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Linear and nonlinear magnetophonon resonances are investigated in a two-dimensional electron
gas in a single-interface GaAs-Al„Gal „As heterostructure, within the momentum-balance equa-
tion approach. The linear transverse resistivity obtained from the present approach reduces to the
high-magnetic-Seld result based on the Kubo formula. The Landau-level broadening is taken to be
Gaussian with a constant background. We Snd that a Lorentzian broadening of the density of
states gives slightly diferent results from our Gaussian broadening even when a constant back-
ground term is included. The efFect of the broadening parameters on the shape of the magneto-
phonon oscillations in the transverse resistivity p„„, the energy relaxation rate, and the warm-

electron coeScient, is found to be appreciable and stronger than in the corresponding three-
dimensional case. The nonlinear momentum-balance equation is solved for arbitrary average elec-
tron velocity. %'e find that the maxima at the linear magnetophonon resonance evolve to minima
(and the minima become maxima), when the average electron velocity is suf6ciently large.

I. INTRODVCTION

The magnetophonon resonances in the magnetocon-
ductivity, predicted by Gurevich and Firsov,
occur when the LO-phonon energy matches the separa-
tion between two Landau levels: n Aco, =fit@i o,
n = 1,2, . . . , where to, is the cyclotron frequency
(to, =e%/cm'), rn' the electron (hole) efFective mass,
iruoi o the LO-phonon energy, and % the magnetic field.
The resonant character of this efFect makes it a powerful
spectroscopic tool. It provides useful information on
phonon frequencies and band structure (i.e., the efFective
mass rn'). The magnetophonon effect has been investi-
gated in detail for three-dimensional (3D) systems: (i)
at high temperatures (T &100 K) in low electric fields
(linear regime) where the LO-phonon absorption prevails
(normal magnetophonon resonance effect), as well as (ii)
at low temperatures in heating electric fields, where the
LO-phonon emission process dominates. The review pa-
per of Nicholas2 also includes some recent experimental
results on the magnetophonon resonance efFect in two-
dimensional (2D) systems, which have attracted theoreti-
cal interest.

To date only a few experimental observations of the
magnetophonon resonance e8ect have been made in 20
systems like GaAs-Al„Ga, „As and Ga In& „As-InP
single heterostructures and superlattices, and
Ga„In, „As-Al„Ini „As single heterostructures (see,
e.g., Refs. 8-14). They reveal several interesting proper-
ties: (1) the conduction in these systems is 2D-like up to
high temperatures ( =250 K}, (2} magnetophonon oscilla-
tions persist up to high temperatures ( =250 K), (3) from
the magnetophonon resonance spectra of the 20 elec-
tron gas (2D EG) in GaAs-Al„Ga, „As heterostruc-
tures, values for the LO-phonon frequency were de-
duced which are smaller than the values for bulk GaAs,
and (4) in Ga„In, „As-InP superlattices' two series of
resonances were observed, corresponding to two LO-

phonon modes and it was found that their relative inten-
sity depends on the layer thickness. Two reports on the
observation of 20 EG hot-electron magnetophonon reso-
nance are available, both in a GaAs-type system, ' ' but
unfortunately the data are scarce and consequently these
data cannot lead to detailed comparison with the present
calculations. Recently Eaves and co-workers' ' studied
experimentally the electric-field-induced damping of the
magnetophonon resonance amplitudes in an n+-n -n+
GaAs structure and observed a conversion of the magne-
tophonon resonance maxima into minima when the elec-
tric 6eld was increased beyond the linear limit.

The aim of the present paper is to analyze the resis-
tivity of electrons, interacting with polar LO phonons in
a 2D system subjected to high magnetic fields, and to dc
electric fields ranging from very small (linear regime} to
large (hot-electron regime). In the study of magnetopho-
non resonances, the interaction with LO phonons is the
dominant scattering mechanism. %e will concentrate on
the main trends and on a comparison of these trends
with the 30 case. Numerical calculations will be per-
formed for a 20 EG in a single-interface GaAs system.
It is reasonable to assume that the electrons interact
with the bulk GaAs LO-phonon mode (see Ref. 2).

Thornber and Feynman' applied the Feynman path
integral technique to study dissipative transport in
electron-phonon systems in an external electric Beld.
The rate of momentum loss and energy loss (momentum
and energy balance} by an electron drifting through the
crystal is written in a form in which the phonons are el-
iminated exactly. Peeters and Devreese rederived the
Thornber-Feynman expression for the one-oscillator
model of Feynman in the framework of the Heisenberg
equations of motion. In this paper the Thornber-
Feynman theory is applied for the case of a nonzero
magnetic field and weak electron-phonon interaction.
The transition matrix elements are calculated in the first
Born approximation. %e will consider an e8'ective-mass
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approximation for the electrons, interacting with bulk
polar LO phonons (large Frohhch polaron). As a first
approximation we take the phonons in equilibrium, al-

though for hot-electron transport at liquid-helium tem-
perature there exists experimental evidence ' that the
phonon population may be oui of equilibrium. Screen-
ing of the electron-phonon interaction will be neglected,
but Fermi-Dirae statistics is retained. Unless explicitly
stated, a parabolic conduction band is taken for the elec-
trons. It is assumed that the electrons populate only the
lowest electric subband, which will be described by the
Fang-Howard (see, e.g., Ref. 23) variational wave func-
tion.

Application of the Thornber-Feynman theory to trans-
port in a 2D EG in crossed electric and magnetic fields
leads to an expression for the electric field as function of
the average velocity of the electron system which exhib-
its singularities. This singular behavior is traced back to
the singular nature of the unperturbed 2D electronic
density of energy states, which consists of a series of 5-
function peaks equally spaced by the cyclotron energy.
Interaction of the 2D EG with impurities, phonons, sur-
face roughness, and potential Auctuations in general will
broaden these 5-function peaks in the density of states
and, consequently, will remove the singularities in the
electronic response. Recent experimental investiga-
tions of the 2D EG in both GaAs and Si structures
in strong magnetic Selds give evidence for a Gaussian
broadening of the density of states superimposed on a
fl.at background. There is as yet no completely satisfac-
tory theoretical description of the 2D density of states
(but see, e.g., Refs. 23, 28, and 29). Both potential fluc-
tuations close to the interface and residual impurities in
the GaAs may play a role. Gerhardts and Gud-
mundsson ' ' proposed a statistical model for spatial in-
homogeneities of the electron density in a 2D EG which
simulates the electrostatic potential fluctuations. The
model yields an effective background density of states
between Landau levels and seems to agree with the ex-
perimental observations of Refs. 24-2'7. Motivated by
these results a Gaussian form with a flat background will
be taken for the 2D density of states and the sensitivity
of the magnetophonon resonances to the actual form of
the density of states will be investigated.

The linear magnetophonon resonance elfect has been
studied recently by Lassnig and Zawadzki for single
heterostructures and by Vasilopoulos for quantum well
structures. In Refs. 5 and 6 the transverse conductivity
O.„„was calculated starting from the Kubo formula and
in Ref. 5 a Lorentzian broadening of the density of states
was introduced, while here we start from the
momentum-balance equation and take a Gaussian form
for the broadening. Since broadening is crucial for a
quantitative analysis of the experimental data, we will
stress the eiTect of dilerent types of broadening.

The organization of the present paper is as follows.
The resistivity obtained from the present momentum-
balance-equation approach will be studied in Sec. II in
the linear-response regime. Numerical results will be
given for a 2D EG in a single-interface GaAs system, for
which we will consider a single dispersionless LO-

phonon mode. A comparison is made with other
theories and available experimental data. The emphasis
will be on the dependence of the magnetophonon reso-
nances on temperature, broadening parameters of the
density of states, electron density, and width of the 2D
electron layer. Hot-electron e8'ects are studied in Sec.
III within a simple electron temperature model. The
effect of the heating of the 2D electron subsystem on the
magnetophonon resonances and the electron energy re-
laxation will be investigated theoretically. Section IV
gives an outline of the calculation of the nonlinear resis-
tivity. In analogy with 3D a warm-electron coeScient is
defined and studied numerically. A comparison is made
with the behavior in 3D semiconductor systems and the
major trends are analyzed. Our conclusions are present-
ed in Sec. V.

II. MOMENTUM-BALANCE EQUATION

The momentum-balance equation (see Ref. 20) is given

e [@+(vXS)]=F(v),
where 8 is the total electric field, v is the average elec-
tron velocity, and

F(v)= g ( Vq ~

e q

t 1+n co e

n(coq)e — q )S(q, t) (2)

is the force exerted on the electron by the interaction
with LO phonons. S (q, r) =TrIf(H)e 'q" '[1

f(H)]e 'q"—"I is the space Fourier transform of the
electron density-density correlation function, where the
trace (Tr) is over all electron Landau states in a magnet-
ic field and H is the electron Hamiltonian. e is the elec-
tron charge, N, the electron density, v the steady-state
velocity of the electron, co& the phonon frequency with
phonon wave vector q, and n (coq) is the phonon occupa-
tion number. r is the electron coordinate and f(E) is
the Fermi-Dirac function.

Equation (2) has the same explicit form as the
Thornber-Feynman result. ' The time representation of
the force F(v) may be converted into a frequency repre-
sentation. Making use of identities like

f (E)[1 f (E —iris')q)]=[f (E— ficoq) f (E)]n (—co ) a—nd
Fourier-transforming the electron density-density corre-
lation function to frequency space, ' Eq. (2) can be
converted inta

F(v)= g ~ Vq ~
[n(coq) (neo —

q q —v)]
2

e q

)&Im[D "(q,co —q v)]

with Im[D'(q, co)], the imaginary part of the retarded
density-density correlation function
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)mP) (q ~)]=—
z x J,, (i) 0 ) f dE[f(E) f—()(+m)])m[G„(Z+m)lmG (E)],

nt
J„„+J(x)= . ,

xje "[LJ(x)]i,n+j!
Li(x) is the associate Laguerre polynomial, Im[G„{E)]
is the imaginary part of the Green's function for Landau
level n, and I =(fi/eS)'~ is the magnetic length.

It turns out that Eq. (3) is identical to the result of
Cai, Lei, and Ting [Eq. (2) of Ref. 33], if one puts the
electron temperature equal to the lattice temperature (T)
and replaces v by —v in their expression. These authors
also incorporated the effect of screening and applied the
balance equation approach to investigate the breakdown
of dissipationless transport in the quantum Hall regime.

From the momentum-balance equation (we choose v
along the x axis) the resistivity components are obtained
as follows:

p„„=v F(v)/[N, (ue) ],
]c)„y 8/(eN, ) . ——

F(v)= g ~ Vq ~2Im[D'(q, co )]

X n (coq)[1+n (coq)]

with P= 1/(k r).
This result, as obtained from the momentum-balance

equation, leads to an expression for p„„which is identi-
cal to the Kubo formula in the case of high magnetic
fields. The Kubo formula' was the starting expression
of the work of Lassnig and Zawadzki and of Vasilo-
poulos (in Ref. 6 inclusion of spin gives a multiplicative
factor of 4).

The equivalent form for Eq. (5) in the time domain
reads

P +q(q )
Q

t 1+@ coq e

III. THE LINEAR REGIME

In this section the linear magnetoresistance of a 2D
EG will be investigated. Therefore take the limit for
small electron velocities, i.e., v~O in Eq. (3),

—n(~ )e 'IS(q, t) .

From earlier work3 ' 6 we know that for a nondegenerate
electron gas in a magnetic field, S(q~, t), where q] AS, is
given by

fi qj l CiP f —I QlS(q„t}=N,exp —, I [1+2n (co, )]—[1+n (co, )]e ' —n (co, )e
2m ' ]]Ice,

A'qi 1+2n(a), ) [1+n(a), )]' [n(co,

J

If Eq. (7b} is substituted into Eq. (6},the time-integral I, in Eq. (6)

]])[2q~ 1+2n(co, ) ~ ~ [1+n(co, )]' [n(c0, )]'
I, =N, exp

27tl c l =0 l'=0

)][ /PAL
2

2tn' ~,
can be performed:

' l +l'
1

2m' ~,

iso t(l —l')
e (7b)

(Sa)

1+2n(co, ) [1+n(co, )]' [ ( nc)0]' A qi

J

x [[1+n(coq)]5(c0 (I I )+a)q) n(coq)5(co (I I } coq)

It is clear from Eqs. (6)-(8) that in the case of LO phonons (coq=coto), F(v) and consequently also p exhibit 5-
function singularities as a function of the magnetic Seld at nco, =co~ for n =1,2, 3, . . . . These singularities originate
from the singular nature (i.e., series of 5 functions) of the 2D density of states of free electrons in a magnetic field. In
Refs. 5 and 6 it was argued that the singularities are damped by additional scattering with impurities, defects, acoustic
phonons, etc., and the efFect of these scattering processes was incorporated by replacing the 5 functions by a Lorentz
broadened form {5(x)~—(1/n )Im[1/(x +il )]). This Lorentzian broadening is equivalent to the inclusion of an ex-
ponential damping term, e "!'~, into the time integral of Eq. (2). In the present paper we will follow a di5'erent ap-
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proach. A Gaussian broadening of the electron density of states will be adopted. Gerhardts showed that a
[—iE„t/A —( I t)2/8]

Gaussian broadening is obtained when the propagator of the free electron is taken to be e " which re-
sults in a factor e '"" in the time integral of Eq. (2). We will take I ($)=(2%co,l 0/n}' with I 0 a parameter,
which, for convenience, is taken independent of the Landau-level index n T. his is rigorous for short-range scatterers
at zero temperature in high magnetic fields. Motivated by the recent experiments on the 2D density of states, we
will include a phenomenological Sat background term in the density of states. Consequently, the 20 density of states
is given by

D(E)=
1/2

1 oo

(1—XaG) g2n'I „0
1

exp
~G

2, z 6(E)
2 [E (n—+-,'Hku, ] +XaGI2

e

&, = g I
I'q I'l(a)

q

with

(10a)

with 8(x) the Heaviside step function and Xao the per-
centage of background states in the density of states.

Figure 1 displays the density of states at %=20 T for
a Gaussian form with and without background (BG}and
also for a Lorentzian broadening. The widths of the
Lorentzian I L and of the Gaussian I G are taken such
that they result in the same full width at half maximum
for both types of broadening. The values of I I and I G

at 8=20 T are given in Fig. 1. Notice the similarity of
the Lorentz form and the Gaussian with background.

For polar LO phonons co =co„o and
I

V
=2~2@a/(q V) in units 8=m"=co„o=1 and with V
the crystal vo1ume. For the quasi-29 EG in a single-
interface GaAs heterostructure we will assume only the
lowest electric subband is occupied, which will be de-
scribed by the Fang-Howard variational wave func-
tion %~(z)=2 ' zb3/2ze bz/2 w—jth b =[48~¹2/
(m'A e, }]' . Here N=Nz+ —,",N, with N„Nz the
electron- and depletion-charge density, respectively. The
interaction matrix element now contains a factor3

Sq —— — f d (qj)
2 21'

(lob)

with the form factor P(x) given by

1 for the ideal 20 EG

1 3 3 2
8 1+x /b (1+x /b) (1+x /b)

for the quasi-2D EG .

For the 2D EG interacting with LO phonons and when
we take the density of states as Gaussians with a frat
background, we find, from Eq. (5), for the linear magne-
toresistance,

2D EG. This sum Ss in Eqs. (3b) and (5) can be rewrit
ten by application of the continuum approximation. The
q, integral can be performed, due to the absence of
dispersion of the LO phonons,

1(q, )= f dz
I
V„H(z) I

e '
0

' 2 1/3
q,1+
b

and where q(q~, q, ) is a three-dimensional vector and

q~(q„,q } is a two-dimensional vector in the plane of the

po 8~1 n, m =0

(12)

where the tilde indicates that dimensionless units are
used [e.g., P'=v/u~o with ULo

——(2~Lo/m ) =2 ]
and where

I„"' = f dx x'/ J„(x)V(x/a),

In, m dE E — E —1 1 —X~@ exP —
2

8+1—E„25 (coLo) —ao p 2

1/2

+Xao — 8(E + 1 }6(E+ 1 E„)6(E„+,—1 E—)—
CO~

' 1/2
I 6(E)6(E E)6(E +) —E)—( 1 —Xso )exp — (E E) +Xso—2 2

p 2 2
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FIG. 1. Density of states of a two-dimensional electron gas
in a perpendicular magnetic field of 20 T. Three types of
Landau-level broadening are displayed: Lorentzian, Gaussian,
and Gaussian with a Sat background.
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l

and where the resistivity is normalized to
p," =m'~«/(X, e ),2

P(x) =-,' [3/(1+x '")+3/(1+» '")'

+2/( 1+&1/2)3]

is the form factor, a =28, /I [1+2n (co, )]b21, and
P=PAcoLo. The energies E„=(n + —,

' )S„co„and I'G are
in units of fin)io (co, =Rro, /Auto). For a nondegenerate
electron gas, the energy integral in IE' can be per-
forrned explicitly, which, in the limit of zero back-
ground, results in

p„„=&7r co, n (a)„o)(1—e '
)

-3n —/co
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5

~.0-

l/l

05-

I'I

, /
l/

0.0—

T= 200K—lo - 0.36 itiqV

——- ro
- 1,7r)ieV

---- lo= 3.6meV

T= 200K
r;= ~.7m'

0'/o BG
25'/o BG

'/. BG

I„"' exp
E„—E~ —1

+—(1 E E)———P (Pl')'
m ft

(13)

00 I- ''

0.5
I

20

l"

1.0 15 2,5
(Bio/h)q

FIG. 2, The linear transverse resistivity of the ideal two-
dimensional electron gas as a function of co«/co„ for difFerent
values of the parameters: (a) temperature (T), (b) broadening
(I o), and (c) background (% BG).

The last term in the exponential of Eq. (13) will cause
a significant shift of the magnetophonon resonance peak
positions if I' is not much smaller than k&T. The depen-
dence of p„„on the parameters T, I o, and 86 is studied
in Fig. 2, where p (8)/po is shown as a function of
coLo/co, for the ideal 2D EG. For the numerical results
presented in this paper, material constants are taken for
GaAs; i.e., m'/m, =0.07 and fico&o 36 6meV. ——It ap. -

pears from Fig. 2(a) that p„„ is very sensitive to the tem-
perature T when T &140 K. At resonance it increases
steeply with T. For 140~ T g 300 K, on the other hand,
the oscillations in p„„are largest around 200 K, but p„„
is rather insensitive to T. The oscillations in p„„persist
at least up to T =300 K, which agrees with experimen-
tal observations of Englert et a/. ' This is very much
like the 3D case, where magnetophonon resonance oscil-
lations are observable up to 350 K for GaAs. However,
the maximum amplitude of the magnetophonon oscilla-
tions in p in bulk GaAs is observed at lower tempera-
ture (140 K) as compared to the 2D case. Notice that
the peak position of the magnetophonon resonances are
shifted to the lower magnetic field side and that this shift

increases with decreasing temperature. %e checked that
up to N, =5 X 10" cm, p coincides (within a 1% level)
with the Boltzmann case. This implies that the ex-
clusion principle does not play a signi6cant role here.
Figure 2(b) indicates that p„„ is sensitive to the value of
I, both at resonance (neo, =coro) and far from it. The
effect of a Hat background is to smoothen out the mag-
netophonon resonances and to increase p,„appreciably
between the resonance maxiina. Both the Gaussian
broadening and the background shift the peak positions
to lower magnetic 6elds. The shift increases with in-
creasing I o and background percentage and it decreases
with increasing temperature. At 200 K and for a 6xed
background of 25%, the relative shift of the n =1 peak
position is 1.0%%uo, 2.0%, 3.5%, and 5.0% for I'o ——0.9,
1.7, 3.6, and 5.2 meV, respectively. At 200 K and for a
Sxed I o ——3.6 meV this relative shift amounts to 2.0%,
3.5%, and 5.5% for a background of 0%, 25%, and
50%, respectively, while for fixed I o

——1.7 meV and 25%
background states, we Snd a relative shift of 1.0%,
1.6%, 2.4%, 3.2%%uo, 4.0%, and 5.0% at temperatures of
300, 200, 150, 130, 100, and 77 K, respectively.
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FIG. 3. Comparison of the present theory for the linear

transverse resistivity with the experiment of Englert et al.
(Ref. 10) and the theory of Lassnig and Zawadxki (Ref. 5) at
T =220 K. The parameters and material constants are taken
from Ref. 5.

Next we mill compare the present model with the ex-
perimental results of Englert et aI. ' and with the
theoretical results of Lassnig and Zamadzki ~here a
Lorentzian broadening was assumed (see lower part of
Fig. 3). The upper part of Fig. 3 displays p„„/po as a
function of 8, where po is the experimental low-field

resistivity. The values of the parameters are chosen
identical to those given in the paper of Lassnig and
Zawadzki (except for the background). The curve with
zero background obviously sho~s too large magnetopho-
non resonance amplitudes. On the other hand, the curve
with 25% background describes the experimental results
reasonably well and agrees with the results of Lassnig
and Zawadzkis for the n =1 and 2 peaks. The magneto-
phonon resonance amplitudes for 25% background at
magnetic Selds below 10 T (n =3,4) are more pro-
nounced than for the Lorentzian broadening approach.
For both types of broadening the peak positions are
shifted relative to the magnetic field for which ro, =cato.
For the Lorentzian broadening of Ref. 5 the n =1 peak
position is shifted =3% to the higher magnetic fields, as
opposed to the present results for Gaussian broadening
with 25% background which show a shift of approxi-
mately 2% to lower magnetic Selds. The two different
types of broadening lead to magnetophonon resonance
peak shifts which have opposite sign.

In order to estimate the eFect of a nonparabolic
energy-momentum relation on the magnetophonon reso-
nances, the Landau-level energies E„=(n + —,')8, in Eq.
(12) were replaced by the nonparabolic energies as ob-
tained from a three-band Kane theory as presented in

Ref. 39. The energy gap and the static dielectric con-
stant were taken to be equal to 1.457 eV and 12.8, re-
spectively (see Ref. 40). The results are shown in the
upper part of Fig. 3. Two effects are present: (1) a small
shift of the whole curve to higher resistivities and (2) a
shift of the magnetophonon resonance peak positions to
larger magnetic fields, which amounts to about 10% for
the n =1 peak as compared to the case for parabolic
bands (solid curve in the upper part of Fig. 3). The fun-
damental resonance (n =1) appears at 24. 1 T, which is
approximately 7% larger than the value obtained from
experiment in Ref. 10 (22.5+0.5 T). Therefore the
effective electron mass seems to be somewhat smaller
than 0.07m', if we take AcoLo equal to the bulk GaAs
energy, the validity of which was recently discussed in
Ref. 14. The calculation of Lassnig and Zawadzki with
Lorentzian broadening would lead to a still smaller
efkctive mass, since the shift of the n =1 peak position
due to the broadening seems to be relatively large and
adds to the shift due to nonparabolicity (both have the
same sign).

Both the present calculation and the calculations of
Refs. 5 and 6 give a contribution of the electron-phonon
interaction to p„„which does not vanish at any S. The
experimental results usually display only the oscillatory
part of the resistivity hp /po, where po is the zero mag-
netic field resistivity and where hp is obtained by sub-
tracting the nonoscillatory part (so-called "background
contribution" ) of p„„. In doing so, the nonoscillatory
contribution of the LO-phonon scattering cannot be
measured separately, because contributions from impuri-
ty scattering, etc. are also present. In order to compare
the present calculation with that of Vasilopoulos we
tried to fit Eq. (3.14) of Ref. 6 to the experimental results
of Ref. 10. However, the values for the layer width I.,
and the broadening parameter I o which were needed are
an order of magnitude larger than those taken in the
theories which are presented in Fig. 3. Thus in Ref. 6
the magnitude of the magnetophonon oscillations is
severely overestimated.

IV. ELECTRON TEMPERATURE MODEL

For the study of nonlinear effects, we mill first adopt a
simple electron temperature model. This is the simplest
model to describe nonlinear transport phenomena and it
is often useful in the analysis of experimental data. As it
is diScult to know u priori how quantitatively accurate
its results will be, detailed comparison with experimen-
tal data could shed some light on the validity of such a
model. The electronic response is still given by the
linear expression but the electron energy distribution is
taken to be a heated Fermi or Boltzmann function (in
the nondegenerate case) with an electron temperature
T,+T(lattice). It is equivalent to the evaluation of p„„
with S(q, t) in Eq. (5) calculated at T,~T. Figure 4
(lower part of the figure) displays the amplitudes of the
magnetophonon resonance peaks n =1,2, 3 as a function
of electron temperature at a fixed lattice temperature of
77 K. The amplitude is defined as [p„„(max)
—p~„(min)]/po . In the upper part of the figure, the
amphtudes are displayed, relative to the amplitude at
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FIG. 5. Amplitudes of the magnetophonon resonance peaks
n =1-4 as a function of electron temperature at T =4.2 K,
defined as [p„(max) —p„„(min)]/po where po is the experimen-
tal resistivity at 8=0. The densities are for the single-
interface heterojunction of Ref. 10.
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FIG. 4. Amplitudes of the magnetophonon resonance peaks
n =1,2, 3 as a function of the electron temperature at a lattice
temperature T =77 K. The amplitudes are de5ned as
[p„„(max)—p„(min}]/po . In the upper part of the figure,
the amplitudes are displayed relative to the amplitude at.
T = T, =77 K for the ideal 20 EG as we11 as the quasi-20 EG
with 25% background. For comparison a curve with T, =T is
also given.

T=T, =77 K. The curves for the ideal 2D EG (I 2D
EG} and the quasi-2D EG (with 25% background) and
for diferent resonances n all show the same trend: an
increase of the relative amplitude with increasing T, .
The effect of increasing T, at fixed T is much stronger
than the effect of increasing T such that T =T, (see the
dash-dotted curve). This shows that 2D EG hot-electron
magnetophonon resonances at low lattice temperatures
potentially have larger amplitudes than the normal mag-
netophonon resonances at high lattice temperatures. As
a consequence, the magnetophonon resonance e8'ect is
better studied at low lattice temperature, but with a
heated 20 EG. This is similar to the 30 case. The am-
plitude of the magnetophonon resonance peaks n =1-4,
normalized to experimental resistivity at 23=0 (po), is
plotted in Fig. 5 for the experimental quasi-20 EG of
Ref. 10 at a lattice temperature T =4.2 K. For
T, ~40-50 K the magnetophonon resonance amplitudes
are below the 1% level. On the other hand, for T,
around 100 K they become of the same order of magni-

8'(v)= g ~

V

&( I dt t [1+n (eiq)]e

n(co&)e q — )S(q,t},

(14a)

or equivalently

W(v)= g ~ Vq ~

Im[D'(q, coq —q.v)]
e q

X[n(co ) —n(co —q.v)] . (14b}

tude as po. Thus on the basis of these results we find

T, =40 K as the lower limit for the observation of hot-
electron magnetophonon resonances at a lattice tempera-
ture of 4.2 K. This is in agreement with the experimen-
tal work of Sakaki et a/. , ' who studied the efFect of
heating of the 2D EG in GaAs-A1„6a, „As hetero-
structures on Shubnikov-de Haas oscillations at 4.2 K.
When T, &40 K they observe extra peaks in the resis-
tivity, which they attribute to resonant emission of I.O
phonons.

Another important quantity for hot-electron transport
is the energy transfer rate from the electrons to the lat-
tice. This quantity is most easily obtained from the
energy-balance equation. The energy transfer rate for an
electron with average velocity v is
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Within the electron temperature model only terms up to
order U are retained in the expression for the energy re-
laxation rate. In this model one assumes a heated but
unshiftcd Fermi function for the electron energy distri-
bution function. Within this approximation the energy
relaxation rate (in units of W/electron) is given by

CXCil 5 (COLo)
W =2.4342X10 ' [fico (meV)]'

2+I N,

10—
CP

OJ

I~

12D EG

Q2DEG
6
1.5

with

X (e joe e p) g Inynlgnjm

n, m =0

= f dx x 'i J„(x)P(x/a)

(14c)
lX

V1

lX

10—

LiJ

10"cm '
0"Ot:m'

and P, =AcoLo/(ka T, ) the inverse electron temperature.
In the limit of zero background in the electron density of
states and in the case of a nondegenerate electron gas
(Boltzmann statistics) Eq. (14c) reduces to

8'= 2.4342X10 ' [ficoLo(meV)] —(mo, )'~i
I

8—(t{I,

(1 t)@~) (1—e )

(1—e~)

eV

I I I I I I

60 80 100 120 1%

ELECTRON TEMPERATURE (K}

FIG. 6. Energy transfer rate for ideal 2D EG and quasi-2D
EG as a function of electron temperature at T =4.2 K. The
numbers at the curves are values for coLo/co, .

X g J„"' exp
n, m =0

E„—E —1

which is proportional to e ' when T, g~T and to
e (T, —T)/(TT, ) when T, =T and for low tempera-

—jS

tures. This exponential behavior is clearly apparent in
the curves of Fig. 6. Curves for different values of the
Axed magnetic field are labeled with the corresponding
value of the inverse magnetic field coLo/co, . These re-
sults mirror the fact that the energy relaxation rate also
shows magnetophonon resonances. The inclusion of the
nonzcro width of thc 20 layer results in an overall
reduction of the magnitude of the energy relaxation rate
by an order of magnitude, but does not lead to a
broadening of the magnetophonon oscillations in the en-
ergy relaxation rate, as is apparent from Fig. 7. The
effec of different values for I 0 and of a nonzero back-
ground term on these oscillations in the energy relaxa-
tion rate is displayed in Fig. 7: the whole oscillatory
structure is smeared out, and the background term
predominantly fills up the valleys, but also shifts the
peak positions to slightly lour magnetic 6elds. On the
average the amplitude of ihc oscillations in the energy
relaxation rate decreases with decreasing magnetic AM.
The energy relaxation rate is rather sensitive to thc
broadening parameters, as can be observed from Table I,
which summarizes the data of Fig. 7 for the n =1 peak.
Over the range of realistic values for these parameters,
the largest and smal)cst amplitude in the energy relaxa-

tion rate differ by a factor of 4.
Hollering et al. ' measured the time r,tt for electrons

(and holes) to cool down to T, =100 K at a lattice tem-
perature of 4.2 K. These experimental results show v,N

as a function of 8, but with a very large step in S, so
that magnetophonon resonance oscillations in r,s(S)
could certainly not be resolved if they were present at
all. From 8=0-8 T r,tt increases and then decreases
from 8 to 20 T. These results were con6rrned by the
measurements of Ryan et al. , which show a maximum
in the cooling time around 9 T. This would mean that
the energy relaxation rate has a minimum around 9 T.
Our present results indicate that LO-phonon scattering
alone cannot explain these experimental results. Holler-
ing et al. ' attributed the decrease in ~,it for 8& 9 T to
interaction with acoustic phonons, while Ryan et al.
suggest that hole relaxation induces a rnaximurn in the
cooling time. In our opinion this behavior is still not
completely explained. Work is in progress to include
acoustic-phonon scattering in our calculations, which
will allow a comparison with Refs. 41 and 42.

V. THK NONLINEAR REGIME

The nonlinear momentum-balance equation will be
solved here for the case of Boltzmann statistics. From
the foregoing sections we know that the effect of the ex-
clusion principle on the magnetophonon resonances is
very small for the considered experimental situation
(temperatures T & 60 K, electron densities N, & 5 X 10"
cm and magnetic fields greater than S T). We will as-
surne that the electron temperature equals thc lattice
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temperature. In principle one should solve the coupled
, set of momentum- and energy-balance equations. We
believe that the results of the present model will show
the correct qualitative trends. Although there is some
experimental evidence for a heating of the phonon popu-
lation at zero magnetic 6eld, we assume thermal equi-

librium for the LO-phonon distribution.
For convenience (limiting the CPU time), the flat

background part of the density of states will be neglect-
ed. This will result in more pronounced oscillations.
Performing the energy integral in Eq. (3b), one arrives at
a numerically tractable form,

' 1/2
a jScon(—mi o)(1—e ') g expr n, m =0

2E„E~——1 P (PI )+—(1 E —E„)——
I

X I dx J„(x)9'(x/a)

X I dy cosh (1+E E„)[x—(1—y )t'~

&(sinh PP x(1—y2)
2

1/2

exp
2COc

x (y' —1)
p 2

The nonzero velocity changes the resonance condition
such that a q-dependent term, i.e., q v, is included which
will broaden and shift the magnetophonon resonance
peaks. This term will remove the 5-function singulari-
ties even for I p=0, as was recently pointed out by Hor-
ing et al. In the limit of extremely large velocity F(v)
vanishes for all T and 9, which expresses runaway of the
electrons.

Recently Vasilopoulos et al. analyzed nonlinear
transport in 2D quantum wells. They found (1}that the
linear conductivity o„depends on the layer thickness
and on temperature, (2) magnetophonon resonance maxi-
ma in O„„convert into minima at suScienily high elec-
tric fields (see also below), and (3) oscillations are present
due to inter-electric-subband scattering. Here only the
lowest electric subband is considered. They make the
following approximations: (1) small electron-phonon
coupling, (2) a Maxwelhan electron distribution function,
(3) replace the microscopic conservation of energy 5(xo)

by a Lorentzian form, (4) neglect the q, dependence of
the electron-phonon interaction coefficient Vq, (5) re-
place q v by e Ch x with 5 x a constant of order 1, and
(6) assume a nonequilibrium phonon temperature. Ap-
proximations (1) and (2) are the same as in the present
model. We do not make approximations (3), (4), and (5)
but will calculate the equations exactly, although numer-
ically. In our calculation the LO-phonon distribution is
taken to be in equilibrium [point (6}j. Unfortunately„no
numerical results were given in Ref. 7 so that a detailed
comparison of the two models is not possible.

For the warm-electron regime we will look at the first
derivative of p„„with respect to the electric 6eld.
Therefore we expand Fq. (16) up to order u and write it
in the form

E(u }= A OP+ A, u

Ao=p„„(u =0),

A, = &n n (coro—)$ (1—e
—up —5/2

8 C

—f67') g exp
E„E —1 p — (pl. }~

+—(1 E E„)———

)& I dx J„(x)P(x/a)x — + (E„E —1)—00 P 4 8

0 72 m

and where the limit of zero background is taken.
Near resonance, the term 8(E„E —1)/I'" in th—e

last expression in large parentheses of A
&

is very small
and consequently, A, is negative (p„„decreases with the
electric field 8) when I ~~5ksT, i.e;, for high tempera-
tures and small I . Far from resonance 3, is positive

(p„„ increases with 6"). This is again similar to the 3D
case. The magnitude and the sign of A, are apparent-
ly very sensitive to the value of I . The magnetic Geld
dependence of A, is shown in Fig. 8 for the idea1 20
EG at T =200 K and for various values of I o and back-
ground percentage. One observes that (1) for a back-
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(

vii ii
Io

(meV)

1.7
1.7
1.7

Background
(%)

0
25
50

Amplitude
(10-"W)

3.80
2.05
0.95

I max~I min

130
5.5
2.5

TABLE I. The amplitude of the n =1 magnetophonon reso-
nance peak in the energy relaxation rate and the ratio of the
n =1 maximum to the subsequent minimum for different
values of the broadening parameters.

0.9
1.7
3.7
5.0

25
25
25
25

2.90
2.05
1.26
0.98

9.1

5.5
2.8
2.2

A)

(Ao)
(18b)

2 x102—

10

80

60

with Co=m'cotouLo/e and 8, the applied electric field.
P„as calculated from Eqs. (17) and (18) and using pa-
rameters for the quasi-2D EG of Ref. 10 is large (com-
pared to typical values of P„ for 3D InSb at T =77 it is
10 times larger) and shows pronounced oscillations (see
Fig. 9). This is due to the fact that we only take into ac-
count the electron j.O-phonon contribution to imp. AQ
contains strong oscillations [Ao=p„, (u =0)] and conse-
quently the oscillations in P, are enhanced, through its

5.0 -'i

20

0,0

10
l

0.5

15 20 25 g (T)
I

1.0 15
, ,32

cj+Lo
FIG. 7. Energy transfer rate for ideal 2D EG and quasi-2D

EG as a function of coLo/co, at T =4.2 K and T, =100 K. The
equivalent scale of the magnetic field is indicated. In (a} the
BG is changed, while in {b)both I 0 and BG are varied.

2,0

p„„(u)=p„„(u=0)[1+P,C, ], (18a)

ground of )25%, Ai is never negative, (2) the back-
ground term has a large overall efFect and, i.e., it in-
creases A

&
and it induces a shift in the position of the

main minima, and (3) an additional structure (maximum,
minimum, maximum) between the main minima at reso-
nance is found. This additional structure originates
from the behavior of the dominant Gaussian terms (see
inset of Fig. 8) and it is only pronounced for very nar-
row Landau levels (very pure samples).

Introducing a warm-electron coefficient P„, which is
an experimentally measurable quantity (see, e.g.,
Hamaguchi et a/. for results of 30 conduction in
InSb), the nonlinear resistivity p„(u) can be written ap-
proximately as

T= 200K
Ne=3.1 x10""ce2

Md=5.0x10"cm 2

I

1.00
I

1.25

BG

'/o3

25

1.7 25

3.7 50

3.7 25

3.7 0

1.7 0

I

1.50

A'(i'Lo

FIG. 8. Dependence on coL&/co, of the coefficient A l from
Eq. (17), for the qnasi-2D EG and for different values of I 0 and
BG at T=200 K. The inset shows A, and Ao for the ideal
2D EG with I 0

——1.7 meV and no background. The dominant
terms which contribute to A l are displayed in the inset.
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strong dependence on Ao [Eq. (16b)]. In reahty, other
processes like impurity scattering, acoustic-phonon
scattering, etc. dominate the behavior of Ao, while for
the nonlinear coeScient A

&
this is much less the case.

For Tgg40 K the deviation of p from the linear
response is dominated by interaction with LO phonons.
From Fig. 9 we observe that (1) on the average P„ in-

creases %'1th decreasing Hlagnetic field and the oscilla™
tions in p„rapidly die out when CI, «olio (2) the addi-

tional structure in A, is reiiected in P„only when I is

small, and (3) the influence of temperature is dramatic:
roughly a factor of 100 decrease in P, occurs as the tem-
perature is increased from T =77 to 200 K.

Below we discuss the numerical results for genera1
values of the average velocity as given by expression
(16). The magnetophonon resonances in the nonlinear
resistivity p /poo for the quasi-2D EG are shown in
Fig. 10 for diferent values of the average electron veloci-
ty (i.e., current density). The upper part of Fig. 10
shows results for 7 =200 K and the lower part for
T =77 K. The same broadening parameters are taken
for both temperatures. For small velocities
(u /ui o &0. 1 ) the extrema are shifted to the lower mag-
netic field side and the amplitudes of the oscillations de-
crease. For higher velocities (u/uio y0. 1) the resistivi-

ty shows maxima at those magnetic fields for which in
the linear case it shows a minimum and similarly the
maxima convert into minima. The oscillations are quite
large, but it is expected that inclusion of a fiat back-
ground term in the density of states mi11 smoothen them
substantially. We expect that the general qualitative
trend will not be changed by the inclusion of the back-
ground term.

Figure 11 displays the shift in position of the n =1
maximum and of the subsequent minimum (i.e., at lower
magnetic fields) as a function of the velocity (quasi-2D
EG at T =77 and 200 K). The almost discontinuous
change in the position of the minimum around
u/uLo ——0. 1 at T =200 K in fact marks the disappear-
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FIG. 9. WsrB1&lcctroll cociclcllt [scc Eq. (18)J ss s fullc-
tion of cuLo/co, for the quasi-20 EG at T =200 K. The uppef
part gives results for dilerent values of I 0 and in the 1o~er
part of the fi.gure for dimerent temperatures.

4)t.lb)p()

FIG. 10. The magnetic 6eld dependence of the nonlinear
rcsistlvlty p,„~p„„/po [scc EQ. (16)] fof thc qllssl-2D EG
with Gaussian broadening at a constant current density. The
corresponding values for the velocity u/u&o are given in Table
I.
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FIG. 11. The position of the maximum, which in the linear
case is the n = 1 magnetophonon resonance maximum, and the
position of the subsequent minimum, both as a function of the
velocity. Results are given for the quasi-2D EG at T =77 and
200 K, and the value of 1"o is kept constant. The curves are a
guide to the eye.

ance of a minimum around cu, =coro/1. 5 (see, in Fig. 10,
the curve for T =200 K and u/v~ ——0.0985). Up to
u /v „o& 0. 1, the shift of the position of the maximum
away from the resonance condition cv, =cvio is small.
Around u/u„o ——0. 1 the position of the maximum shifts
rapidly and then it is pinned around cu, =cvio/1. 5. A
similar behavior can also be found in the shift of the po-
sition of the subsequent minimum which evolves from
cv, =cvi.o/1. 5 when v/ui. o &0. 1 to cv, =ceto/2 when

u/uLo &0.1. The transition from a maximum to a
minimum with increasing velocity occurs at smaller ve-
locities when n is larger. This is apparent from Fig. 10
where for u/u„o=0. 12 the n =1 resonance is still a
maximum, while the n =2 resonance is already
transformed into a minimum.

The de pendence of the nonlinear resistivity

p„„=p„„/pu on the average velocity is displayed in Fig.
12 for the quasi-2D EG at T =77 and 200 K in a con-
stant magnetic field. The scale on the right side gives
values for p normalized to the experimental values for

pu of Ref. 10. For 8=21 T, which is near the n =1
magnetophonon resonance in the linear case, p„„de-
creases first with increasing velocity. It shows a
minimum around u/u„o =0.2 and for larger velocities it
increases with u. For %=14 T, which is near to the
minimum in the linear case, p„„ increases with U and at-
tains a maximum around u/u„o =0.2 and a subsequent

dip around u/u„o=0. 25, followed by an increase. For
u/uio & 0.25, p„„(l}increases steeply for T =77 K, and

(2) becomes almost independent of T and 8 (almost coin-
cides with the results for T =200 K). This behavior can
be interpreted as a saturation of the velocity near
u/uLO ——0.5. As in the simple Shockley model the resis-
tivity and thus also the applied electric field 4', -p„„v

w 10

4J
CL

/
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VELOI:lTY V/ VLO

FIG. 12. The nonlinear resistivity p„„/pq as a function of
the average velocity for the quasi-2D EG at T =77 and 200 K.
Results are displayed for different magnetic Seld values. The
right scale gives values of p„„/pp in percent, with po from ex-
periment.

increase steeply around u/ui o ——0.5, while the velocity is
almost constant. For u/uio & 1 the resistivity decreases
again and the "runaway" of the electrons sets in.

VI. CONCLUSIONS

In this paper magnetophonon oscillations were investi-
gated in the linear and nonlinear electric field region for
a two-dimensional electron gas subjected to crossed elec-
tric and magnetic Selds. The following approximations
were made: (1) we consider an effective-mass approxi-
mation for the electrons, (2) only the first electric sub-
band is supposed to be populated, (3) screening is
neglected, but Fermi-Dirac statistics is retained, (4) the
phonons are considered to be in equilibrium with the lat-
tice, (5) the LO phonons are taken to be the bulk pho-
nons (3D) of GaAs, and (6} the first-order Born approxi-
mation for weak electron- LO-phonon interaction is
used. In the linear regime the present balance equation
approach is equivalent to the Kubo formula. The gen-
eral trends in the linear magnetophonon resonances in
the 2D EG in a GaAs-Al Ga, „As heterostructure are
similar to the 3D GaAs case; i.e., (1}the relative ampli-
tude of the main peak is about 10% at T =220 K and
(2) the amplitude of the magnetophonon resonance peaks
as a function of temperature has a broad maximum
around 200 K. A diN'erence with the 3D case is the im-
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portant efFect of Landau-level broadening. Without
broadening the magnetophonon resonance peaks are 5-
function singularities in 20, while in 30 only a logarith-
mic divergence is found at resonance. It appears from
the present calculations that a Lorentzian form for the
electron density of states gives slightly diFerent results
as compared to a Gaussian form with a Sat background
term. The latter form was recently suggested by experi-
mental studies on the 20 density of states.

The energy relaxation rate of the 2D EG also shows
magnetophonon resonances. %'iihin an electron temper-
ature model the amplitude of the magnetophonon reso-
nances in the energy relaxation rate were found to be
much larger than in the resistivity. VA'thin this electron
temperature model, the amplitude of the magnetopho-
non resonances in the resistivity increases with the elec-
tron temperature: (1) to above the 1% level for lattice
temperature T =4.2 K when T, «40-50 K; this agrees
with the observation of Ref. 16; and (2) the amplitude of
the magnetophonon resonances increases much faster
with T, than with lattice temperature.

The warm-electron coefficient P„defined from the ex-
pansion of the momentum-balance equation to the Srst
nonlinear order in the velocity, is a measure for the
derivative of the transverse resistivity with respect to the
electric field. P„shows pronounced structure and in-
creases strongly with decreasing temperature. For a
Gaussian broadening without a Sat background, P„ is
negative near the linear magnetophonon resonance con-
dition and positive far from resonance. This is again
qualitatively similar to the 30 case. The quantitative
behavior of P„, even its sign, is extremely sensitive to the
actual form of the 2D density of states. Other scattering
mechanisms should also be included in the calculation of
the hnear resistivity in order to make quantitative pre-
dictions for realistic systems.

A numerical solution of the full velocity dependence

of the transverse resistivity shows (1) that the magneto-
phonon resonance maxima convert into minima when
the average velocity of the electron u & uLo j10 (similarly
the minima convert into maxima at the same velocity),
(2) a saturation region in the velocity for T =77 K
which is almost independent of the strength of the mag-
netic field, and (3) a monotonous decrease of the resis-
tivity for very large velocities ("runaway"). Although in
principle one should have to solve the coupled set of
momentum- and energy-balance equations we believe
that the present calculation of the nonlinear resistivity
sho~s the correct general trends. The change of sign of
the magnetophonon resonance extrema in the second
derivative of p„„(%) was recently observed by Eaves
er a/. ' ' in an n+-n n+-GaAs structure where the
conduction is three dimensional. They analyzed the ex-
perimental results in terms of spatial Landau-level (LL)
overlap due to the electric field. The conversion of max-
ima into minima was attributed to elastic inter-LL
scattering and the contribution to p„„ofelastic electron
acoustic-phonon scattering was estimated (they did not
include the LO-phonon scattering). In the present mod-
el we find that a conversion of the magnetophonon reso-
nance maxima into minima can also be induced by the
interaction with LO phonons. A similar conclusion was
reached in Ref. 7. Finally, we hope that these results
will stimulate further experimental and theoretical inves-
tigations on linear and nonlinear transport in 20 EG in
the presence of a magnetic field.
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