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VA'th the aid of the recursion relation for generalized random walks (GR%' s), a model is pro-
posed which shows Auctuation and bifurcation of a path. The jumping probabilities of the GR%'s
are specified by P'{m + t't1,¹en)=P 0+{@'ll—,

' Az exp{/ /M) [e~=(A„,()] with a. I

=1,0, —1 as a=+,0, —,respectively. The Po s are the usual jumping probabilities between sites
m and m +a.l. The function A~ exp(g /M) represents deviations from the usual processes. A„
is a global coupling function of X, while g is s parameter between the walker and the environment.
M is a range of sites which the walker can visit. For a weakly coupled case,
An exp(g /M)=A„{1+/ /M), a linearization yields fluctuation of the path, whereas the form

Au exp(g /M) yields a case showing bifurcation of the path. The analysis is performed by using

the path-integral representation of the formal solution to a Fokker-Planck equation derived from
the GR% s. A generalization of the present model to a two-dimensional case is given.

I. INTRODUCTION

As a probabilitic description of dynamical processes,
random walks are extensively used in various fields. '
One of the features common to nonlinear, nonequilibri-
um phenomena is fluctuation or bifurcation of the
path.

In the previous papers, ' " generalized random walks
GR%'s were proposed to study nonlinear, nonequilibri-
um processes. For the GRW's, speciflcations of the
jumping probabilities are made such that they represent
the processes under consideration. The continuum limit
of the recursion relation for the GRW's results in a
Fokker-Planck (FP) equation. The FP equation can be
solved as an initial-value problem and its fundamental
Green's function can be expressed by a path integral.
The path-integral representation yields "deterministic
paths"; that is, extremum paths obtained by

d dL "dL . dx

dt Qx t)x dt

where L(x,x) is a Lagrangian (or Onsager-Machlup
function' ), and L determines the path-integral represen-
tation of the fundamental Green's function,

1
G(x ~xo t)= lim

n

gfX l
X f —exp —f L(x,x )dt

(1.2)

where A is a normalization factor. The potential part of
I. is expressed by the first and the second moments
determined by the jumping probabilities of the GR%'s.

It is important to note that the walker plays the role
of an element of the dynamical system, or a test particle
in the (dynamical) system. The jumping probability
denotes a transition between the states of the element or
particle.

In this paper, we study a dynamical model system
which shows fluctuation and path bifurcation. The pro-
cesses are described by the GR%'s in which the jumping
probabilities are specified by an exponential form with
respect to site m,

P (rn
~

rn —tz. l,N;Biv)=PO+ A~e~™
2

[B~=(A~, g)], (1.3)

with a 1=1, 0, —1 as a=+, 0, —,respectively. The
Po's are the jumping probabilities in the usual random
walks, and the second term represents the deviations
from the usual processes. The 6rst term P& denotes the
difference in the homogeneous field due to the presence
of an external force, and the second term represents the
contribution due to the nonsteady, nonhomogeneous
part of the environment characterized by the function
A~ and parameter g. We study two cases: a weak-
coupling case in which g is small enough,
exp(g /M)=1+(' /M, and a strong-coupling case in
which g' is not so small. Physically, this means the ran-
dom walks are influenced weakly or strongly by a contri-
bution expressed by AN exp(g /M).

1988 The American Physical Society



37 FI.UCTUATION AND BIFURCATION OF THE PATH. . .

H. BASIC EQUATIONS

To study the behavior of "elements'" which constitute
the dynamical system, we start with a recursion relation
of generalized random walks. The recursion relation of
the GRVf's reads

K("(x,t;P)
g (2)

—[p+(x, t;p) —p (x, t;p)]
to

[p +(x, t;p)+p (x, t;p)]

W(mX)= g P (m ~m —ale —18~ i)
(2.5)

~ W(m —a },X—1)

[8i) - i =(AN- i &)]

P (m+a. l
i m, ¹8)(()=1,

o;= $,0
(2.2)

with a 1=1,G, —1 as a =+,0,—, respectively.
P'(m

~

m a},N——1;8))(,)'s are functions of site
m E[—L,L], step NE[0, ()0), and 8N, is a symbol
showing the coupling between the walker {element} and
the environment. The important thing is a specification
of the jumping probabilities P 's such that the
speci6cation represents the processes under considera-
tion.

%e consider processes in which the jumping probabili-
ties are expressed by'

0,"1 ( /M
(m

~
m+a },X 8w)=Po

2

[8N=(Att. k» ~=2 IL
I ]

where the second term is a function taking a small value
and representing deviations from the usual processes
denoted by I'o. Az is a global coupling function of X,
and g is a parameter between the walker and the envi-
ronment, and M denotes a range of sites which the walk-
el can v1slt, .

Replacing m, + by x (= am), t (=Nt, ), and taking
the cotitinuu111 111111t ((1—+0, to-+0, while (1 jto remains
fixed) in the recursion relation (2.1) results in a Fokker-
Planck equation expressed by

Here note that K'" contains a symbol p [=(k(t),g)]
showing the coupling between the walker and the envi-
ronment, while Ko(1) is constant as seen in (2.6), where
a 1 takes 1 and —1 as a=+ and —,respectively. The
quantities w, p, po, and A(t) a,re continuous functions
corresponding to 8', I', Po, and Az, respectively.

To get a fundamental Green's function for {2.4}, we
express w and t as fo}}ows:

w(x, F) =Ko( 'w(x, t),
t=Ko('t [Ko()=((t Ito)(po +po )] .

The Fp equation (2.4} then becomes

()w(x t ) () (i), —, 1 ()

(2.7)

c"'(x F P)=K"'(x F/K' 'P)iK' ' (2.8)

We consider following conditions:

N(x, o)=Ko"S(x —x, ),
w(k()o, t }=0.

(2.9)

Specjfica}}y, fot the Uhlenbeck-Ornstein (UO) processes
which c is 1lnearixed as c' "(x,t;p) = —cox

(co——const}, the Green's function Go is exactly expressed
in the form

Go{x ~xo'hF)=
Co

' 1/2

—2coh, t
m(1 —e ),

a( t,p) a + g(t) (gx/Ma)

2

p'(x, t;p)=1, p=(A(t), g)'. (2.6)

K (x, t;p)w+ —,
' 1Ko w

[p=(X(t),g)], (2.4)

—coht 2c()(x —x()e )
—2coht

1 —e
(2.10)

%'hen ht is very small, wc can rewrite Go as follows:

G()(x i x„,;b,F)= c' "(x,t„,;p)—

&&exp —
&

c (x,t„„.p) ==g(x ((x„,;At },(1) (2.11)



HIROAKI HARA, TSUNCHIRO OBATA, AND SEUNG JOO I.EE 37

F„,=t b—t, A =(2mhF))", P=(A(F), g), x'=T((x+x„(),
and here we have adopted the midpoint rule in the evaluation of the function c"'(x,t;P). Finally, the path-integral
representation for a solution of the FP equation is given by

1
(()(x,t)=,2, dxoG(x

i xo;t )Ko '(()(x0,0) (2.12}

and

dX„] dX )G(x ~x(), t)= lim — g(x ~x„(;Et} g(x, ~xo, bF),
A A A

dX~ —S[x{f]
~ x,{O]j= lim- ~ ~ ~ e

n A A

x, t $[x ()I—
( xo(0)1x te

x0,0
(2.13)

where

S[x(t)
i
xo(0)]=f L(x,x )dt

0

~ 2 g{1)
L(x,x)=,

)
—x, )

—V(x, t;P),
2X 0{2' X,{2'

(2.14)

(2.15)

d BL

»
aL
» (3.5)

and it gives deterministic paths; that is, extremum paths.
Substitution of (3.4) into (3.5) leads to

from (2.15}and (2.16). The Euler-Lagrangian (EL) equa-
tion results in

Ko" a K"' E("
U(x, t;P)( = —V) = K(2) K(2){2)

(2.16)

X

g (2)
0

1 BJ 1 (K(() J)BJ 1 8 J
K'" &t K'" » 2»'

(3.6)

m. SPECIAI.EKED CASES

As mentioned in Sec. II, we consider the processes in
which the functional form for p is an exponential form
with respect to site x (=ma); see (2.6). The functionE'" and the constant Ko ' then become

K'"( xt;P)=K," )+(Jxt;P) (P=(A(t), g)), (3.1)

Eo ' =—(po+ —po ), ( Jtx;P) =—A(t)et" ~(~', (3.2)

V is a potential for the trajectory. %e call function
U ( = —V) a "field" for G, since U characterizes behav-
iors of G. For a general case that E02' becomes E' '(x),
we get an expression corresponding to (2.13); see the Ap-
pendix and Ref. 10.

Here note that

jC0{ ' ——const . (3.7)

J(x,t;P) =—A(t) 1+
f0 Ma

(3.8)

A special case that 10{"——0 means that an end-to-end
distance for the walker's path is estimated by simple ran-
dom walks having equal jumping probabilities po ——po
in both directions. The difference between p and po
[Eq. (2.6)] [or p and po in (2.3)] disappears when
A,(t) =0.

In what follows, we consider two specialized cases for
J(x, t;P)[P=(A(t), (e)],

{2} QKo" = (po++po ) . (3.3)

J(x,t;13)= 'V t)et"" '. —
tQ

(3.9)

The Lagrangian L (x,x ) reads

(K"'+J}'
L(x,x ) = —x + — J+2~ {2) ~{2) ~

g(t)
~

egxl(Ma) 2(1 pa ) (3.10)

For the first case, (3.8), the local coupling parameter g is
so small that p (x, t;P} in (2.6) is approximated by the

The A,(t) is a very small function of t. A positivity of
1/Ma in the definition of p ( t;xP) [see (2.6)], that is,
0 &p (x, t;P}( 1, restricts a range of the function A(t),
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linearization

exp(gx /Ma) =1+/» /Ma .

The walker's motions are expressed by a "harmonic
6eld, " U(x, t;P) [= —V{x,t;P)],

Figure 1 shows behaviors of a field for 6; that is, a po-
tential for trajectory, V(x, t;p} [=—U(x, t;p)], given by
(3.11) and (3.12).

IV. FE.Ut:rUATIGN OF PATH

U(x, t;P) = A,(t)
2

A(t) a
(2)M&0 g(2)

'2

1+ gx In the first case speciahzed by (3.11), we expect Quc-
tuations of path in the field (or potential). The Lagrang-
ian has a form

(3.1 1)

For the second case, (3.9), the local coupling parameter

g is not small, that is, a strong coupling. The walker's
motions are expressed by an "exponential field, "
U(x, t;P) [=—V(x, t;P)]

L (x,» )=, ,
— „,[e' '(t)+ e"'(t)» ]+f ' '(t)

ZX0(2' X0(2)

+f'"(t)x+f'"(t)x', (4.1)

where e'"'(t) (n =0, 1) and f'"'(t) (n =0, 1,2), are

U(» t.p) ei'x/hfoA,(t)
2

U(=-V)
PIE

X(t) a+ ~(2)

(3.12)

e"'(t)=K0"+A(t) —,e'"(t)=A(t)
f0 Ma

f(0)(t) ) e(l)(t)+ [e(0)(t)]2
2 2',")

f(l)(t) e(0)(t)e(1)(t)
g (2)

Q

t0

(4.2)

f(2)(t) [e())(t)]2
2X,")

To study the fluctuations, we introduce a new variable,

x (t) =x (t)+rl(t), (4.3)

instead of x, where rl(0}=rt(nb, t)=0. The extremum

path denoted by x is a special solution of the EL equa-
tion given by

x „, e"'(t)
g (2) g (2)

2f'"(t)+ x — —f'"(t)=0 .
g (2)

0 0 0

U(=-v)
)E

(4.4)

Here we consider a case that boundary conditions
x(0)=0 and x(t}=x are set. We denote the
S[x (t)

~

x (0)] by S[x (t)]. The Taylor expansion of
S[x+g] in (2.13) araund x yields S[x]+(1/2!)52S,
where

FIG. 1. Fields U(x, t;P) [=—V(x, t;P})described by (3.11)
and (3.12). The 6eld specines a behavior of 6, while V is a po-
tential for a trajectory determined by the extremum path. G(x

~

O;t)=e-'{"(")G(0
~

O t} (4.6)

BL.2 dL . dL 25 S=f rl +2 t)rt+ i) dt . (4.5)
Bx Bx Bx Bx

The definition of the extremurn path raakes the first
derivative of S zero. After substituting (4.1) into (4.5),
the t integration for g(t)g(t) {=(d/dt)[g (t)/2]) be-
comes zero fram the boundary condition; g(0)=rt(nest }
=O. Finally, we have
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dry exp —g, , ri, I—), ) } +Qtf, ' ', rt,
o

drt" )e-"'~& (d11" )=-dI),dg2 d1}„)). (4.7)

A superscript "T"on rt [=(I)„I)2,. . . ,1)„))]signifies a transposed form of a column vector rt. A symbol Q is an
(n —1)X(n —1) matrix of elements given by

f(2)

(4.8)

In getting the matrix form of (4.7), we have used the
boundary condition for ri; = rt(i b t), rto=ri„=0. With
the aid of an unitary matrix reducing Q to a diagonal
form, we can express the G as follows:

' 1/2
1

' 1/2

G(0
i
0;t)=

(
~ Q ( =detQ) . (4.9}

Setting (2Ko 'ht)" '
~ Q ~

=F„, and decomposing
F„,by its co-factor, we have

sinh(e,'"I)F(t)=
~(1)80

and the expression (4.16) results,

e(1)

2nKo") sinh(e"'I )

Specifically, a case that
r

' 1/2

e
—S|X(t)]

(4, 18)

(4.19)

In this case, a solution of (4.13) satisfying the conditions
(4.14}and (4.15) becomes

Fk ——2(1+Ko 'dt fk ')Fk I Fk 2 (k—=2, 3, . . . , n —1),

(4.10)
K,"'+ —){,o =0

tp
(4.20)

Fi ——2(1+Ko ht'f()),
Fp ——1. (4.12)

results in

Po Po =)(o . —+ {4.21)

The continuum limit b, t~O in (4.10) yields a corre-
sponding dift'erential equation for F (t) ( = lim htFk ),

ht ~p

d F(t)
dt

=2K,"'f"'(t)F(t) (=[e'"(t)]'F(t)) {4.13)

and the conditions (4.11}and (4.12} are expressed as its
initial conditions for F(t),

F(0) (= lim htFo)=0,
hf ~0

(4.14)

(4.15)

f(2) (e(1) )2 e(1)
0 2+(2) 0 0 0

0 0
(4.17)

With the aid of the solution F(t) and (4.9), we rewrite
the G in (4.6) as follows:

6 (x
~
0;t)= [2IrKo( 'F(t)] ' exp[ —$[x{t)]I, (4.16)

where F(t) represents fluctuations of the extremum
path. A constant ){,o for ){,(t) in (4.2) yields

In this case e' '(t) and f'"'(t) (n =0, 1) vanish in (4.2).
Since the difference between go+ and po arises from an
inhomogeneity of the environment, we may contact the
difFerence with the constant A,o representing the global
coupling with the environment.

An action S[x(t)] for the case specified by (4.20) or
(4.21) is easily evaluated by

(]) ' 1/2
ep

G(x
i
0;t)=

2lrK() ' sinh(e()"t)

X cxp — [coth(e,"'t) 1] . —(4.22)

This form has a behavior similar to the density matrix
for a oscillator in the harmonic potential. ' Figure 2
shows the behaviors of (4.20).

An initial distribution concentrated around x(0) loses
its original shape due to the diffusion eft'ect in a "har-
monic" field U (= —V), Figs. 2(a) —2(c): The behaviors
of 6 are characterized by the 6eld U. The path Auctua-
tion around the extremum path x(t) is specified by F(t),
scc (4.16). Tllc plcscl1t Illct11od ls appllcablc to dlffuslon
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2 I,'2)
Ko

~o y 2

'2

y er"=0,
&0

(4.24)

processes in a bistable potential.
The second case specialized by (3.9) or (3.12) denotes

processes influenced strongly by the Seld U: The cou-
pling parameter g is not so small. The EI. equation giv-
ing an extremum path becomes

X X"' dj;"' l d'X"'
{2)

—
{2) -d —

2 2
=0 (423)

Ao Eo & dx

that ls,

where y =g/Ma.
In this case we have obtained path bifurcations. '

V. FI.Uc:rUATIONS IN A TWO-DIMENSIONAL CASE

For the dynamical processes in higher dimensions, we
have to restart with a recursion relation for the GR%'s
in a d-dimensional space. For simplicity, we consider
the processes in a two-dimensional (2D) case and study
Iluctuations of path corresponding to that in Sec. III.

The recursion relation for the 2D space [ L„L—, ]
X [—L2,L2] reads

W(m„rn2, N) g—P& (m, , m2
~

rn, —a 1 m2, N —1,6{v,)W(m, —a 1 m2 N 1)—
Q

+ &' P2(m{ mz Im»m2 + 1+ 16{v—1)II'(ml m2
c=+

(m{ E[ L„L,],m2—G[ L2,L2]—) . (5.1)

Note that a prime in summation indicates the case a=0
is excluded; the symbol a 1 takes 1 and —1 as a=+
and —,respectively (Fig. 3).

Jumping probabihties between sites, P, and P2,
denote transition rates satisfying the normalization con-
dition;

g' P, (m, +a l, mz ~
m&, mz, N;6„)

a=+

+ g' Pz(m&, me+a 1
I m„mt, N;6{v)=1,

CK= k

6{v=(A{v ki k)
The symbols (; and AN, etc. have the same meanings as
those in the 1D case. Suppose that the jumping proba-
bilities are expressed by

P;(m„m, ~m, —a i,m, ,X;6„)'

=X

X0
zK:(M~, )

Pz (m „mz
~

m „mz —a 1,%,6rr )

P '
&lm~~~~

'

10 ~.J 8
Apa +

2 & g~m~ /M2
2,0 8

Here we approximate (A{v,g„gz) in P; by (AN, g; ).
%ith the aid of continuum variables defined by

x'=m, a; and t =¹0,
we get a FP equation for the 2D case,

Bw(x,x;r ) {)

(5.3)

(5.4)

FIG. 2. (a) Behaviors of a propagator 6 given by (4.20). (b)
Behaviors of a particle in an inverse "harmonic" potential. (c)
A harmonic Geld for G.

(5.5)
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Fili ~
fl)g+ l

))P;

%i & Nz fr), ~ I
&

fTla

P

g~ m, &m;)

=Site I

Pi

pj

P+

=Site I

(o)

FIG. 3. Jumping probabilities between sites in two dimensions; the probabilities shovrn in (a) satisfy the normalization condition
of (5.2), see (1).

after taking the continuum limit (a;~0, to~0, while

a, /to remains fixed) of the recursion relation (5.1),
where

With the aid of (5.12), we study diffusive motions of a
polymer chain trapped in a fictitious tube, see Fig. 4, in
which we apply conditions speci6ed by

a;K'"(x' x' r p }=—[p+(x' x' r p )
0

—p; (x',x, t;P;)], (5.6)

(5.&)

K 0 =const [cf. (4.20) or (4.21)],

a, gx'
J, (x),x', t;P, )=—A(t) I+-

t0 M;a,

(5.13)

(5.14)

and

p; (x',x, t;P;) p, o+ A(t)e ' (5.8)

The small letters u),p represent continuous functions
corresponding to discrete ones, W, I', respectively.
Note that the K;"'s contain the components of the cou-
pling denoted by P, between the walker and the environ-
ment, while K,'0's are constant. The FP equation (5.5)
does not have cross terms K 0)((3 /Bx'Bx J) in the present
specification for the jumping probabilities.

We express the K;" functions by

This represents a situation similar to the one-
dimensional case. Namely, the first condition (5.13)
states that an end-to-end distance for a polymer chain is
estimated by simple random walks having unequal jump-
ing probabilities in the x and y axes, respectively. ' The
second condition —that is, a linearization of field—
specifies diffusive motions of a single polymer chain
trapped in the tube. "

After some calculations similar to the 1D case, we get
an expression showing Quctuations around an extremum
path described by expI —S[x'(r},x (r)]J,

E "(x ),x i, t;P; ) =E,'"+J;(x ',x, t;P; ),
where

(5.9)

E(i) ' (p+ p
—

)
0

g,-s '/M, .a,.J;( x, ,xt;P;)= —e '

(5.10}

(5.11)

Following a procedure given in the Appendix, we get a
Lagrangian for 20,

2

L(x ',x,x ',x ) = g

(x'=dx'/dt ) . (5.12)
FIG. 4. A polymer chain trapped in a Sctitious tube. A

dotted concave curve denotes a 5eld for a hatched monomer.
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G(», ~0,0, &)= -'[ """*')G(o,o~o, o, r)

g i2)p (t}]—) /2C $—[x'it))
I

where the F, (t)'s characterize the Quctuations.
Specifically, for a case that A,(t)=A,0 constant, we can

get

(5.15)
+;(&)= sinh t

0 i i10 M;t0
(5.16)

lM, to
G(x', x ~0,0, t)= ff

2irEC 0) sinh[(Ag;/M, t0)t]
e -s[x'(t)]

(5.17}

For a simpler case, similar to the 1D case, the factor
expI —$[x'(t)]I can be evaluated explicitly, cf. (4.20).

VI. CONCLUMNG REMARKS AND DISCUSSION

———(P0 —P0 )=collst =A,0
0

fQ
(6.1)

From a quite general point of view„we studied behav-
iors of a walker ("element" ) which is influenced by a
"Seld" (or potential) in dynamical systems. Simple mod-
el processes showing Suctuation and bifurcation of the
path were proposed. In one dimension, stochastic
motions of particle in a "linearized Seld" yield a path
fluctuation. In a strong f)[eld representing a sink or
source, random motions became path bifurcations as
studied in Ref. 10. For two dimensions the former mod-
el processes were applied to specify diffusive motions of
a single polymeric chain dissolved in a solvent and
trapped in a fictitious tube. Trajectories of the difFusive
motion were expressed by the path-integral representa-
tion to a Fokker-Planck equation derived from general-
ized random walks: The continuum limit of the recur-
sion relation of the GRW's gave us the corresponding
FP equation, to which a formal solution is expressed by
the path-integral representation.

Actual calculations were performed by taking the
slmphncd cases, where wc sct
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APPENMX: A LAGRANGIAN
IN cf-DIMENSIONAL SPACE

To get a Lagrangian in d-dimensional space, we start
with a Fokker-Planck equation, derived from the
GRW's analogously to (5.5), for the d&imensional (dD)
space,

Bu( )fx) 8 ~(1)( )
1 BX

d g2

Bx Bx

[x=(x',x, . . . ,xd)] . (Al)

E "(x,t)=—[p;+(x, t )—p; (x, t )],
0

[p~+(x, t)+p; (x,t)],
0

for a 1D case and

Z,. 0' =—'(p, ,—p, —,}=const
0

(6.2}

for a 2D case, respectively.
When )(,'s =0 in (3.7) and (3.8) for one dimension and

in (5.14) for two dimensions, these conditions mean that
an end-to-end distance for the walker's path is estimated
by simple usual random walks having equal jumping
probabilities when A,0=0.

For a weak field (potential) in one or two dimensions,
in which f or g, is very small, the difFusive processes are

specified hy fluctuation around the extremum path. For
a strong field in which g' is not so small, the exponential
form of p~(x, t;g) is speci5ed by (2.6). A function
)),(t) ( &0) denotes a field with a sink and A,(t) ( &0)
denotes a Seld vnth a source. The di8'using particles are
strongly influenced by the Seld. The processes yield bi-
furcations of path, as we have studied in Ref. IO.

di; i Bx; i B»B»

$(x,F}=1[.' )(x)u)(x, t), 1=F2(x)t,

r,")(x,r ).,& "(x,r)=

(A3)

(A4)

cf. (2.8).
SpeciScally, when we take "Uhlenbeck-Ornstein (UO)"

processes expressed by c,'"(x,t )= —c;x' (c; =const), and
consider the boundary conditions

g' p,. (x,t)=1
i=1 a=+

and we have dropped a symbol P, [=(iL,g, )] in the
above expressions for simphcity of notation. By choos-
ing a set of suitable forms for p; (x, t), we can set

E; )(x,t}=D;;E' '(x), where D,, is constant. The FP
cquatloli (Al) ls thcli rewr1ttcn into
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$(x,O) =K( '(x)5(x —xo)

and N(x, t )~0 as x~k ao, a fundamental Green's func-
tion [cf. (2.10)] to (A2} is exactly expressed by

1
Go(x I

xo:hF) =
(2m) Io I

where
I

0.
I

is the determinant of the diagonal matrix,

-Z., ~f-
cr;;= (1—e ' }.

l

'2
—1 t E iXexp —

T g o';; (x —x oe
f

(A6}
%hen ht is very small so that o;, is approximated by
D;, ht and —c;x' is replaced by c,"'(x,t) again, the
Green's function Go becomes

Go(x
I xo, d t )=

(2 &F) 'ID I' '; ID
I
ht

exp ——,
' g [x ' —x o

—b, tc ( "(»,0) ]2

g(x
I
xo;b,t),1

(2~~F}'"
I
D

I

'" (AS)

where b, ;; is a cofactor of D;; [cf. D;, =1 in (2.11)]. The solution of (A2) is expressed by

w(x, t)= z dxoG{x
I xo,'t)E( '(xo)w(xo 0}1 (2)

X"'(x) (A9}

dX~ 1 dX~ 2 dX1G("
I
xo't}= »m — — — "" — g(x

I x. -('~t )g(x. -( I
xn-2'~t } ' ' ' g(x(

I

xo'~t }
Ad Ad Ad A~

where

A, =( 2~62 "}"ID I'", bt=E'"(x)ht . (Al 1)

Here we adopt the "midpoint rule, " x '= (x '+x„', ) /2, and expand the c"' around X'. Note that
(x' —x„',}(x —x„,) vanishes and the (x' —x„', ) (i =1,2) become Dht lb..., in the integrations of g(x I

x„„rht )

Considerations of these facts lead us to an expression for (AS} in two dimensions,

G(» ',x'
I
x„',,x„~;bt ) =exp

X exp

2 2At 622 X —X„

aF
gc(() gc(()

ax' ax'
' +-'

—c2 (»,X 't„()(1) —1 2,

(A12)

To see that the expression (A9) with (A10) and (Al 1}satisfies the FP equation (Al) for (A3), we consider an expres-
sion given by

dx~
w(x, t+t((.t)= f g(x

I x„,;Et)w(x„„t)
Ad

corresponding to (A9).
By introducing a new vector y [=x—x„&—ht e' "(x,t ) ], and expanding w (x„,, t ) around x, we have

( t )[=& (x„()w(x„ i, t )]=w(x, t ) —y. w(x, t ) Ate"' —w(x, F)
X X

2 2

+-,'yy:
&

w(x, F)+stye"'. w(x, t)+O(bt') (A14)
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and the Jacobian of a transformation becomes

~- gc(1)
= —1+ . +O(ht') .

Bxdy

In (A14}, . and: are inner and tensor products, A.B=Q; A;8; and A:8=+; QI A; 8; .
By substituting (A12), (A14), and (A15) into (A13), we get

Cl C2 ' Qg Cl C2gc () ) gc () ) — gc (1) gc () )

(A15}

()2
1 —Ate"' $(x, t ht }+— 0: $(x, t ht ), —

Bx 2 xt)x
(A16)

where 0 is a 2X2 matrix;
~

D
~
=D»D(z, and we have used the integrals

1 1+g 2y2

&A((A22
(A17)

y y y y exp ——A 1&y y + A 22y y (A18)

From (A16), we can derive the FP equation (A2) in the limit Et ~0.
From (A10), we can define an action S [x(t)

~
xo(t)] by

dx„, dx„z dx,
G(x

~
xo;t}= lim e

n~oo Ad Ad

f "'
dx (t)e —s[x(t)

~
x(0)l

Xo

(A19}

where

S[x(t)
~
x (0)]=I I.(x ',x,x ',x }dt .

0

After replacing ht in g(x
~
x„„t)by htE( '(x), we obtain the Lagrangian expressed by

T

L(x,x)=,2) g b, ;;x'x' —g 5;zx'2'(2)
~

D
[ , )

"
, ,

" It (2)
)
D

f

(A20)

(A21)
g (I) It (l)

+
ax

This expression is reduced to the expression (2.15) with (2.16) for the 1D case and E( '(x) =K& '. For general cases,
we can check the above expressions. ' '
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