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Calculations of the shear modulus of a two-dimensional quantum solid
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The elastic moduli for a two-dimensional triangular lattice at zero temperature are calculated
with Hartree, Jastrow, and semiclassical approximations to the variational quantum theory. Re-
sults are presented for Lennard-Jones (12,6) potential models of helium, neon, and argon and are
compared with available experimental data. The semiclassical approximation is used to discuss
departures from the conditions for a Cauchy solid.

I. INTRODUCTION

The shear elastic modulus of a monolayer solid enters
in the continuum approximations to the specific heat (De-
bye theory} and to the theory of orientational epitaxy
(Novaco-MCTague rotation). ' In combination with the
bulk modulus and the spreading pressure, it determines
the ratio of the speeds of longitudinal and transverse
sound. It is a part of the analysis of whether the mono-
layer solid satisfies the conditions of a Cauchy solid. '

The continuum description of a (two-dimensional) tri-
angular lattice leads to an isotropic elasticity theory
characterized by two Lame constants, one being the
shear modulus.

%'e report here calculations of the elastic moduli of
two-dimensional quantum solids from derivatives of the
ground-state energy. The calculations are aimed both at
the development of the variational quantum theory, and
at quantitative discussion of experimental data for mono-
layer solids which display large quantum efFects. A deter-
mination of the shear modulus from ground-state calcula-
tions includes consideration of nontriangular lattices, in
contrast to the sequence of triangular lattices used in cal-
culating the monolayer bulk modulus.

The work is based on Hartree and Jastrow variational
approximations to the quantum-mechamcal ground-state
energy of triangular and nearly triangular lattices. The
Jastrow trial function consists of a product of two-body
correlation factors and one-body factors which are
Gaussians centered on the lattice sites. Usually, the
Gaussians are taken to be circular symmetric. Non-
circular-symmetric terms for the nontriangular lattices
contribute in the energy derivatives for the shear
modulus; they are here treated with a perturbation ap-
proximation to the Hartree and Jastrow variational cal-
culations. There are large effects of correlated motions in
the shear modulus of two-dimensional solid helium, as
the differences between the results of the Hartree and Jas-
trow approximations show. The Hartree values have
slglilflcallt contributions (ca. 30%) frotli the corrections
to circular symmetry for nearly triangular lattices; the
contributions in the Jastrow values are smaller (ca. 5%}.

An alternative approach, used for calculation of elastic
constants of three-dimensional quantum solids, is the

method of long waves with frequencies obtained from the
self-consistent-phonon (SCP) approximation. Since as-
sumptions on the form of the many-body wave function
also enter there, information on the relative importance
of terms in the ground-state calculation may have appli-
cation to the SCP theory. It will be useful in the future to
compare elastic constants obtained from the Hartree and
the SCP approximations ' for systems such as argon
and neon where the short-range quantum correlations do
not have large efFects in the elastic moduli.

A related set of questions has to do with the inclusion
in the variational trial function of factors which reflect
the lattice symmetry, such as Rosenwald's use" of Kubic
harmonics in the Hartree theory of three-dimensional
body-centered-cubic lHe. We estimate the efkcts in the
Hartree ground-state energy of sixfold symmetric terms
in the wave function for the triangular lattice and four-
fold symmetric terms for the square lattice with a pertur-
bation approximation similar to the shear modulus
theory: Our limited search has no regime„within the
Hartree approximation, where the square lattice is more
stable than the triangular lattice.

For a classical triangular lattice at zero spreading pres-
sure, with atoms interacting by pair potentials, the ratio
of the squares of the speeds of longitudinal and transverse
sound is 3, and in many model calculations the value of
the ratio remains close to this. However, in the analysis
by Greif and Goodstein of data for monolayer solids of
3He and of He on graphite, the values range from 11 to
5, decreasing with increasing solid density. For the Jas-
trow calculation the values range from 2.4 to 4 and in-
crease with increasing solid density.

The organization of this paper is as follows: Section II
contains the formalism for determining elastic constants
from ground-state energy calculations, with Hartree, Jas-
trow, and semiclassical approximations, and a discussion
of a generalization of the Cauchy relation for the Lame
constants. Section III contains the results of the calcula-
tions and comparisons to experimental data for the elas-
tic moduli and Debye temperatures. Section IV contains
concluding remarks. The comparison of the triangular
and square lattices is deferred to Appendix A; the first
quantum corrections in the Hartree approximation are
presented in Appendix B.
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G. ELASTIC MQDULI FOR T%0-DIMKNSIO)NAL
TRIA,NGUX. AR SOLIDS

A. Elasticity including a static stress

The deformation tensor p," for a displacement of x to

the variational calculations. For an isotropic dilation

u,, =55;, , (2.13)

& =«i i+ C22+2C12)/4= Cl2+ C33 ~

For a rectangular deformation at constant area

(2.14)

the energy shift is given by the bulk modulus 8 so that

x(~=xg. +g ugjxj.
J

is used to de5ne the Lagrangian stress tensor

(2.1)

(2.15)

1
hj' = 2 "(g+"Ji+g "al "a)

k

and the energy shift, for a solid of initial area A, is'

~E=J„d' rX~JrAJ+ 2g C-,,klrj, ski
l,j ij, kl

g 2) the energy shift from the triangular lattice is

LE=23 (C» —P)5'+0(5'), (2.16)

(2.3)
in terms of the shear elastic modulus.

In all the calculations of this paper, the pair potential
is the Lennard-Jones (12,6) model

If the solid is initially in a state of isotropic stress with
spreading pressure P, the S coefficients are

S;,= —$5~ . (2.4)

%ith a Voigt notation for the pairs of indices on the
coefficient of the quadratic term,

4(r) =4s[(0/r)'i —(a/r)6)

=e[(ro/r)' —2(ro/r) ],
with the de Boer parameter defined by

A' = Ii /(o &m e ) .

(2.17)

(2.18)

1=xx, 2=yy, 3=xy =yx, (2.5)

+C» g(r);, ) (2.6)

The coeScients for the triangular lattice satisfy the rela-
tions

C i i C22 & Cl i Cl2 +2C33 (2.7)

and the speeds of longitudinal and transverse sound are

the energy shift for a two-dimensional solid initially in a
triangular lattice is

hE= r — g;; *+
—,'C)2

E

The length and energy parameters o and s are used to
define scaled energies E =E/s, pressures P'=Prr /s,
and elastic constants C;1 =C;Jo /s.

B. Hartree variatioaal theory

The Hartree approximation is a generalization of the
Einstein oscillator model of a solid, and is a step in the
development leading to the treatment of the correlations
required for solids of helium and hydrogen. It overesti-
mates the zero-point energy in the harmonic approxima-
tion by only 5% as found here, the overestimate in the
shear modulus is larger.

The Hartree trial function for N atoms with positions
rj centered on a lattice of sites 8 is

cl ~ll/P ~

2

c~ =I 3i/p ~

2
(2.8)

ql= ff $(rj —R~), (2.19)

where p is the mass density and the coefficients I are

Pi i
——Cii —i(', I'» ——C33

I i2=Ci2+0 .
(2.9)

with normalized one-body functions i'. The trial energy
per atom is

E/N=(Ai/2m) I du
~
Vg

~

+ ~ dQ)dQ2V Q) —Q2 Q) Q2, 220
The square of the ratio of the sound speeds is related to
the Poisson ratio o 2 for the triangular lattice by

8, =I"ii/I »=2/(1 —o'2) . (2.10)

Two sperial cases of the deformation tensor are used in

The relation to the Lame constants A, and p of isotropic
elasticity theory is

(2.11)

A Cauchy solid3' is de5ned to have

(2.12)

for particles of mass m and displacement vector
QJ ——rJ —RJ. The potential energy for a deformation
u-R. of the lattice is given in terros of a two-body interac-
tion by

V(u, —u2) =g P(v, +u.RJ ),
J

(2.21)

~ith v =R-+Q, —Q,.J J
Using the isotropic dilation, Eq. (2.13), in Eq. (2.21)

leads to an expression for the Hartree pressure which is
similar to a virial theorem
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y= —(X/4~)g f du, du, R, .Vy(u, )
~ p(u, )@u,)

~

'.
(2.22)

A comparison of pressures from Eq. (2.22} with finite-
diff'erence calculations of the energy derivative dE—/d A

provides a test of the internal consistency of numerical
solutions of the Hartree equation.

The treatment of the deformation„Eq. (2.15), leading
to the shear modulus via Eq. (2.16), is in two stages.
First„under the added assumption that the Hartree wave
function is circularly symmetric in both the triangular
lattice and the deformed lattice,

P(u)=g(
~
u) ), (2.23)

the calculation of the energy shift becomes equivalent to
a first-order perturbation theory calculation. Expansion
of Eq. (2.21) to second order in 5 leads to the following
sums (prime denotes derivatives):

Vo ——gp(U ),

with integrals A& and A2 de6ned by

a, =]tdu, du, ~g,(u, )
~ g,(u, )P(u, )

p'(~, )
(U „RJ„—UjyRJy ),

A2= Q) Q2Vo o Q ) o Q2 Q) Q2

{2.29}

+f ~u2VO I 40(&2) I

' cos2ei42(u i )

= e2cos28&t/r2(u i ), (2.30)

The wave function $0 in Eqs. (2.25) and (2.28) is the
lowest energy solution of the Hartree equation, Eq. (2.26}.
However, rather than also minimizing h,E2 by a function-
al optimization of 1t, we approximate f with the lowest
energy solution of

V2=+ —,'R p"(R ) ——t))'(UJ )

and the coefficient y is
2.24

y= A i5/(si —co+2A2) . (2.31)

2~ 40+ f ~u2VO{ui2) I 00(u2) I 40(ui }=solo(ui } .2'
(2.26)

Second, the Hartree wave function is assumed to be
circular symmetric in the triangular lattice, $0, and to
have an additional term proportional to cos(28) in the
deformed lattice,

1((u)=[$0(u)+yf(u)]/(1+y')'~',

with

(2.27)

g(u) =cos28gz(u ),
where 8 is measured from an "x axis" which is one of the
primitive vectors of the triangular lattice. The factor
(1+y ) is inserted to maintain the normalization. The
energy shift with this wave function is

~E=~E, +~E, ,

b,Ez ——y f du
i Vp i

i
(2.28)

+ Q&~Q2~o o ~2 QI —~o

j.
J JP'(U )R "(u, —ui)

J

and the energy shift is

EEi ———2(A/5 )

+(%52/2) f duiduiVz i $0(ui }$0(uz) i
. (2.25)

The one-body wave function $0 is the ground-state solu-
tion (energy so) of the Hartree equation

Tliis approximation is accurate in the near-classical re-
gime (& &0.2) and gives the magnitude of the relative
contribution of the P term to the shear modulus for large
A', where the correlations omitted from the Hartree trial
function become important and have to be included by
generalizations such as the Jastrow trial function.

C. Jastrom variationsl theory

%e generahze slightly the conventional form of the
Jastrow trial function for a quantum Lennard-Jones solid

r

4 =exp ——,
' g(b/r, ")5——gv + g(U„—U )

1 gJ ' J J

(2.32)

where r,j are interparticle distances, UJ =rj RJ ar—e the
displacements from the average space lattice, and the x,y
coordinate axes are those used in Eq. (2.15}. This gen-
eralization of the (5=0) form used previously for tri-
angular lattices is analogous to that for the Hartree trial
function, Eq. (2.27).

There are two series of calculations with Eq. (2.32).
First, with 5=0, we find the minimum trial energy as a
function of density for the triangular lattice, and for a tri-
angular lattice deformed according to Eq. {2.15) with
5=0.05. The energy differences at constant density cor-
respond to b,E, , Eq. (2.25), of the Hartree theory The.
energy expectation values are formed by Monte Carlo
calculations for a grid of A, b values and McMillan scal-
ing. This finite difference approximation for the shear
modulus is implemented with conventional methods.

Second, we make an expansion to second order in 5 to
generate the correction corresponding to A,E2 of the Har-
tree theory, Eq. (2.28). Because the optimal 6, the scale
of the non-circular-symmetric term, is proportional to 5,
carrying the series to second order is sufficient for
evaluating this contribution to the energy shift of Eq.
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{2.16). The trial energy is, with expectation values
( ) taken with respect to the d, =0 case of )IIJ,

EJ=N(A A /2m)+ —",b E 7+2 c(cr' E)z o—6E6),
(2.33)

The terms E„(p)and N~ are defined in terms of

S„=g1/rJ,
i+J

s =g(uj.„—uji~),
J

Pij ~ijx ~ijx ~ijy ~ijy ~

(2.35)

E„(0)=(S„),E„(3)=((S„S),
E„(1)=I zprrlr, ","+r'j,

l+J

)('„(2)=(s„rXprb'Ir, ', )j,
$+J

N& ——s r;, 2
——s

i+j

(2.36)

The energy Ez is a quadratic form in b, which is mini-
mized with a value of lL which is proportional to the de-
formation parameter 5. The b, terms are then explicitly
quadratic in 5, so that their contribution to the shear
modulus is calculated with the expectation values of Eq.
(2.36) for the nondistorted (triangular) lattice.

Ill outhnc, thc nilnlcflcal procedures arc as follows:
The Monte Carlo calculations of the unperturbed expec-
tation values are performed on a periodically repeated
cell of 100 particles and are averaged over 450000
configurations. The trial energies are then formed by us-
ing the method suggested by Nosanow et ul. ,v which is to
perform a thirdwrder least-squares fit of the expectation
values as a function of the two variables A and b. A
two-dimensional Newton-Raphson method is used to lo-
cate the A and b values at which the energy is minimized.

The Monte Carlo calculations for the perturbation
terms are performed for a periodically repeated cell of 36
particles and are averaged over 925000 con5gurations.
The longer runs are necessary because the differences
entering in Eq. (2.34) have subtractions of order-N terms
to leave order-N energies.

D. Semiclassical ayyroximations to the elastic huh
Results of numerical evaluations of the Hartree and

Jastrow approximations to the energies hE, and hh2 for
hehum, neon, and argon parameters are presented in Sec.
III. Hartr(e calculations for small de Boer parameters
show that an expansion to first power in the de Boer pa-

where

E„=E„(0)——,'( 355)[E„(2)—E„(0)Ni )

+(n A l()5)E„{1)+I(( A b, ) [E„(3)—E„(0)N2] .

{2.34)

rameter is accurate for A' in the range 0.1 —0.25, which
includes argon and methane. Forms for the Hartree
shear modulus in the near-classical limit are given in Ap-
pendix 8 for a general pair potential, and also for the
Lennard-Jones (12,6) model, Eq. (2.17). In this subsec-
tion, we compare several approximations to the elastic
moduli in the near-classical hmit, where substantial alge-
braic reduction of the calculations occurs.

The Srst quantum corrections, linear in the de Boer pa-
rameter, for the energy, pressure, and elastic moduli, are
calculated precisely without a variational approximation
by starting from the normal mode frequencies of small
amplitude vibrations of the (distorted) lattice. Thus,
s«ann derivatives of the zero-point energy, the zero-
temperature limit of the quasiharmonic free energy, ' '
lead to a nominally exact determination of the first quan-
tum corrections which includes correlated motions. The
results of the quasiharmonic theory' (QHT) give a first
measure of the approximations in the Hartree and Jas-
trow variational theories. A comparison of the quasihar-
monic, Hartree, and Jastrow values for the first quantum
corrections is shown in Table I; the two near-neighbor
spacings, I./ro ——1.01 and 0.985, span the range of zero-
temperature monolayer lattice constants for a Lennard-
Jones model of argon adsorbed on the basal plane surface
of graphite. '7

The entries in Table I are for the coefficients E"",
(t)"", 8")», and C(3)3" in the expansion of the scaled
ground-state energy, spreading pressure, bulk modulus„
and shear modulus

E+ E(o)++AeE(1)e+. . .

y» y(o)» +A»y() )» +. . .

s'=a'"'+w'a""+ .
(» C(o)»+A»C(1)»+. . .

33 = 33 33

(2.37)

The Hartree approximation provides a simple method
of treating strongly anharmonic solids, and leads to rela-
tively compact expressions for the quantum corrections,
Appendix 8, but it omits correlation effects. The accura-
cy of the Hartree linear quantum correction terms, given
in Appendix 8, was tested with Hartree calculations us-
ing the full formahsm of Sec. II 8 for l =I./ro = 1.01 and
values of A' in the range 0.08-0.25. The values for C33
showed a linear variation with A' and the slope was in
good agreement with the value obtained from Eqs. (814)
and (815). For A'=0. 246, corresponding to methane,
C33 calculated from the Hartree equations is 24.9, while
the classical mechanics value is 17.9; the quantum correc-
tion calculated with Eqs. (814) and (815) reproduces the
change from the classical value to within 5%.

The quasiharmonic approximation includes the corre-
lations in the Srst quantum corrections, but the algebra of
forming the strain derivatives of the normal mode fre-
quencies is lengthy, and the sum over the Brillouin zone
must be performed numerically. The results shown in
Table I are based on the use of 45 special points to evalu-
ate the BriHouin-zone sum over wave vectors of the tri-
angular lattice. ' The Hartree theory based on Eq. (89)
gives value for the first quantum corrections to the
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QHT
Ib= 1.01

0.985
0.9463
0.9445

8.26
10.20

33.8
43,8

21.7
26.9

Jastrow
I = 1.01

0.985
0.9541
0.9517

8.31
10.26

34.1

44.1

25.1

30.6

Hartree
I = 1.01

0.985
8.81

10.87
36.0
46.6

29.6
36.3

'Einstein model zero-point energy Ace@ from Eq. (89).
Nearest-neighbor separation 1. in units of ro, Eq. (2.17);

I =L/ro.

ground-state energy, spreading pressure, and bulk
modulus of the Lennard-Jones (12,6) lattice which are
within 7% of the quasiharmonic values for I in the range
0.97-1.05. However, the first quantum correction to the
shear modulus, calculated from the shift of the normal-
mode frequencies under the rectangular deformation Eq.
(2.15), is 30% smaller than the Hartree values for the
same 1 range. There is a greater sensitivity of the shear
modulus to correlated motions also for three-dimensional
solids.

A semiclassical limit for the Jastrow trial energy, Eq.
(2.33), is obtained by Gaussian integrations and a
running-wave analysis to treat the correlation terms in
the trial function. The algebra is similar in complexity to
the quasiharmonic theory, and the same method is used
to perform the Brillouin-zone sum over wave vectors.
Results of the calculations are shown in Table I: The en-
ergy, pressure, and bulk-moduli terms are within 1% of
the quasiharmonic values, but the shear moduli deviate
by 15%. The asymmetric (6+0) terms in Eq. (2.33) con-
tribute 10-15% in the values shown in Table I. On the
basis of these comparisons, we expect Jastrow variational
calculations to give a less complete treatment of shear
moduli than of bulk moduli.

Quantum corrections from the elastic constants C,i
and t"» are constructed from those for C» and 8 by us-
ing Eqs. (2.14) and (2.7). The quasiharmonic value for
the Srst quantum correction to CI2 on the triangular lat-
tice difFers greatly from that for C». For values of 1 near
l, Table I, the linear A' term in C,2 is a much smaller
fraction of the classical term than it is for 8, C33, and
C». ' Thus, the first quantum corrections lead to depar-
tures from the Cauchy solid condition, ' Eq. (2.12).

The ratio of the squares of the sound speeds, Eq. (2.10),
remains close to 3 when calculated with the first quantum
corrections for A up to 0.2 and I near l; at I =0.98, the
pressure is positive but the ratio exceeds 3 by less than
3%. Values reported for the ratio for helium monolayers
on graphite are much larger than 3; see Sec. III.

TABLE I. First quantum corrections for jennard-Jones
(12,6) model on triangular lattice calculations arith three shells
of neighbors; functions scaled with n, e of Eq. (2.17). Quasihar-
monic, Jastrow, and Hartree approximations are as described in
Sec. II D.

E'" /Aao '

E. Generalized Cauchy relation

For a classical, two-dimensional, triangular lattice with
only pair potential interactions, the Lame constants A.

and p, are equal, ' Eq. (2.12). The equality is not main-
tained when quantum efkcts are included, as the first
quantum corrections presented in Table I show.

It has been suggested that the generalization of the
Cauchy relation for a quantum solid in a triangular lat-
tice and only pairwise interactions is

(2.38)

where N/A is the number density and (Ex ) denotes the
expectation value of the kinetic energy per particle.
However, the model calculations do not support this pro-
posal. The quasiharmonic approximation values for the
first quantum corrections of the Lennard-Jones (12,6)
model presented in Table I give the full linear i)f term in a
semiclassical expansion; with these values the right-hand
side of Eq. (2.38) is less than 25% of the left-hand side.
The Jastrow calculations for He and He, discussed in
Sec. III 8, also do not satisfy Eq. (2.37). For He the cal-
culated difFerence p —A, decreases with increasing density
and even becomes negative for p' near 0.6, while the ki-
netic energy term increases with increasing density. For
He, the calculated difference again decreases with in-

creasing density, but it remains positive for p' in the
range 0.5-0.6.

III. ELASTIC CONSTANTS OF MONOLAYER SOLIDS

A. Experimental data for quantum monolayers

Goodstein et al. ' constructed the compressibility, or
bulk modulus, of monolayer solids of 4He and 3He ad-
sorbed on graphite from thermodynamic data. Their
values for the bulk modulus are shown in Fig. 1; scalings
for helium use z =10.22 K and o =2.556 A.

The derivation of the shear elastic modulus from ther-
modynamic data is more complex and depends on further
assumptions about the contributions to the elastic con-
stants. For an isotropic elastic continuum the shear
modulus C33 can be constructed from the Debye temper-
ature, the compressibility, and the spreading pressure; the
results for the data presented by Greif and Goodstein
are shown in Fig. 2. Greif and Goodstein noted that the
Novaco-McTague energy' of orientational alignment of
the monolayer with the substrate makes a contribution to
the shear modulus which they estimated to be 10% or
less of C33. In view of the uncertainties as to what the
modulated structures of the helium monolayer are, ' we
do not include this term. The values of C33 derived with
complete neglect of adsorbate-substrate coupling, Fig. 2,
serve as a guide to the shear modulus of the helium
monolayer; the correction applied by Greif and Good-
stein leads to values of C33 which are 10% smaller. As
discussed in Sec. III 8, the discrepancies between our cal-
culations of C33 and the data are of order 25%.

The Debye temperatures, reported ' for the low-
temperature monolayer sohds of argon and of neon on
graphite, depend jointly on the bulk and shear moduli.
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FIG. l. Sulk modulus of hvoMimensional solid helium in
erg/cm~ as a function of scaled density, p ~per~. The experi-
mental data are for ~He (o }and 3He (C3) on graphite, from the
work of Greif and Goodstein, Ref. 2, and the scaling length is
0=2.556 k The Hartree and Jastrow calculations are de-

scribed in Sec. II. Related comparisons of chemical potential as
a function of area per molecule are shwvn in Ref. 5. The solid
line denotes the Jastrovr results for He, the dashed line for 3He;

the X and + denote the Hartree results for He and 3He, re-

spectively.

FIG. 2. Shear modulus C33 in erg/cm2 of two-dimensional
sohd helium as a function of seded density p . The experimen-
tal values are constructed from the data presented by Greif and
Goodstein for He and 38e on graphite, Ref. 2, with neglect of
elects of adsorbate-substrate couphng, see the discussion in Sec.
III A. The Hartree and Jastrow values are for the calculations
which include asymmetric terms in the trial functions; see dis-
cussion in Sec. II. Labelings are as in Fig. 1; the Hartree results
use the right-hand scale.

8. Model calculations

We use the de Boer-Michels values for the Lennard-
Jones parameters for helium, s=10.22 K, and o =2.5M
A. These have been used in two previous calculations of
helium in mathematical two dimensions. s

Values for the bulk modulus of the zero-temperature
helium monolayer are imphcit in a previous report on
the chemical potential as a function of coverage for heli-
um adsorbed on graphite, being proportional to the
derivative of the (zero temperature) enthalpy with respect
to coverage. Values from the Hartree and Jastrow varia-
tional calculations for helium are shown in Fig. 1". The
results are similar in magnitude to the thermodynamic
data. The Hartree values lie above the data; the Jastrow
values are below the data at low density and above the
data at h1ghef densities. Dllferences bet'ween the calcula-
tions and the data are more evident in this presentation
than in the previous presentation of chemical potentials.

Results for the helium shear modulus are shown in Fig.

2. The Hartree values are an order of ma nitude larger
than the values constructed from the data, even includ-
ing the contribution of the EEz term, Eq. (2.28), which is
40-50% of that from the hE& term for the cases shown
in Fig. 2. The values from the generalized Jastrow trial
function, Eq. (2.32},are of the order of magnitude of the
data and have similar dependence on density, but they
are ofFset from the data by about 25% for the solids of
both helium isotopes. The correction terms for noncircu-
lar symmetry are included in Fig. 2 and have lowered the
values of the shear modulus by 3-7 %.

Values for the ratio R„Eq. (2.10), derived from the
Hartree and Jastrow approximations for the helium iso-
topes, are shown in Fig. 3, with values from the data for
monolayer helium on graphite. The Hartree approxima-
tion to R, is less than 3 and increases with increasing
number density. The Jastrow values range froxn 2.4 to 4
and aho increase with increasing density. By contrast,
the ratios for 'He and He on graphite constructed from
the data of Greif and Goodstein~ are much larger- than 3,
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FIG. 3. Ratio of the square of the speeds of sound as a func-

tion of scaled density for the two-dimensional helium solids.
The ratio R„Eq. (2.10), is shown far the helium on graphite
(Ref. 2) and for the Hartree and Jastrow approximations to the
two-dimensional Lennard-Jones sohd. Labelings are as in Fig.
1.

in the range 5-11, and decrease with increasing density.
A large part of the calculated increase of R, with increas-
ing density is due to the increase of the spreading pres-
sure: For He the ratio C» /Ci& increases from 2.0 to 3.2
as the ratio I'i

i /r33 increases from 2.4 to 4.1.
The Debye temperature 8& is defined in terms of the

elastic constants by
I'

19
2 N

(1/ci +1/c, ),2 2h

kq
(3 1)

where h and ks are the Planck and Boltzmann constants
and m is the particle mass. This de5nition gives the
characteristic temperature entering in the low-
temperature (T ) speci5c heat of the monolayer solid; an
alternative de6nition in terms of the zero-point energy of
the monolayer has been used by other workers. 9

Using the QHT quantum corrections of Table I in FAI.

(3.1) leads to a value 8n -73 K for argon at I.=3.86 A
(with a=119.8 K, 0=3.405 A, and A'=0. 186). This
value is ca. 6% above the value calculated without quan-
tum corrections and is within 10% of the zero-
temperature value of 75-80 K extrapolated from
Chung's data. The calculated ratio R„Eq.{2.10},is 2.9.

The quantum elects are much larger for neon
(a=36.76 K, a=2.786 A, and A'=0. 579). The Har-
tree calculation gives values for 8& of 58 K at I = I.055,

and 88 K at 1=1.00, compared to classical harmonic
values 40 K and 72 K, respectively, reported in an earlier
work. The Hartree value at I =1.055 is close to a value
55.9 K for the Aziz potential at L =3.31 A (I =1.058)
derived by Moleko et al. from self-consistent phonon
calculations. There are di8'erences in the models and in
the de5nitions of 8& in the two calculations, but it ap-
pears that the classical harmonic approximation underes-
timates 8& by ca. 20% for monolayer neon. The Debye
temperatures for monolayer neon on graphite obtained by
Huff and Dash are in the range 45-52 K and are below
the values from the calculations. The Hartree value for
R„Eq. {2.10), increases from 2.6 to 2.9 as the solid is
compressed from l =1.055 to 1.00, corresponding to the
range of monolayer neon lattice constants.

IV. CONCLUDING REMARKS

%e have presented a formalism for deriving zero-
temperature elastic constants of two-dimensional quan-
tum solids from variational energies. Detailed compar-
isons among several approximations to the quantum
mechanics were made in a near-classical limit, which also
applies to such systems as argon and methane. Including
site wave-function factors, which are not circularly sym-
metric for small departures from triangular lattice sym-
metry, leads to major contributions in the Hartree ap-
proximation to the shear modulus. The efFect in the Jas-
trovr calculation is smaller, but it should be included in
comparisons of calculations to experiment when
differences of the order of 10% become significant. An
apphcation to the shear modulus of monolayer helium
leads to order-of-magnitude agreement between the Jas-
trow approximation and data for monolayer hehum on
graphite. The Jastrow approximation again appears to
provide a fair account of the role of correlated motions in
the properties of the solid.

The calculations used the de Boer-Michels I.ennard-
Jones (12,6) model for helium because of the advantages
of McMillan scaling in forming the Jastrow expectation
values. In retrospect, this advantage is not so compel-
ling, because for the 6nite difkrence derivatives for the
bulk modulus we finally made many Monte Carlo evalua-
tions at a rather fine grid in parameter space. Calcula-
tions arit a realistic potential model, at a few densities,
might not be much more burdensome than our calcula-
tions over a range of densities.

The elastic moduli from these calculations may be
compared with values derived from the long-wavelength
limit of self-consistent phonon calculations, and may be
applied to ihe continuum description of quantum mono-
layers on a structured substrate.

In a critical analysis of the theoretical side of the com-
parison of the calculated elastic moduli to the experimen-
tal helium data, there are three major unsettled issues:
(1) The consequence of using a simple interaction model;
{2) the consequence of incomplete functional optimiza-
tion in the variational quantum mechanics; and (3} what
the role of the periodic components of the adatom-
substrate potential, neglected here, might be. The first
two points may be treated in the future by direct exten-
sion and application of methods of quantum solid theory;
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we do not beheve they lead to major quantitative errors
in the results reported here. For the third point, we note
that the monolayer helium data extend to a range of large
mis6ts with respect to the graphite substrate. EN'ects of
the substrate periodicity might become smaller at large
mis6ts and this might lead to a closer agreement of the
model calculations and the experimental data at higher
densities. However, such a trend is not apparent in Figs.
1 and 2 for the bulk and shear moduli, and the discrepan-
cies for the speed-of-sound ratios are large even at the
highest densities shown in Fig. 3. The response of a
quantum monolayer solid to a periodic substrate field is a
subject for much further theoretical and experimental in-
vestigation.
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APPENMX A: LA;a-LICE SVMMj TRY TERMS
IN THE HARTREE TRXAI. FUNi;rxQN

P(u) =cos68$&(u ) . (Al}

Expanding the Hartree trial energy for the triangular lat-
tice to, second order in y, the energy lowering is

The Hartree trial function, Eq. (2.19), is usually optl-
Qllzed Bl a class of one-body functions %vhlch are spheIl-
cally symmetric in three dimensions and circularly sym-
metric in two dimensions. However, Rosenwald" includ-
ed the leading I( ubic harmonic E~ in the trial function in
an early Hartree calculation for body-centered-cubic
(bcc) He, and made a selfwonsistent solution for the ra-
dial functions of the JCc and E& terms. He found a lower-
ing of the variational energy of the order of 10% after in-
clusion of the K4 I('ubic harmonic. The corresponding
effect for the two-dimensional triangular lattice should be
much smaller because of the greater isotropy. Our com-
puter programs for the /zEz terms, Eq. Q.28), are easily
adapted to provide quantitative estimates of the contribu-
tion of a term of sixfold rotational symmetry in the trial
function; the treatment is outlined and the results are
summarized in this appendix.

The one-body function it)(u), Eq. (2.27), now has a per-
turbation of form

~E6=r' 2Tz+ f du
I ~V I

'+ f duiduzVO I fo(uz)0(ui) I eo +2r T'i
21'

(A2)

where $0 and so are the ground-state solution to Eq. (2.26) and the terms T, and Tz are integrals similar to those
de5ned in Eq. (2.29):

Q) Q2VO 0 Q) 0 Q2 Q2
(A3)

Tz ——f du, duz Voto(Q i )it)0(uz )P(ui)P(uz )

The functions il)0 and tt)z of Sec. II 8 were actually calculated with a circularly averaged potential

Vo=/ 18,f d()zV, (u, uz)l(2n)'. —
0 0

(A4)

This is not an additional approximation for the angular independent and cos(28) functions on the triangular lattice, but
it is one when used for the ijf of Eq. (A 1). For the estimates of this appendix, g6 is taken to be the lowest energy solution
of

V + duzvo
~

it))0(uz}
~

cos68]|/ls(ui )=66cos68]$6(Q] ),2

2&1
(A5)

and the remainder, b E6 = —T i /[(e6 —eo)+2Tz+ Tz ] (A7)

Tz =T~ f duiduzVO(ui —uz)
~

lI)'0(Q i )$6(uz )
~

cos( 12~z)

is included in the evaluation of AE6. However, T3 for
A'=2. 67 and /=I. /ro in the range 1.15-1.48 is less

than 0.5% of the difference s6—eo, and therefore it is a
small correction term.

The result of optimizing y in Eq. (A2) is

For the Lennard-Jones (12,6) potential, Eq. (2.17), and
A'=2. 67 ( He), b,E6 is 1% of the Hartree energy calcu-
lated with $0 at / =1.485, and 0.2% at / =1.15; these
nearest-neighbor distances, 4.26 A and 3.30 A, are near
the ends of the range for the monolayer solid on graphite.
Values for A' =3.08 (" He") are similar. The percentage
eNect is indeed much smaller than that found for bcc He
by Rosemvald, " and EE6 ~as omitted from the shear-
modulus calculations of this paper.
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Similar methods can be used to treat the relative stabil-
ity of the triangular and square lattices for large de Boer
parameter, large lattice dilation, and relatively small
spreading pressure. There appears to be no general re-
quirement that the stable lattice be the close-packed tri-
angular lattice under such conditions. The enthalpy as a
function of spreading pressure was constructed for the
triangular and square lattices for A'=3. 08 (and in less
detail for A' =5.0) for values of I up to 1.9. The Hartree
energy for the square lattice was calculated with |I(0 from
Eq. (2.26), using the neighbor shells appropriate to the
square lattice, and an energy I()E4 corresponding to Eq.
(A2) for a perturbation cos48$4(u). No regime was
found where the square lattice is stable relative to the tri-
angular lattice.

APPENDIX 8: FIRST QUANTUM CORRECi ION
FOR THE HARTREE SULK AND SHEAR MODULI

4 2

(16L m~ i/3) dR dR

—(3/RJ )
d(tt

J
(87)

1 d' d
(128L2m 2~3EV'3) J

l dRJ3 dRi2
+

1

R dR
(88}

The corresponding results for the Lennard-Jones (12,6)
model are given with lattice sums A„ for a triangular lat-
tice of nearest-neighbor spacing L. The pressure and
bulk modulus are obtained from derivatives of the ap-
proximate ground-state energy

Application of a first-order quantun correction series
for the elastic constants was discussed in Sec. II D. We
give the algebraic forms for the Hartree theory in this ap-
pendix, first for a general pair potential and then for the
Lennard-Jones (12,6}model, Eq. (2.17).

The Hartree ground-state energy per particle of mass
m in a triangular lattice of nearest-neighbor spacing L be-
comes

E/Nc=r([( A)~/I' ) —2( A6/I )]+

Q= [2( A )4/I '")—( A () /I )]'

3

7r2
QA

(89)

(810)

E/N = ,' g P(Lx )+—()i(oz,

coE —— g V $(Lx )/(2m)

with an area per particle

(81) and

I =L/r .0 (811)

The corresponding terms for C33 derived from b,E), Eq.
(2.25), are

A /N =L (3/4)" i ', (83)
C«C{0)«+A«C{1)«

33 33 (812)

()i the reduced Planck constant, and lattice distances in
terms of I..

The corresponding approximations for the pressure
and bulk modulus follow& from

C33" =(v 3/I 2'~ )[(7A(~/I ) 4A6], —

C",,"=[(168A, /I' ) —(30A, /I' )]/(7m&6) .

(813)

(814)

(I}= dE/dA, 8—= Ad E/dA

The first two terms for the shear modulus

C (0)+g(C (i)+gC (i))

are

(84)

(85)

These are also the terms which would be obtained from
an isotropic Einstein oscillator approximation to the
solid.

The reduction in C33 arising from the noncircular dis-
tortion of the (Gaussian) Hartree wave function is a de-
crease in the C33"' coeScient of

bC33'" = —&6[(7A i4/I' ) —(2A()/I )] /(4mQ ) „

C'3i' ——(1/8L ~&)g RJ 2$(R, ) R, (I}(R )—
the A2 integral in Eq. {2.29) is second order in A'. For
values of I in the range 1.01—1.05, hc&3" is —,

' to —,
' of

C33", and thus it is a signi6cant part of the quantum
correction.
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