„/ln(1/y ) .

At Ttt we use Eqs. (Al), (A2), and {A4a) to find

p( T& )=4T„I»(1/y) .

(A5)

(A6)

I (a)= dx
{x2+a2)ij2 a (xexy —i

J (x 2+ 2)1/2 (ex 1)i

This result is consistent arit our assumption that
p,( T)« Ttt for all T, so that Eq. (A2) implies

Ttt ——T„/ln( Ttt Ils, ) or
We wish to evaluate p, (T) in the limit (1.2). The asymp-
totic forms of Ij are Ttt =T„/lnln(l/y), (A7)

I (a)=ln(1/a)+cj, a «1
I,(a)= —,'It(a)=g(3)/a +O(a ), a&pl (A4b)

the result quoted in Eq. (3.5). At low temperatures
T &ls(0), Eq. (A2) yields (1.5), and in the intermediate
temperature domain ls(0) « T & Ttt, Eq. (A2) yields

where the cj are numerical constants. We erst show that
p( T) changes only by a factor of order unity in the range

1 —p, Ip=(TIT„)ln(T/ls)=TITtt,

where we have used (A4a) and (A7).
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