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Exact limits of the many-body local Selds in a iwo-dimensional electron gas
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We have derived the exact limiting behavior of the many-body local fields 6~{q,co} in a two-
dimensional electron gas. At large wave vectors and finite frequencies these functions can be ex-
pressed in terms of g(0), the value at the origin of the pair correlation function of the electron gas.
%'e find in particular that in this limit 6+( ce,co) =1—g(0), and 6 {co,co)=g(0). Our results pro-
vide new insight into the problem of the many-body vertex corrections in this interacting system.

The efFect of exchange and correlation can be incor-
porated into the wave-vector- and frequency4ependent
charge and spin susceptibility of an electron gas by intro-
ducing many-body local fields. ' The charge and spin sus-
ceptibility of this system can be written as

Xo(q, co)
X,(q, cu) =

1 —u(q)[1 —6+(q, co)P'u(q, co)
'

X,(q, ~)
Xg(q, co)= —licit 1+u (cI)6 (q, co)X&(q,co)

'

where Xo(q, co) is the I.indhard response function. 2 u(q)
is the Fourier transform of the Coulomb potential and p,&
is the Bohr magneton. Equations (1) and (2) define the
many-body local fields 6+(q,co) and 6 (q, co). These
quantities are the many-body analogues in the electron
liquid of the famihar Clausius-Mossotti local fields of
electrostatics. Using an alternative but physically
equivalent description the 6+(q, co}'s can be regarded as
vertex corrections. ' The knowledge of the correct form
of these functions is necessary in any quantitative calcula-
tions of the efiects of the electron-electron interaction on
many physical properties of interest. The most conspicu-
ous examples are the elective mass and the spin suscepti-
bility. As we shall show this is especially true for a two-
dimensional electron gas (2D EG).

In the particular case of a 2D EG these functions are
largely unknown and it is therefore useful, and timely, to
determine their exact behavior in the hmit of large and
small wave vectors. This is the purpose of the present pa-
per.

We will discuss first the large wave vector behavior.
For the three-dimensional electron gas (3D EG) much
work has been done. Some of the earlier studies have at-
tempted to derive expressions for the 6~(q, co)'s via ap-
proximate solutions of the many-body problem. ' This
approach, although useful, has only led to results of un-
controlled vahdity. More recently ho~ever some work
has been focused on extracting, via a frontal attack on the
many-body problem, the exact properties of the local
fields. The present analysis will only deal with the latter
and more fundamental viewpoint. Table I provides a
summary of the most relevant results.

Kimball has derived the large q behavior of the local

X[S (q') —5 .], (3)

where ri+(crcr')=1 and ri (crcr')=sgn(crcr'). In Eq. (3)
S (q) is a static structure factor and is defined as

S...«)=—„&q,~".«)..«) ~
q, &-—,fi...2 g N

where n (q) is the Fourier transform of the electron den-
sity operator for spin projection cr, and the expectation
value is taken over

~
%o), the ground state of the system.

The usual charge and spin static structure factors can be
readily related to S .(q). A direct inspection of Eq. (3)
clearly shows that since in a 2D EG u (cI)=2tre /cI, in the
large q hmit the Srst term can be neglected, and one is
left mth

6+(q, co) =-,' g si+(crcr')[-,' —g (0)],

fields under the assumption that these functions are in-
dependent of frequency. Kimball's assumption however is
unjustified since the frequency dependence of the
6~(q, co)'s is in fact important. Niklasson6 has derived
an exact expression for the Snite frequency and large
wave vector limit of G+(q, co) in terms of g (0), the value
at the origin of the pair distribution function. Following
an approach based on the equationwf-motion method he
studied the linear response of the system to an external
potential and found that 6+(oo,co)=-', [1—g(0)] (see
Table I}. Zhu and Overhauser carried out a similar
analysis for the spin response of the same system and ar-
rived at the complementary result 6 ( oo, co)
=—,'[4g(0) —1] (see Table I). The asymptotic values of
6+( oo, co) can be then estimated once the value of g (0) is
known. s In general g(0) will depend on the electronic
density and so will the Gz ( ao, co )'s.

We turn now to the derivation of the analogous rela-
tions for the Gz(q, co) in the 2D EG. Following the
method used in Refs. 6 and 7 it can be shown that in any
space dimension for fimte frequencies and large wave vec-
tors G~ (q, co) can be expressed as

6~(q, co) = g g s
—ri~(crcr')

1 (q q')'u(q')
2N . , q u(q)
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TABI.K I. Exact asymptotic values (q ~ ao ) of the local fields Gg(q, co) for both a 30 EG (f][rst two

columns) and a 20 EG (last two columns). On the left the appropriate value of the frequency ~ is

given. The 6rst row corresponds to a case in which the G~(q, m)'s are assumed to be frequency indepen-

dent.

30

ignoring the
u dependence

1 —g(0)' 1 —g(0)' g(0)'

6nite u

ru=hq2 /2m

'Kimball, Ref. 5.
Santoro and Giuliani, present work.

'Niklasson, Ref'. 6.
~Zhu and Overhauser, Ref. 7.

—,
' [4g {0}—1]'

g(0)'

1 —g(0)b

1 —g(0)

g(0)'

g(0)'

where the pair correlation function g .(r} has been in-
troduced via the following relation with the structure fac-
tor S .(q}:

The familiar (symmetric) pair correlation function g(r)
can be obtained from g (r) by simply summing over the
spin lndlces

From Eq. (5) one can then readily obtain the follow-
ing exact large q (Snite c0) asymptotic values:
6+(oo,r0)=1 —g(0) and G (oe, co}=g(0) (see Table I).
The following items are worth mentioning: (i} Our results
imply that within the Hartree-Fock approximation in
which g""(0)= —,'„ for a 2D EG one has GP( ao, co)= —,'.
This can be compared with the corresponding value of —,

'

in the 3D EG case.9 (ii) Our result for G (oo, co) is by
definition a positive number for all electronic densities.
This should be contrasted with the corresponding result
for the 3D EG of Zhu and Overhauser which for metal-
lic densities seems to predict a perhaps surprising nega-
tive value for this quantity. Finally it can be shown that
in a 2D EG if the frequency dependence of the local Selds
is neglected one arrives at the same results, i.e.
6+ ( ao ) = 1 —g (0) and 6 ( ao ) =g (0) (see Table I).

We next turn our attention to the zero frequency long
wavelength limit of the 6+(q, co)'s. In this case ce is set to
be equal to zero before letting q vanish. The behavior of
the local Selds in this situation can be simply related to
the static response properties of the system. For the case
of a 3D EG the reader is referred for instance to the dis-
cussion of Refs. 10 and 7.

For a 2D EG the situation is more interesting in that
in this limit the 6+(q, O) s are linearly proportional to
q =

~ q I
as opposed to the q

z behavior of the correspond-
ing three-dimensional quantities. Making use of the
compressibility sum rule and of Eq. (1) one obtains in this

6 (q, O)= (s —1) q q~0, (10)

where in a 2D EG the Thomas-Fermi wave vector q TF is
given by 2/aa, as being the elective Bohr radius. Ex-
perimental' and theoretical' values for s are available
in the literature and can be used to correctly estimate
6 (q, O} in this limit.

In the previous discussion the frequency variable has
been neglected or assumed to acquire 6nite values. In ac-
tual calculations however it is necessary to allow for the
frequency dependence of the local Selds. In particular for
large q it is often relevant to evaluate the behavior of
6+(q, co) when co=iriq /2m . This can be accomplished
by following a procedure employed by Kimball in his
study of the 30 EG. In this case however, at variance
with Kimball's original analysis, the frequency depen-
dence of the local fields must be explicitly allowed for.
For the sake of brevity we will report here only the calcu-
lation related to the case of 6+(q, iriq /2m) for a 2D
EG. One starts with the well known exact relation be-
tween the static structure factor S(q)= —,

' g, S .(q),
and the response function g, (q, co }of Eq. (1):

S(q}=— f dec 1m[X,(q, co)].
%Pl 0

S(q) is in turn related to g'(0), the value at the origin of

6+ (q, O) =( I+a)(q /n kF ), q ~0,
where the constant a depends on the electronic density,
and can be determined in terms of w, (kF ), the correlation
energy per particle in a 20 EG. We obtain

a= —(3ir/4e2)[w, '(k~)+ —,'kzio,"(kF)].

ui, (kF } can in turn be obtained from the various numeri-
cal calculations available in the literature. "

In an analogous manner the small q limit of 6 (q, O) is
related to the many-body enhancement of the spin sus-
ceptibility s =X,(q~0, 0)/Xi, Xi. being the Pauli suscep-
tibility. Making use of Eq. (2) we obtain
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the derivative Bg(r)/Br, by the following exact relation
valid in two dimensions:

3

g'(0) = hm — [S(q)—I ].
q~ oo 2&Pl

Making use of Eqs. (1), (11),and (12) we arrive at the sim-
ple result 6+ (q, fiq /2m�) =1——,'aug'(0) =1—g (0). In
the last step we have made use of the two-dimensional
version of the cusp theorem, ' stating that
g'(0)=2aa 'g(0). The latter is a fundamental formula
which is valid for all densities when the two-body poten-
tial is Coulombic. A similar analysis can be repeated for
6 (q, iriq /2m�), and for the 3D EG case. The results are

summarized in the last row of Table I.
It is important to realize that for a 3D EG particular

care must be exercised in selecting the appropriate limit-
ing formulas for the local 6elds when approximate ex-
pressions for the vertex corrections are needed. '8 As we
have shown however this problem does not exist for a 20
EG.
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