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%e suggest the possibility that staging transitions, similar to those in graphite intercalation corn-

pounds, might occur in a strong magnetic 5eld for high-quality modulation-doped multiple-

quantum-well systems with suSciently low carrier density, p, and suSciently short superlattice

period, d. In a stage-n state electrons would occupy every nth quantum well. A simple model cal-
culation suggests that n & 1 states have lower energy for d3p & 0.3.

Graphite intercalation compounds' with low inter-
calant atom concentrations form structures in which
there are n carbon layers between each layer of inter-
calant atoms. These structures are referred to as stage-n
compounds and staging transitions occur between the
different structures in which n decreases as the inter-
calant atom concentration increases. The staging transi-
tions result from an attractive effective intercalant-
intercalant interaction for atoms in the same plane and a
repulsive interaction between intercalants in different
planes. 3 ' We suggest here that similar phenomena
might occur for a multiple-quantum-well (MQW) struc-
ture in a magnetic field sufficiently strong that the elec-
trons in each two-dimensional electron gas (2D EG) layer
are in the lowest Landau level. In a MQW, regions of
one semiconductor (typically GaAs) are separated by re-
gions of a higher band-gap semiconductor (typically
Ga, „Al„As) which act as barriers separating quantum
wells. The role of the intercalant atoms, in this case, is
played by the electrons and the role of the galleries be-
tween carbon layers is played by the quantum wells. The
attractive interaction which can drive the staging transi-
tion is the exchange interaction between electrons in the
same quantum well. The repulsive interaction is the
Coulombic interaction between charged planes, which in-
creases with their separation, so that the staging transi-
tion occurs at higher electron density for shorter super-
lattice period. The strong magnetic field is necessary to
create Landau levels which have a degeneracy sufficien
to accommodate an areal density up to

o, =eB/he =0.24X10"8(tesla) cm

in each quantum well, without any increase in the kinetic
energy per electron.

%e refer to a state in which electrons occupy only
every nth quantum well as a stage-n state. In order to es-
timate the density below which n & 1 states have lower
energy, we adopt the simplified model of periodically ar-
ranged quantum wells with vanishing thickness separated
by a distance d (the superlattice period) and assume that
tunneling between different 2D EG layers may be neglect-
ed. This i.s the model used, for example, to study
plasmons in MQW systems and, in that case at least,
it gives good agreement with experiment. ' The Cou-

lomb energy of this system is

2 tp(r)-pt(r)][p(r') —pt(r')1
E, = dr dr

p(q, )=pL„L~L, +5(q„2trildn) . (3)

Assuming the ionized donor density to have the periodi-
city of the MQW and defining fk by

pt(q, ) =pL, L~L, g fk5(q„2n'k ld)

gives

g
C

Pe n d 1 1 I fk

(5)

The second term in the large parentheses in Eq. (5) gives
a contribution to e, which is independent of n, so that the
distribution of ionized donors is irrelevant in determining
the stage number. For the sake of de6niteness we assume
that the ionized donors are distributed in a narrow layer
midway between 2D EG layers, in which case f„
=( —1)". Then the sums in Eq. (5) are known and we ob-
tain

2

, I p(q, ) —pt(q, ) I'
I.„l.yI., gq,

2

where I.„,I. , and L, are the lengths of the system in the
x, y, and z directions, e is the dielectric constant, p(r) is
the electron number density pt(r) is the number density
of the neutrahzing ionized donors required by the long
range of the Coulomb interaction, and we have assumed
that p(r) and pt(r) depend only on the coordinate per-
pendicular to the 20 EG layers, which we take to be the
z coordinate. For a stage-n-state every nth quantum well
has a 2D EG with areal density o =ndp where P is the
mean electron density. It follows that
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&xc

e led
= —1.9605(Pnd )'i2 .

In higher-stage states the electron density in occupied 2D
EG layers is higher and the exchange-correlation interac-
tion increases in strength. Since e„ in e led units is pro-
portional to (pd )' while e, is proportional to pd
higher-stage states will always be favored at low electron
densities provided that the magnetic field is strong
enough that they can be formed without occupying
higher Landau levels.

Combining Eq. (5) and Eq. (7} we estimate the transi-
tion from stage-n to stage-n + 1 states occurs for

'2

pd =14 (8)
2n +1

provided that v =npd /cr, & l.—In Fig. (1) we plot
e =e, +e„, for the lowest energy stage-n state and

'~

2 — 3 2d
( )

e pd n(n +2) 2 9~g(- d3)1/2 (9)
dp ed 3

in units of e /ed versus pd for a realistic range of
values. For example, a MQW system with p=10' cm
and d =10 nm has pd =10 ' and pd/a, =4. 136/
8(tesla).

Our emphasis on strong 5elds is not meant to imply
that similar phenomena could not occur at weaker or
zero fields and results from our estimate that stage-n
states could be realized more easily in strong Selds. At
zero field the energy per electron for a stage-n state is
given approximately by'

e' Pd'm 2 pd3nn ao
(n +2)+

E8

—1.06(pnd 3) ' ~2 (10)

ec pd 7p-- (n +2) .
e /ed

The Coulomb interaction favors the n = 1 state in or-
der to obtain as uniform a charge density as possible.
However, exchange and correlation e5'ects of the elec-
trons Iithin a given 2D EG layer give a negative contri-
bution to the energy per electron which increases in mag-
nitude as the density increases and the electron moves
closer to its exchange correlation hole. For electrons in
the lowest Landau level of a 2D EG this energy is quite
accurately known. " ' For o =ndp «a, the electrons
are expected to form a Wigner crystal. 13 15 In this limit
which (in the interests of simplicity} we assume to apply,
the exchange and correlation energy per electron reduces
to the Madelung energy of the 2D Wigner crystal' so
that

-O. 6
"'~2„c

-0.8 '

|0 fo

I I I I 1 I II!

10

FIG. 1. Energy per electron, e, and chemical potential, p, in

units of e'/ed vs pd3. The solid line (e) is continuous while the
dotted line (p) is discontinuous at each staging transition.

where the Srst term is the electrostatic energy, the second
term is the kinetic energy per electron for motion within
the quantum wells, and the third term is the exchange en-

ergy. In the second term a 0 oc I /m ' is the
semiconductor's Bohr radius (-10 nm for GaAs). Note
that the kinetic energy opposes staging transitions and
that the exchange interaction, which favors staging, is
weaker than in the strong-field case. From Eq. (10) we
estimate that the transition from stage-n to stage-n+ I
states at zero Seld occurs for

&n +1 ~n
2n +1+(a,' /d)

For a c' =d the n & 1 states have lower energy for
pd & 2 X 10 compared to the condition pd3 & 0.3
which holds for the strong-Seld case.

The Landau-level broadening expected from the ion-
ized donors and other sources in real MQW systems will
lift the Landau-level degeneracy assumed here and should
be kept to a minimum by modulation doping and using
high-quality samples if n & 1 states are to occur. In addi-
tion, our neglect of interlayer tunneling and the finite
thickness of the 2D EG layers may result in an overesti-
mate of the transition densities, especially as d becomes
shorter. Nevertheless, the results presented here suggest
that n &1 states should be realizable in practice. A
stage-n state could be identi5ed by using the fractional
quantum Hall effect' to measure the areal density of the
20 E(G layers. Assuming independent conduction in
each 2D EG layer, ' ' minima in the rnagnetoresistance
should occur when v—=ndpo, is a fraction with an odd
denominator and especially when v= —,

' or v= —', .
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