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A theoretical study of the electronic properties of GaAs/Ga~-, Al, As quasiperiodic Fibonacci

superlattices reveals the striking din'erences to be expected in the band structure, ~ave-function

localization, and optical transitions of superlattices having quasiperiodic modulation either in the

barrier width or in the barrier height. We sho~ hoer these differences are related to the value of
the Fibonacci invariant. The results of photoluminescence excitation spectroscopy experiments

are also presented.

Periodic semiconductor superlattices (SL's) have been
the most intensively studied up to now. But physical sys-
tems with controlled nonperiodicity along one direction
(the growth axis) can also be easily produced with such
SL's. For example, SL's exhibiting quasiperiodic modula-
tion' or intentional random disorder have already been
grown recently and some of their properties have been in-
vestigated. More generally, the electronic properties of
such unidimensional systems, which are not invariant by
Bloch translation, have been considered in numerous
theoretical works which have been devoted to the study of
the distinctive features of their band structure and to the
localization of their electronic states either in the random 3

or, more recently, in the quasiperiodic 's cases.
We are concerned with GaAs/Gat-, AI,As quasi-

periodic Fibonacci SL's. In this system recent experi-
ments have been mainly focused on the study of their
structurals and dynamical'~ properties. To our knowl-
edge only a few studies are available on their electronic
and optical properties. s 9 Therefore we have developed a
model to understand the electronic band structure of these
SL's: it uses the transfer-matrix technique and it is based
on the envelope-function approximation which is known to
be quite successful for periodic structures. 'o We show
how GaAs/Gat —,Al, As Fibonacci SL's differing by their
electronic properties can be identified by examination of
the Fibonacci invariant. In particular, we propose a new
type of Fibonacci quasiperiodic modulation in which there
is a completely delocalized electronic state. We have not
yet proved experimentally the existence of this, but we
present data of photoluminescence excitation spectrosco-
py which are in good agreement with our envelope-
function calculation of bulk electronic states.

Let us recall that a Fibonacci sequence St of order I is
obtained by I successive applications of the transformation
rule A ~ AB and 8~ A. Starting from So A we obtain
St AB, S2 ABA, S3 ABAAB and shall also con-
sider S ~ 8. A most important consequence of this rule
is self-similarity: We obtain again sequence St-k just by
replacing in St each complete Sk+t sequence by A and
each Sb by 8. When k I this gives the Fibonacci re-
current relation:

SI St lSI 2 ~-- (1)

The sequence Si(l ~ 2) comprises F~ elements A and Ft- ~

elements 8, Ft being the 1th Fibonacci number given by
the recurrent law Ft Ft t+Ft-q— starting with

FQ F~ I. As I increases the ratio Ft/Fi 't converges to-
ward r (I +%5)/2 which is known as the golden mean.

In this work each of the two basic elements A and 8 are
composed of a GaAs well and a Ga~ -„Al„As barrier: We
have chosen the wells to have the same width but the bar-
riers to have either different widths (case a) or different
heights —i.e., different Al composition —(case P). These
two cases will appear to be representative of two possible
types of quasiperiodic SL's differing by their localization
properties. In case a all the electronic states are localized
on rather short sequences of elements A and 8, whereas in
case P one single state is completely delocalized
throughout the structure.

The transfer-matrix technique is a very common
method for studying nonperiodic systems, " and we have
used it in the frame of the envelope-function approxima-
tion, ' whereas Fibonacci quasiperiodic unidimensional
systems have been rather studied with tight-binding
methods. In each slab of the SL we write the envelope
wave function as a linear combination of right and left
propagating plane waves. The projection coefficients ob-
tained at any couple of points are related by a 2x 2 matrix
which can be written as follows:

X+iF Re
Re'~ X-iY (2)

If the two points are situated at the middle of GaAs
wells of equal width 1 separated by a single barrier of
width Lb and height Vq, we have Vr tr/2 and

X cos(k„l~)cosh(xbLb)

—
(&

—( ')sin(k„l )sinh(xbLb)/2,

Y sin(k I )cosh(xbLb)

+ (g —( ')cos(k„l )sinh(xbLb)/2,

R (g '+() lsnh( xLbb) /2

with k —= ft '(2m e)'t', xb-f't '[2mb(Yb —e)]'t', and
(k /xb)(rnb/m„), e being the energy (counted from
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the well bottom), m„and ml the effective masses in the
well and in the barrier which can be taken as energy
dependent in order to take into account the e8'ects of non-
parabolic dispersion. ' The elements X, Y, and R depend
on the energy s and are related by X2+Y2-R2 1 (the
matrix is unimodular). Such a matrix can be considered
for the conduction band or for the valence band (heavy or
light holes) as well. If the barrier corresponds to the basic
element A or 8 we use the corresponding subscript for the
transfer matrix and its elements. The matrix T~ across all
the barriers and wells of sequence S~ is obtained by the re-
current law T~ T~-2T~-~ (I~ 1) resulting from relation
(1) starting with T-~ ~Ta and TO~Tg. A recurrent re-
lation for the half trace X~ is easily deduced: X~

2XI—)Xl—2 XI—3 for I ~ 2. The band structure of a
SL made of sequence Sl is simply obtained —when

Born-von Karman periodic conditions are used —by the
condition [ XI ~

~ 1. From the recurrent relation between
successive XI written above it follows'I that there is a
quantity I:

I —1+XP+XP-& +XP-2 2XIX—I &Xi -2, -
which is an invariant independent of order I. In a periodic
SL (obtained here by taking A 8) I is trivially equal to
zero at any energy. The larger the invariant I, the more
strongly the quasiperiodicity will a8'ect the properties of
the SL: reduction of the bandwidths, increase of localiza-
tion. We have found that the invariant I given by Eq. (6)
has in fact a very simple expression involving only the ele-
ments of the two matrices T~ and Ta..

I (YEAR@
—YgRg)3 .

the great diS'erence between cases e and P. In case e, I is

large and decreases with energy. In case P, I is smaller
and is equal to zero for one value of energy. This is ob-
tained for a very wide range of the SL parameters. If we

write XI cos(8I) using Eq. (6) the condition I 0 is

equivalent for /~1 to 81 8I—~+81-2 (provided that

I Xc I
~ 1 and I X- i I

~ 1 which is veri6ed here, i.e, 8—
&

and 8c are real numbers). This proves that, for this ener-

gy, there is an allowed state at any order l. '2

The electrons band structure is presented in Fig. 2. As
is weH known the number of bands is equal to the total
number of elements of sequence $1 which is equal to FI+ ~.

It is obvious that large differertces in the width of the
bands and of the gaps are observed between cases e and P.
This can be explained by the invariant: When I is close to
zero the bands remain wide and the gaps small as order I
increases, though ultimately at in6nite order the spectrum
will in both cases become a Cantor set of Lebesgue mea-
sure zero. More quantitatively, it has been shown that
there is a scaling'2 of the bands by the quantity

[1+4(1+I)2]' +2(1+I) (8)

between order I and order I+3. '3 Because I is energy
dependent, there are some Suctuations in the scaling, but
the band structures of Fig. 2 are in agreement with the
predictions of relation (g).

It is easy to check that Eq. (6) relating the successive

X1 to invariant I is obeyed by the following cycle of period
six: 0,0, -(1+I)'2,0,0, +(1+I)'I, . . .. The value 0

The invariant I is energy dependent here, which is not the
case in most models studied theoretically. s'2 The elec-
tron energy dependence of I is displayed in Fig. 1. Note
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FIG. 1. Electron energy dependence of the invariant I cone-
spolldlllg to the sketched Flbousccl SL (csIcs e aud p). Thc
GaAs wells are 10 mouolayers (ML) (1 ML 2.83 A) thick.
The Ga~- Al„As barriers have the following parameters: A (e
and P), 11 ML aud x ~0.25; 8 (e), 24 ML aud x ~0.25; 8 (P),
11 ML and x 10.35.
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FIG. 2. Electron band structure of Fibonacci SL as a func-
tion of Fibonacci order /. Case e (left) labels de5ue groups of
bands in energy relation mth those of SL I 1 and I 2. In case
p (right) the dotted line indicates the energy for which the in-

variant I is zero.



corresponds to bands, and because I cannot be negative
csee relation (7)] the values ~ (1+I)'/ correspond to
gaps. So, at a given energy, when I is large allowed states
cannot be obtained for three successive orders l. ' In case
a, in spite of an optimum overlap between the fundamen-
tal bands of SL's A (I 0) and B (I —1), there is al-
ready no overlap between the bands of SL's AB (I 1)
and ABA (I 2). Note that these two SL's have, respec-
tively, either single-A or double-A pattern. Accordingly,
at higher order I the bands split with the following rules:
(i) The number of bands in the energy ranges of the bands
of SL AB (respectively, ABA) denoted as 2,4 (respective-
ly, 1,3,5) on Fig. 2 is equal to the number of single-A (re-
spectively, double-A) patterns in sequence S~, (ii) in each
energy range the Fibonacci series determines the increase
of the number of bands. This is a consequence of self-
simllarlty.

All these properties are also reflected in the localization
of the wave function. This has been checked by direct cal-
culations' using the transfer matrices Tq and Ta. In
case a the energy range of an allowed state in the spec-
trum determines the pattern on which the wave function is
localized: single-A pattern (BAB groups) in the energy
range 2,4 or double-A pattern (BAAB groups) in the ener-

gy range 1,3,5 (see Fig. 2). In case P at the energy at
which I 0 it has been verified that the wave function is
delocalized throughout the structure. This discussion
shows the link between the wave function localization
(real space) and the band structure (reciprocal space) in
different types of quasiperiodic modulation and how these
properties are related to the value of the invariant l.

In spite of differences in barrier heights and effective
masses the invariant I is roughly similar for electrons,
light holes, and heavy holes, and so is therefore the wave-
function localization for a given state number n. Indeed
we have checked that the wave functions have then a max-
imum on the same pattern type and at the same position
in the sequence irrespective of the carrier type. 's The
wave functions of the same carrier type and different n be-
ing orthogonal, it follows that the electron and heavy- or
light-hole envelope functions are quasiorthogonalized so
that we can predict quasiselection rules an ~0 for the op-
tical transitions when I is large in spite of no translation
invariance.

Series of samples of increasing order I have been grown
by molecular-beam epitaxy. In order to compare SL's of
different I but similar thickness (~0.65 pm) and to fit the
experimental results with our calculations which use
Born-von Karmin periodic boundary conditions, the Fi-
bonacci sequences S~ are repeated as necessary. The
structures have been characterized by x-ray diffraction„s
and photoluminescence excitation spectroscopy experi-
ments were performed at squid-He temperature using a
dye laser. The spectra are displayed on Fig. 3 for both
cases: the transitions are in good agreement with our cal-
culation based on the model described above (we use the
parameters given in Ref. 16 and a constant exciton bind-
ing energy of 10 meV). As expected the transitions ob-
served in case a for orders I 3,4 and beyond (not shown
in the figure) are explained by the transitions of orders
I 1 and 1 2 and labeled accordingly. Nothing changes

I I I I I I I 1 I t I

EH1 EH2 EH3 EH4 EL4
EL1 (LZ LpI 3

EH3 EH4EL3EM5

C3

cQ

C)

CL

! I t I l I

166 1.68 1.7Q l.y2 1.y4

PHOTON ENERGY (e V )
FIG. 3. Photoluminescence excitation spectra of Fibonacci

SL of order 1,2,3,4 in case a (bottom) and of order 7 in case P
(top) at T 2 K. Typical power density is 100 mW/cm . Ar-
rows indicate calculated electron-heavy-hole (EH) and
electron-light-hole (EL) transition energies for I 1 aud I 2.
Labels refer to Fig. 2. The spectra are aligned on the EHl peak
to eliminate the effects of small Al concentration and thickness
fluctuations from sample to sample.

at higher order because the new gaps are small and the os-
cillator strength of new transitions are certainly weak.
These observations are in agreement with the predicted
selection rules. So we believe that the main features of
these spectra can be explained by these bulk state transi-
tions (i.e., calculated in periodized structures) and we do
not find any clear evidence in our SL's of the surface
states predicted by Nori and Rodriguez. ' The data of
Ref. 8 do not show fine structures at an energy scale com-
parable to this work, and no detail has been given on the
model and the spectrum interpretation. We do believe
that our method of following the transitions at successive
orders I helps to give strong support to the line assign-
ments. In case P (displayed here only for I 7) there is
less structure on the high-energy side of the excitation
spectrum in agreement with weaker band-gap opening
and weaker selection rules expected when the invariant I
is small. We do not claim, however, that this is an experi-
mental evidence of delocalization. 's

The studies presented here show the importance of the
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invariant I, which can be calculated in unidimensional
quasiperiodic Fibonacci structures in order to understand
the band structure, the wave-function localization, and
how both are related. We have shown that GaAsl
Ga~ —,Al, As Fibonacci SL's with diFerent types of quasi-
periodic modulation are expected to have diFerent elec-
tronic properties. We have presented preliminary optical
studies of these structures. The observed transitions are
well explained by a model using the envelope-function ap-

proximation. We hope that the extended electronic state
predicted when the quasiperiodic modulation occurs on
the barrier height will be scen in further optical or trans-
port experiments.

We thank V. Thierry-Mieg who took part in the growth
of the samples, M. C. Joncour for the x-ray characteriza-
tion, and D. Paquet for many stimulating discussions.
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