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New ab initio correlation calculations for the correlated ground state and the binding energy of
diamond are presented. As a starting point, we use an improved self-consistent-field ground state.
It is obtained from a calculation within the local-density approximation (LDA). The correlation
calculation is performed with the help of the local ansatz of Stollhoff and Fulde. Recent improve-
ments in the correlation treatment are included. The resulting estimate of the binding energy ob-
tained is considerably better than the LDA results. This variational scheme treats the short-range
correlations very efficiently. The computations for diamond are, therefore, no more time consuming
than comparable variational calculations for a small molecule like ethane.

I. INTRODUCTION

A quantitative understanding of electronic correlations
is a necessary contribution to accurate ab initio calcula-
tions for solids. Here, short-range electron correlations
play an especially important role. Only if they are well
accounted for can good binding energies be obtained, for
example. Other properties which are strongly influenced
by these correlations are the properties of transition met-
als! as well as valence-fluctuating or heavy-fermion sys-
tems. 2

These short-range correlations are well understood
only in two limiting cases: first, for small molecules, and
second, for the homogeneous electron gas. For the first
case, a large number of quantum-chemistry methods exist
which allow treatment of these small molecules with high
accuracy.>* For the case of the homogeneous electron
gas, different methods exist too. There are coupled-
cluster schemes®® which compare with specific
quantum-chemistry methods. There are Jastrow methods
which recently could be extended to systems anisotropic
in one dimension.”® Finally, there are Monte Carlo
methods which at present allow for the most accurate
treatment of the homogeneous electron gas.® This last
method is the only one which has been generalized to a
few anisotropic solids, !° although at considerable compu-
tation expenses. Neither the coupled-cluster schemes nor
quantum-chemistry methods could be used for anisotrop-
ic solids yet. A reason is that both schemes are of purely
numeric origin. Therefore, they run over a complete
class of orthogonal excitations. This orthogonality re-
quirement prevents an efficient coverage of the short-
range part of the electronic correlations and requires a
detailed inclusion of essentially all of these excitations.
Long-range correlations on the other hand are covered
for the homogeneous electron gas by any of the above-

37

mentioned methods in a very simple fashion. It is expect-
ed that their treatment for anisotropic solids does not
lead to major problems no matter which scheme is used.

Correlations are therefore usually included in compu-
tations for solids only within a specific approximation,
namely the local approximation to the density-functional
method (LDA).!"12 There, one restricts to the solution
of an one-particle Hamiltonian where electrons only
“see” an effective correlation potential. The correlation
potential as well as the exchange potential at a given
point are assumed to be those of the homogeneous elec-
tron gas with an electronic density corresponding to the
actual one on this site. This approximation allows for
very efficient computations. Many physical properties
could be explained by calculations within the LDA.
There are shortcomings, however, caused by this rough
approximation. Binding energies come out wrong by typ-
ically 1 eV for semiconductors, as will be discussed
below. More serious problems arise for transition metals
as far as details of the understanding of itinerant magne-
tism are concerned.”!* It seems at present as if there is
no way to improve systematically beyond this approxima-
tion. 1

We have developed a local ansatz (LA) of the treat-
ment of electronic correlations which takes into account
from the beginning the local character of the correlation
hole.*~!7 Within this approach a computation of corre-
lations within a solid is not much more expensive than
within a molecule. It can be seen as a generalized Jas-
trow ansatz applied to anisotropic systems. We have
tested this approach successfully on small molecules.!”!®
Correlations are treated variationally within given one-
particle basis sets in analogy to quantum-chemistry
methods. Although we include only a very small subset
of excited states, namely those states which represent lo-
cal correlation corrections, we obtain more than 95% of
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the complete energy available for the given one-particle
basis set. >~ 18

Due to the drastic reduction in correlation space, it
was possible to perform a first variation-like ab initio
computation for a solid, namely for diamond.!® There it
turned out that the correlation calculations do not lead to
any numerical problems. The preceding self-consistent-
field (SCF) calculation, however, was less easy to handle.
This first computation was handicapped by a rather poor
SCF ground state and by poorly converged matrix ele-
ments. These shortcomings led to rather large uncertain-
ties on the one-particle level and excluded careful checks
of the convergence of the correlation calculation itself.
Recently, progress has been made as far as SCF computa-
tions are concerned. A better SCF ground state could be
computed and all one-particle matrix elements could be
obtained with high precision.?® This enabled us to repeat
the correlation computations with much better accuracy.
Furthermore we included all improvements which have
been developed recently on calculations for small mole-
cules.'® The local ansatz of Stollhoff and Fulde will be
discussed in Sec. II. Section III contains details of the ac-
tual computation as well as the results for the total and
binding energy of diamond. Section IV then gives details
about the convergency of these calculations and about
the computational expenses. Section V deals with the
pair correlation functions. Conclusions are drawn and
further possible improvements and fields of applicability
are discussed in Sec. VI.

II. THE CALCULATION
OF ELECTRONIC CORRELATIONS
WITHIN THE LOCAL ANSATZ

As with most quantum-chemical methods, this ap-
proach has been developed specifically for variational-like
calculations within a given finite one-particle space of
Gaussian-type orbitals (GTO’s) f;(r), which are centered
at different atoms. The corresponding creation and an-
nihilation operators are called @ }‘,,,a,.,. Within the Hil-
bert space spanned by them, the Hamiltonian is written
as

+ 1
H= E sijaiaaja+_2- 2 njklaizaga'ala’aja ’ (1
ij,o ijk,lLo,0

where
ey=[ d’r fHO[—LA+V(NIf5(r),

Via= [ [ d*r flnf;(n

X L) fy(r') .

I S
=
V(r) is the sin%le-electron potential due to the nuclei.
. t
The operators a; ,a; are adjoint to the operators @ ;,,2;,-
For the anticommutation relations it holds that

{aia’a}c‘ } =Sij—18tm'
with the overlap matrix
Sij=<fi |fj> .
Through a self-consistent field (SCF) calculation, the
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SCF ground state |gcp) is obtained. It is determined
by the one particle eigenstates of the effective one-particle
Hamiltonian

Hyo= 3 (&;+Vcouij+ Vexclij )aitrajo ) ()
ij,o
where the Coulomb(V ¢, ;) and exchange (V ;) po-
tentials are determined self-consistently. !’

For the correlated ground state, the following ansatz is
made: 317

[¥.)=e"%| Pscp)

(3)
with
S= E Mn On
n
The operators O,, take the three forms
nin;y
0,={min= 2 Mighjo @)
o,0
Si'sj' .

The n;, are occupation number operators and the §; are
spin operators for electrons in the state i. The states i are
described by localized functions g;(7) which are defined
as

g,-(r)=z‘r,~_,-fj(r) . (5)
J

The first two kinds of operators O,, when applied to
| ¥scr), pProject out those parts of it in which two elec-
trons are in the same or in neighboring states at the same
time. They therefore reduce local charge fluctuations.
The third kind of operator correlates the spins of elec-
trons on neighboring sites. Within the actual computa-
tions these operators are not chosen in the original form
as Eq. 4. The original operators, when applied to | ¢scg)
create a state which is not orthogonal to | ¥scr) and in-
clude contributions which describe one-particle excita-
tions of | ¥scr). In the following, only those parts of the
above operators will be kept which describe two-particle
excitations. This formally implies that no contractions of
fermion operators belonging to the same correlation
operator are allowed when expectation values are calcu-
lated. For more details see Ref. 17. These parts of the
projection operators represent the fluctuations in charge
or spin around the mean values in | ¢gcp). It is these
fluctuations which need to be suppressed when they arise
for charges and eventually increased when spin ordering
comes into play.

The variational parameters 7,, of the correlated ground
state are determined by optimizing its energy

E={(y,|H|¢,), . (6)

The subscript ¢ to the angular brackets means that only
connected diagrams are to be included for the evaluation
of E.2!

The variational computation cannot be performed ex-
actly. An approximate solution is a variational expan-
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sion. There, E is expanded in powers of 1

E=Es—237,{0,H)+ 3 1,m,(0,HO,,) (7

n,m

with
H'——H _ESCF .

Here { 4 ) means {¢gcp | 4 | ¥scp). The optimization of
Eq. (7) immediately leads to

E=E¢r— 3 (0,H)((0HO)),'(0,H). (8

n,m

This expansion is equivalent to the so called CEPA-0
variant of coupled cluster schemes in quantum chemistry,
with the advantage, however, that it is performed within
a very small subspace of two-particle excitations, namely
those defined in Eq. (4).

Note that second-order perturbation expansion is ob-
tained by replacing (OHO ) by (OH,0) in Eq. (8). The
result of Eq. (8) contains all corrections up to third order.
It does not diverge for long-range correlations in met-
als.?! The derivation of this result as well as the calcula-
tion of the matrix elements (OH ), (OHO ) are described
in detail in Refs. 17 and 21.

The proper choice of the functions g; (or the v,;) Eq.
(5) is of prime importance for an effective correlation cal-
culation. Experience gained from calculations for small
molecules suggests the following procedure.

A first choice of local functions is that of atomic orbit-
als or atomic hybrids. With hybrids we mean orbitals ob-
tained by a hybridization of the s and p atomic orbitals
for diamond which point into the bond directions. For
diamond these atomic orbitals are obtained from the
bond orbitals of the SCF ground state. Details will be
given below. All these atomic orbitals are orthogonalized
to the core states and to each other. The operators con-
structed with these atomic functions have a special mean-
ing. They describe mostly correlations which arise due to
bonding. We have called them therefore “interatomic.”
The bonding leads immediately to charge fluctuations.
The operator n;,n;; now allows for reducing the proba-
bility to find two electrons in the same atomic hybrid at
the same time. Additional important contributions come
from the operators where the states i,j are on the same
atom. The operators n;n; allow reduction of the charge
fluctuations on an atom. These global fluctuations are
only partially suppressed by the diagonal terms n;n;,.
The operators S;-S; finally allow the electrons on a given
atom to align their spins and therefore to obey Hund’s
rule at least partially on that site. Operators with pairs of
states on different atoms need to be chosen, too. They de-
scribe the longer-range correlations. In metallic systems
they are important and screen the long-range charge fluc-
tuations. For the case of diamond, they only lead to a
van der Waals polarization between more distant bonds.

These interatomic correlations are quite strong. They
cannot be described by second-order perturbation expan-
sion only. For these correlations, Eq. (8) needs to be
computed without further approximations.

The interatomic operators describe a significant part of
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the changes in the pair correlation function due to corre-
lations but the energy gain due to these correlations is
only a fraction of the total correlation energy. The larg-
est contributions to this energy come from “intra-atomic
correlations” as we call them. They describe the strong
variations in the short-range part of the correlation hole
around each electron. This correlation hole even has a
cusp at the electron position. These correlations are
present for the solid as well as for individual atoms. They
contribute to the binding energy too since the mean elec-
tron density within a solid is higher than that within an
individual atom and since often the occupation of the
atomic states changes within a solid due to hybridization
effects.

When described within the LA, the local states g;(r)
are therefore to be defined as small subregions of the
atomic orbitals. The computations are restricted to a
finite one-particle basis for each atom, though. There-
fore, only a finite subdivision of the atomic volume with
such local states is possible; the mesh of local regions in
fact has to be of the same dimension as the basis size.
The correlations are to be averaged within the volume of
each subregion. This restriction is a global shortcoming
of correlation calculations within finite basis sets. Due to
the strong variation of the correlation hole on very-
short-range distances, such calculations always miss a
non-negligible part of the correlation energy, its conver-
gence with basis-size dimension being rather slow.
Therefore, a larger basis needs to be chosen for the corre-
lation calculations than for the SCF calculations them-
selves. The specific method how to construct localized
states from the basis set will be discussed later. Here it is
sufficient to mention that there are essentially two de-
grees of freedom for such constructions: first a separa-
tion of the atomic volume into shells, and second, an an-
gular separation of these shells into hybrids. It is impor-
tant to note that all these states are defined by basis orbit-
als on the corresponding atom only. The operators con-
structed by these states on a single atom describe the
short-range correlations there. Furthermore, correlations
connecting subatomic regions on neighbor atoms need to
be included. They lead to small corrections.

This definition of very localized operators has an im-
mediate consequence. It is evident that short-range
correlations on separate parts of the solid do not interact
with each other. In fact, it turned out that these short-
range correlations influence each other only as long as
there is a significant overlap of these regions. The com-
putation therefore splits into the following independent
sets of calculations: (1) SCF calculation within a
sufficiently good basis set [for example double {—this
means two sets of (contracted) GTO’s for each atomic or-
bital]; (2) inclusion of interatomic correlations within the
whole solid—this computation needs to be performed
only within the basis set of the SCF calculation; and (3)
addition of further basis functions on single atoms and
computation of the additional intra-atomic correlations
on these atoms. The dominant part of the total intra-
atomic correlation energy is obtained by adding these
contributions from all atoms independently. In the case
of diamond only a single calculation with correlations on
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a specific C atom needs to be performed. There are final-
ly small corrections to be computed. These are (4) com-
putations which simultaneously take into account the
intra-atomic correlations on two neighboring atoms
within the increased basis sets and add correlations be-
tween regions on both atoms. In this step an overlap
correction is made to step (3) since otherwise specific
correlations in the region in between both atoms might be
counted twice by the individual and independent compu-
tations there. Further, new operators for short-range
correlations between both atomic sites are added. In the
case of diamond this means that a single further compu-
tation is performed which covers correlations on two
neighbor atoms. It turned out that the corrections of
step (4) are very small as compared with the result of step
(3). Besides, corrections due to overlap effects of non-
neighbor atoms can be neglected. !’

Another approximation made possible by the separa-
tion into interatomic and intra-atomic correlations is that
intra-atomic correlations when orthogonalized to the in-
teratomic correlations can be treated in second-order per-
turbation expansion. This facilitates the correlation com-
putations even more.

III. NUMERICAL APPLICATION FOR DIAMOND

The correlation calculation for diamond is based on a
SCF calculation by von der Linden, Fulde, and Bohnen. %
We will repeat here the relevant details of this work. The
SCF calculation was performed within the same double-§
basis set as used in the calculation by Kiel et al.!® The
basis set consists of 4s orbitals, contracted from seven
GTO’s and two sets of p orbitals, contracted from three
GTO’s.? This SCF calculation differed completely from
the one used in Ref. 19. It was performed by a program
developed for self-consistent calculations within the LDA
(Ref. 23) for GTO basis sets. This way, a one-particle
ground state was obtained which is defined by its density
matrix P;;, and the effective one-particle Hamiltonian
Hy,;. The latter includes exactly the one-particle part
and the Coulomb potential but adds an approximate
exchange-correlation potential. The outcoming one-
particle ground state was then taken as a trial ground
state for the computation of the exact exchange potential.
This potential and the exchange energy needed to be cal-
culated by a separate program. They replace the corre-
sponding LDA contributions. The outcoming total ener-
gy is —75.656 a.u./(unit cell). When compared to the en-
ergy of the SCF ground state of a C atom, obtained
within the same contracted basis, —37.653 a.u.,?* a SCF
binding energy of —0.349 a.u./(unit cell) is obtained. %

In order to reach the Hartree-Fock (HF) limit of the
binding energy, two corrections play an important role.
First, the state as obtained self-consistently within the
LDA is not the SCF ground state. From calculations on
the C atom, it is known that the exact energy of this state
is 0.0075 a.u. above the HF ground-state energy.'* As-
suming that this shortcoming is present already for the
finite basis set and that this defect does not change for di-
amond, the SCF binding energy needs to be increased by
0.015 a.u./(unit cell).
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Second, the binding energy comes out too small due to
the finite basis set within which these calculations are
performed. While additional s and p functions only add
to the energy of the atoms and of the solid in the same
way and therefore do not contribute to the binding ener-
gy anymore, d functions as well as higher polarization
functions contribute to the solid only. From molecular
calculations it is known that already a single set of d
functions contributes with an energy of 0.015 a.u. for
each bound carbon atom. This energy does not depend
on the nature of these bonds or on the size of the mole-
cules.?® A reasonable guess is that all further polariza-
tion functions when added lead to an additional correc-
tion of roughly a third to one half of this first contribu-
tion. '8

Altogether, the binding energy as obtained from this
calculation needs to be corrected by 0.060+0.01
a.u./(unit cell). The error bar indicates the uncertainty
connected with these estimates. The estimated HF limit
for the binding energy is then —0.409+0.01 a.u./(unit
cell).

It is possible to obtain most of these corrections explic-
itly by a self-consistent calculation within an enlarged
basis set. It turned out, however, that already the single
computation of the exchange energy within the small
double-§ basis set was the most expensive part within the
whole computation.?! A further gain in efficiency needs
to be obtained before such computations are justifiable.
It is much easier to include these corrections via single-
particle excitations which are added to the correlation
treatment. It will be a future task to program such a
correlation program based on the LA which includes
single-particle excitations and calculates the corrections
which have been estimated above.

The results of the above one-particle calculations,
namely the density matrix and the one-particle Hamil-
tonian with the exact exchange added, provide the neces-
sary input for the correlation calculations.

In a first step, information about the atomic orbitals is
extracted from the density matrix. In principle, the
valence-band states as solutions of the one-particle Ham-
iltonian can be transformed into localized bond orbitals
by a Wannier transformation for diamond. Even atomic
orbitals might be obtained when localizing properly ad-
mixed valence and conduction band states. Such a trans-
formation is not unique anymore, however. Details of
the long-range tails of these orbitals are not of much in-
terest either for ground-state calculations. Therefore, a
simple scheme has been chosen which leads to atomic or-
bitals in a good approximation. First bond orbitals are
obtained by perturbing the density matrix and looking at
its eigenvalues. When transforming it into that of an or-
thogonalized basis P =S'/2PS /2, the eigenvalues of P are
degenerate and either 1 or 0. Setting all elements of P
outside a certain cluster to zero, only those states which
are not influenced much by this cutoff retain eigenvalues
close to 1. This way localized occupied states can be ob-
tained. They converge well with increasing cluster size.
To obtain a good approximation for a core state, a cluster
including just one atom is sufficient. To obtain the con-
tribution of one atom to bond orbitals, a cluster of this
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atom together with all neighbor atoms is sufficient.
When represented in the original basis orbitals, then only
the contributions of this central atom to the four bonds
are kept, leading to a set of four (2s,2p) atomic hybrids.
These states are orthogonalized to all 1s states first. Fi-
nally they are orthogonalized to each other. With them
we construct operators which describe the interatomic
correlations of the valence electrons.

The original nonorthogonal atomic orbitals which are
described by orbitals on the respective atom only are used
to determine the orbitals for the intra-atomic correla-
tions. As mentioned above, the atomic volume is subdi-
vided into different shells and each shell is then subdivid-
ed into different angular parts. The double-§ basis set as
used for the SCF calculation is extended to include one
set of d functions with exponent a;=0.6. Such a basis
set is exhausted by a subdivision into three shells. For
each shell, one set of s and p orbitals is constructed.
These orbitals are generated from the atomic orbitals by
a cutoff procedure. There, the contributions of the outer
basis orbitals to the atomic orbitals are partially reduced
or removed. For each s and p orbital in each shell this
cutoff is described by a single parameter. These parame-
ters have been optimized before in a calculation for a
small molecule, namely CH,.!® Here they are chosen as
in the computation of Ref. 19. Having fixed the respec-
tive s and p orbitals for the inner, central and outer shells,
they are then orthogonalized to the core states and hybri-
dized within each shell. For the inner and outer shell
only the s and p orbitals are hybridized to form sp -like
states while for the central shell a sp3d*® hybridization
into 12 nonorthogonal states is performed. Details of this
hybridization are given in Ref. 17. There is a set of addi-
tional parameters connected with these hybridizations.
Since usually the resulting intra-atomic states are orthog-
onal to each other neither within nor in between the
different shells, different weights for the individual sets of
orbitals are introduced. The weights have been opti-
mized before.!” For this diamond calculation, we reop-
timized a few parameters. This results in an increase of
the total correlation energy by almost 3%. For the cen-
tral shell, the cutoff parameter of the s orbital changes to
—0.4, that of the p orbital to 0.10. The anisotropy in the
deg and d,2 weight factors is removed; the resulting aver-

age d weight factor is 0.71. For the outer shell, the s
cutoff parameter increases to —2.8, while the s weight
factor shrinks to —0.5. This change within the outer
shell leads to a surprisingly large improvement as com-
pared with previous molecular computations, which were
rather insensitive to changes there.

In this way all atomic orbitals and intra-atomic states
are fixed. Since the basis set for the correlation calcula-
tion is extended, a few additional matrix elements dealing
with the new d orbitals need to be calculated. Matrix ele-
ments for the overlap matrix S;; and for the one-particle
part of the Hamiltonian H,; without exchange are gen-
erated easily with the LDA-GTO program. The missing
terms of the exchange potential V,,;; are determined by
a modified version of the program which computes the
exchange potential for the one-particle calculations.
Here only relatively few matrix elements going up to
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second neighbors need to be included. These are roughly
50 terms whose exclusive use in the correlation calcula-
tions demands also much less accuracy. With all matrix
elements S;;, H,;, P; and the transformation y,,; avail-
able, all modified one-particle matrix elements derived in
Ref. 17 are calculated exactly without further approxima-
tion. The calculation of the matrices (O,H) and
(0,HO,,) converges within a finite cluster. For this
purpose, interaction matrix elements Vi, in terms of
basis orbitals need to be calculated only within a cluster
of eight atoms. These are two neighbor atoms and all
their nearest neighbors. Only for the two central atoms is
the basis size extended by additional d functions. Details
of the convergence behavior will be demonstrated below.
The calculation of the matrix elements V;;, is performed
within the POLYATOM program package.r;

Next, the results for the correlation energy of the
valence electrons and for the corresponding binding ener-
gy contributions are discussed. The different contribu-
tions to the correlation energy are given in Table I to-
gether with the corresponding values for the C atoms as
obtained within the same basis set.

The interatomic correlations are separated into three
parts. The dominant contribution comes from the opera-
tors defined on single atoms. Further, density correla-
tions between neighbor atoms are calculated. Here, the
atomic hybrids describing the bond between these atoms
are not included. These terms describe therefore van der
Waals polarizations of next nearest bonds. Finally, from
these neighbor correlations all longer-range polarizations
are estimated. If it is assumed that these correlation en-
ergies behave like 1/R 6 with increasing distance R, these
terms should add less than half of the correlation energy
as obtained from nearest-neighbor contributions alone. !
The typical uncertainty of this estimate should not be
larger than 50% of its value. A more precise computa-
tion might be performed but is not very meaningful since
larger uncertainties enter later. When added up, all in-
teratomic correlations lead to a correlation energy of
—0.0925 a.u./(unit cell). These correlations need to be
compared with a specific correlation for the C atom
which can be described by atomic orbitals there, namely
a two-particle excitation of the occupied 2s states into the
empty 2p states. The contribution of the interatomic
correlations to the binding energy then amounts to
—0.058 a.u.(unit cell). This is only 40% of the total
correlation contributions.

The intra-atomic correlations are calculated stepwise.
First they are treated on single atoms only; the results on
different atoms are added. The resulting intra-atomic
correlation energy needs to be corrected in a next step by
overlap effects. These corrections are very small al-
though not negligible. They reduce the intra-atomic
correlation energy by less than 3% only. Correlations be-
tween neighbor atoms are finally added which are de-
scribed by intra-atomic states on both atoms. Here all
states within the central shells of both atoms need to be
correlated with each other. Inner shell states on the one
atom correlated with central shell states on the neighbor
add an additional small amount. None of the individual
contributions dominates. Their importance increases
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TABLE 1. Valence electron correlation energies and energy differences.

Diamond
[a.u./(unit cell)]

Binding-energy contributions
[a.u./(unit cell)]

C atom
(a.u.)

Interatomic correlations

Single-site operators —0.0865 —0.0175
Neighbor-atom operators —0.004
Longer-range correlations —0.002 +0.001
—0.0925+0.001 —0.0575+0.001
Intra-atomic correlations
Single-site operators —0.1130 —0.0580*
Overlap corrections + 0.0030
Different site corrections —0.0252
—0.1352 —0.020
Total correlation energies
Result (LA) —0.228 +0.001 —0.0755* —0.077 +0.001
Correction (LA) —0.010 +0.003 —0.0025* —0.005 +0.003
Correction (finite basis) —0.086 +0.005 —0.021 —0.044 1+0.005
Estimated experimental values —0.324 1+0.006 —0.099 —0.126 +0.006

3The result within the LA for the C atom has been guessed. The exact value for the finite basis set in this case is known.

when the states on the neighbor atoms are close to each
other. This behavior is very similar to corresponding
ﬁndin§s for these correlations in small hydrocarbon mole-
cules.® Furthermore outer shell states on each atom
need to be correlated with central shell states on the
neighbors. These corrections did not play a role for the
small molecules treated so far but contribute with almost
30% to the different site corrections as obtained for dia-
mond.

All these intra-atomic correlations add to —0.1352
a.u./(unit cell). They are to be compared with the corre-
sponding intra-atomic correlations for the individual C
atom. There, only the exact value for this basis set is
known, namely —0.0605 a.u.?® Since a program within
the LA does not exist for open-shell cases yet, we have es-
timated from results for the Ne atom that the shortfall of
such a LA calculation should be roughly 0.0025 a.u.
Comparing the values for the correlation energy of the C
atom obtained this way with the result for diamond re-
veals a correlation contribution to the binding energy
which amounts to 60% of the final value.

To obtain a good estimate of the experimental limit of
the correlation energy, the following two shortcomings
need to be corrected for. The first is a correction of the
LA result towards the exact result obtainable within the
same basis set. As it turned out for calculation on atoms
and small molecules, '~ !® this approach rather constant-
ly underestimates the correlation energy by 4-5 % due to
the severe restriction of the excitation space. This
correction is, in the case of diamond, roughly
—0.01010.003 a.u./(unit cell). The second correction is
the larger one and results from the finite basis set used. It
is known that this deficit amounts to —0.021 a.u. for the
correlation energy of each separate C atom. For molecu-
lar calculation within a similar basis set, it is known that
this deficit increases by (110+10) % as compared with
the atomic value.'® These corrections do not depend

much on the actual nature of the bonds around the C
atoms. By choosing this empirical renormalization the
finite basis size correction for the correlation energy of
diamond can be estimated to be —0.086+0.005 a.u./(unit
cell).

With these correlations added, the correlation contri-
butions to the binding energy amount to —0.126+0.006
a.u./(unit cell). The error bar results mostly from uncer-
tainties in the estimate of the finite-basis-size effect.
When added to the HF binding energy —0.409+0.01
a.u./(unit cell), then a total binding energy of
—0.535+0.013 a.u. arises, the numerical uncertainty
coming mostly from the one-particle part of the calcula-
tions. This value needs to be compared with the electron-
ic contributions to the experimental binding energy. The
latter is known to be —0.542 a.u./(unit cell). With zero-
point energies for the nuclei of —0.013 a.u./(unit cell)
added, the former comes out to be —0.555 a.u./(unit
cell). The value obtained is too small as compared with
this experimental value by almost twice the error bar
connected with the uncertainties in the estimates.

The only plausible explanation for this deviation is a
shortcoming in the estimate of the finite-basis-size effect.
This estimate has been taken from calculations on small
molecules. As compared with the atomic limit, the elec-
tronic densities are slightly higher there. Furthermore, a
redistribution of charge from the s into p atomic orbitals
due to hybridization takes place. It has long been known
that electrons within p orbitals correlate more strongly
than within s orbitals in the atomic limit.?*3° These two
changes lead to an increased weight of very-short-range
correlations and, therefore, to the strongly increased
basis-size dependency as mentioned above. The diamond
crystal is distinct from small molecules in that the charge
density renormalizes more strongly and that there is no
spherical atomlike outer low-density domain anymore.
The latter is contracted instead into holes with low densi-
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ty within the open diamond structure. Outer-shell corre-
lations which cover the outer regions for small molecules
apparently are of no use anymore in the case of diamond.
This explains the sizably smaller contributions of single-
site operators to the intra-atomic correlation energy as
compared with the atom (Table I). For molecules with
comparable bonds, these contributions were by more
than 10% larger than the atomic values.'® In addition, in
the diamond case, these outer regions are strongly
reparametrized, indicating that the corresponding opera-
tors now cover within a first, probably poor attempt,
correlations within the low-density areas. This way, the
large additional contributions of intersite operators with
outer shell states can be explained, too. Apparently, the
basis set chosen for diamond is not able to cover these
correlations within the low-density areas as well as the
correlations closer to the atoms. An improvement could
be obtained within an extended basis either by adding
more delocalized atomic orbitals, especially an additional
set of d functions, or by choosing an additional basis set
for the holelike domains so that the electrons can be
directly correlated in these regions. We will investigate
these extensions in the future.

It is of interest to compare these binding energies with
those obtained within the LDA. There, the most reason-
able values published give a binding energy of —0.625
a.u./(unit cell). These results have been obtained by a
calculation within the atomic sphere approximation.’! It
has been possible to correct part of the approximations
made there.3>3? These corrections lead to an estimated
LDA binding energy of —0.64510.01 a.u./(unit cell).

A LDA calculation in a GTO basis set with only s and
p functions included led to a binding energy of —0.589
a.u./(unit cell).?* Its deviation from the estimated LDA
binding energy may result partly from the lack of higher
polarization functions which should contribute with a
similar energy as within the HF calculations. Other
pseudopotential computations originally gave results
close to the experimental binding energy®> but moved
more recently toward this estimated limit.*

As compared with our old computation, Ref. 19, we
have obtained stable and well-converged results. The un-
certainties connected with the error estimates decreased
by a factor of 3. In the former computation, the results
came out qualitatively similar. The intra-atomic correla-
tions due to single-site operators have been overestimated
there. The different site correlations are new; they were
completely neglected the last time. It is only this time
that new features in the basis-size dependencies show up.

IV. CONVERGENCE
OF THE CORRELATION CALCULATIONS

As mentioned above, none of the computational steps
which deal with one-particle matrices is very time con-
suming. These calculations can be handled with ease un-
til numerical convergence is achieved. For diamond, it
turned out that restricting these matrices to next-
nearest-neighbor terms leads to a typical failure of 1%
for the correlation energy while the inclusion of all
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third-neighbor terms leads to well-converged results.

When dealing with the interaction part of the Hamil-
tonian (1), a more restrictive treatment is necessary.
Each atom has 4 nearest, 12 next-nearest and 24 third-
nearest neighbors. Suppose an operator is defined for a
given atom; then going straightforwardly up to third-
nearest neighbors would suggest calculation of the matrix
elements V;;, within a cluster of 41 atoms. Although
this cluster is of high symmetry, such a computation goes
beyond the limits of today’s quantum-chemistry methods.
As we will demonstrate, however, the actual convergence
is much better.

The matrix elements V;;; are needed for two sets of ex-
pectation values, namely {0, H ) for all operators O, and
(0,H'0,,) for the interatomic operators O, and O,
only. H' here means the residual part of the interaction
within (1), which is not contracted into Coulomb and ex-
change potentials.!” Due to orthogonalization tails, the
convergence behavior of the interatomic correlations is
expected to be poorer than that of the intra-atomic corre-
lations. We will in the following therefore restrict our-
selves to these terms and especially to the most important
contributions, namely to the correlations described by
on-site operators. When calculating their matrix ele-
ments, then certainly the nearest-neighbor contributions
around the atom where the individual operators are
defined need to be included. In a next step, selected
next-nearest-neighbor contributions can be added. For a
specific atomic hybrid these are either next-nearest neigh-
bors in the bonding direction or in nonbonding direc-
tions. These contributions are obtained from a calcula-
tion within a cluster of eight atoms, consisting of one
atom with all neighbors and the three next-nearest-
neighbors in one bonding direction. For all operators the
expectation values (0, H ) and (0,HO,, ) are calculated
first within a cluster of five atoms. Next the correction of
three next-nearest neighbors are added depending on
whether they are in direction of (one of) the atomic hy-
brids or not. In Table II, these values are given for a few
expectation values. It is seen that next-nearest-neighbor
corrections cannot be neglected. The contributions in hy-
brid direction change the expectation values by typically
10%, but already contributions of next-nearest neighbors
in nonhybrid directions are negligible. Third-nearest-
neighbor corrections are certainly smaller than the latter
contributions so that there is not need to include them
any more. The converged result of the interatomic corre-
lations with all single-site operators included is therefore
obtained from calculations within this small cluster only.
Longer-range correlations which describe polarizations of
next-nearest-neighbor bonds can be computed in a first
step within this cluster too. For these terms we expect
that complete convergence is not reached within such a
cluster. These correlations effects are so small, however,
that even errors of 10% can be tolerated.

Table III contains the correlation energies as obtained
from the single-site interatomic correlations within
different approximations. The first column contains the
final results. Presented are the energies obtained with the
operators n;n;, only, with density correlations added
and finally with spin correlations included.
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TABLE II. Expectation values {0, H ) and (0, HO,, ) for interatomic operators as obtained for different cluster sizes. All values

are in a.u.
Central atom plus four Three next-nearest neighbors

nearest neighbors In (one) hybrid direction In no hybrid direction Final result
(n;yn; H) 0.043 53 —0.005 57 + 0.00001 0.03799
(nin; H) 0.036 82 0.001 86 —0.00007 0.040 40
(S;8,H) —0.00496 —0.00013 +0.00003 —0.00516
(n;n; Hniin; ) 0.10545 0.009 80 0.000 14 0.11567
(n;n;Hn;n;) 0.064 51 0.004 95 0.00009 0.074 69
(8;8,dS;S;) 0.491 66 0.01520 0.00003 0.52212

The second column contains results as obtained with
matrix elements gained from the five-atom cluster calcu-
lation only. This way, the correlation energy is overes-
timated by 15%, the largest error coming from the opera-
tors n;4n;,.

The last column contains the results as obtained in
second-order perturbation expansion. The matrix
(0,HO,,) is then replaced by (0,H,0,, ). There the
total correlation energy decreases by 20%. Even worse,
different contributions behave differently. The energy
gain due to correlations within single bonds decreases by
20% while the density correlations between different
states are not affected. The spin correlations effects, how-
ever, shrink to 30% of their correct values. This seem-
ingly paradoxical behavior can be understood easily. The
corrections (0, H’0,, ) have different consequences. For
diagonal terms (0,HO, ) they partially cancel the in-
teraction effects included in the dispersion of the energy
bands by the exchange potential. This cancellation is
rather effective. For the operators n;;n;;, 85% of the ex-
change potential is quenched by these terms, for example.
This explains the main shortcomings of the correlation
energy for the operators n;yn;,. Another effect of these
correctidns is an interaction between different operators
(0,H'0,,). Where density correlations are concerned,
the nondiagonal terms cause a mutual dependence of all
operators on each other. This way, the different correla-
tions screen each other. This screening effect is missing
in second-order perturbation expansion, causing a consid-
erable overestimate by simply adding individual correla-
tion contributions. For the density correlations in dia-
mond, both corrections apparently compensate each oth-
er. In the case of spin correlations, the role of these non-
diagonal corrections is reversed. While in a second-order
perturbation expansion the energy gain due to spin corre-
lations competes alone with the kinetic energy loss

caused by them, the coupling terms allow for corrections
due to the stronger density correlations and facilitate
Hund’s rule correlations. In this case both corrections
add up and explain this big change. A second-order per-
turbation expansion treatment of these correlations on
the atomic scale leads therefore to unreliable results even
for weakly correlated systems like diamond. This
shortcoming is more evident for stronger correlated sys-
tems like transition metals. '3

Contrary to these interatomic correlations, the intra-
atomic ones can be treated mostly in second-order pertur-
bation expansion. Since these corrections deal essentially
with very short range correlations an even better conver-
gence with respect to the size of the cluster treated is ex-
pected. It is therefore sufficient to restrict to a global
treatment for all these terms. In a first step the intra-
atomic correlations on one atom are calculated. The
smallest meaningful cluster again contains five atoms,
namely the one where these correlation operators are lo-
cated and its nearest neighbors. Within this calculation,
the basis size of the central atom is expanded. To test the
convergence, in a next calculation step three-next-nearest
neighbors in one of the neighbors direction are added.
The outcoming intra-atomic correlation energy for the
small cluster is —0.0555 a.u. in second-order perturba-
tion theory. The correction due to the three further
atoms added is —0.000 13, or little more than 0.1%. Go-
ing beyond the second-order perturbation expansion in-
creases this value by 0.0004 a.u. This leads to a final re-
sult of —0.0565 a.u. for the intra-atomic correlation en-
ergy for each C atom as given in Table I.

For the last step within the correlation treatment,
namely an intra-atomic correlation calculation for two
neighboring atoms, a computation within the same clus-
ter of eight atoms needs to be performed, but this time
with an extended basis size on both central atoms. Since

TABLE III. Interatomic correlation energies due to single site operators [in a.u./(unit cell)].

Restriction Second-order
Final result to nearest neighbor V, perturbation expansion
n;n;, —0.0556 —0.0719 —0.0441
+n;n; —0.0798 —0.0935 —0.0675
+8;S; —0.0865 —0.1039 —0.0695
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the overlap effect and the short-range correlations be-
tween neighbor atoms are very small we dispensed with
any further convergency checks for these terms too.
Corrections there should not be larger than these for the
intra-atomic correlations on single sites themselves.
Furthermore, we treated these corrections in second-
order perturbation expansion only.

This cluster of eight atoms used in the final calculation
is the largest cluster for which all interaction matrix ele-
ments V;;, needed to be computed. Only for the two
central atoms is an extended basis set needed. The ex-
pense of this step corresponds to that necessary for a
correlation calculation for the molecule ethane with simi-
lar quality. Such a computation is a very simple task for
present day quantum-chemistry computer programs.

V. PAIR CORRELATION FUNCTIONS

As discussed above, the interatomic correlations play a
special role in anisotropic systems. Already the need to
treat them better than in second-order perturbation ex-
pansion indicates that they are rather strong. Here we
will discuss their strength in a little more detail and com-
pare them with correlations as they arise for molecules as
well as for the homogeneous electron gas.

The atomic correlation functions which change most
are

('/’c | nipniy | ¥, ) =<"i1”u ) —A4;
9)
and

2 [nin; | ¢c>=<”i”j)°Aij ’

where n; describes the occupation operator of the atomic
hybrid i. The correction terms A;; are only calculated to
dominating order, namely

Aij'—_!-—zzn,,(o,,n,-nj) . (10)
n

For the orthogonalized atomic hybrids it holds that
(n;n;y ) =0.25and (n;n; ) =1.0.

The reduction of the fluctuation within the bond is
A;=0.040 or roughly 16%. The nondiagonal charge
suppression is A;; =0.027. Both values are comparable to
corresponding correlations on the atomic hybrid posi-
tions of the C atoms in C,Hg. '8

Of further interest is a calculation of the total charge
fluctuation on a C atom in diamond in one-particle ap-
proximation Any and for the correlated ground state
AnZ’c. There it holds that

Anlp={(n?)—(n)?=2.0,
Zn3=5n%":—22A"— 2 AU

i,J
(i#])

(11

=1.36.

This reduction of the charge fluctuations by 32% is
very close to that in a C atom in C,H again. The nondi-
agonal correlations together are of the same size as the
diagonal terms.
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All other corrections within the pair correlation func-
tion are of minor weight. Longer-range correlations are
quite small. They are described as bond polarizations
and decrease as ~R ~° Short-range corrrelations are
significant but only in a small volume around the actual
electronic position. Their integrated weight is much
smaller than that of the correlations on the atomic scale.

This structure of the correlation function differs
strongly from that of the homogeneous electron gas.
There, the long-range correlations are of very different
origin and are much stronger. The very-short-range
correlations there might compare with the very-short-
range correlations in the diamond case for comparable lo-
cal densities. The outstanding size of the correlations on
the atomic scale, on the other hand, cannot be obtained
within a homogeneous system. It is very doubtful wheth-
er generalizations of such a scheme based on gradient ex-
pansions beyond the homogeneous case will be able to
deal more properly with these correlations caused by the
anisotropic nature of solids. Experimental evidence for
these dominant corrections of the pair correlation func-
tion on an atomic scale does not exist yet for diamond.
In more strongly correlated systems, namely the transi-
tion metals, there is, however, evidence from Compton
scattering that correlations as they arise in a homogene-
ous system cannot explain the experimental situation,’
while strong correlations on an atomic scale lead to a
better description. 8

To conclude, the electronic correlation pattern of the
electrons in diamond has much more similarity with that
of molecules with comparable binding than with that of
the homogeneous electron gas.

VI. SUMMARY AND OUTLOOK

The results of the preceding sections demonstrate the
accuracy which can now be reached for ab initio ground-
state calculations of solids with the help of the local an-
satz. The quality of quantum-chemistry methods can be
transferred this way to solids. The estimate for the bind-
ing energy of diamond made by this scheme deviates
from the exact result by roughly 0.3 eV/atom. It is there-
fore better by a factor of 4 than the current best ab initio
results as obtained within the LDA. These results give a
deviation of 1.2~1.3 eV/atom.

Due to the fast convergence of the correlation calcula-
tions, the computational expenses for the correlation part
in the case of diamond are not larger than those for the
original GTO-LDA calculation. The only really expen-
sive part therefore is still the accurate calculation of the
exchange energy for the one-particle ground state of the
LDA calculation. Its costs are at present two orders of
magnitude larger than those of the original LDA calcula-
tions. This exchange energy program, however, has not
really been optimized either for the computation of the
individual interaction matrix elements or with respect to
an efficient use of convergence within the summation of
the single contributions. Such an optimization should
reduce the computation cost by up to two orders of mag-
nitude. It is worth mentioning here that other HF pro-
grams have been developed recently which are consider-
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ably more efficient but have not been applied yet to calcu-
lations in basis sets of the quality needed here.’® There-
fore, while the correlation part already poses no more
problems, we hope for the same as far as the exchange
part is concerned.

Another interesting topic is an eventual increase of ac-
curacy for the individual energy contributions. We could
improve considerably beyond the shortcomings of the
first computations. Now all energy contributions which
can be computed for the part of the Hilbert space avail-
able to the calculation scheme are converged. The
remaining errors are connected with the estimates of
effects of the parts of N-particle Hilbert space not
covered yet. At present the greatest shortcomings arise
for the one-particle ground state obtained from the LDA
calculation. Its defects have been discussed in detail in
Sec. III. As mentioned there, it should be possible to im-
prove considerably beyond the present state. A further
non-negligible shortcoming is connected with the finite
one-particle basis set used for the correlation calculation.
At the present level we have to estimate the relatively
large defect from known corrections for molecules. It is
possible to repeat this correlation calculation with a
larger basis set which includes for example two additional
sets of d functions and one of f functions. Then roughly
half of the missing contribution will be obtained by such
a calculation while the remaining part hopefully can be
estimated with much better accuracy from this additional
calculation alone and not from results for molecular cal-
culations. In this way we will also be able to describe the
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differences in the dependence of the correlation calcula-
tions for a solid on the basis functions as compared with
that for atoms and small molecules. The final correction
which needs to be estimated is that caused by the local
ansatz itself. There are different ways to improve on this
field. One is to optimize numerically the intra-atomic
states. First successful attempts in this direction have
just been finished.* Another is to include all excitations
on an atom exactly instead of restricting to a very small
excitation space described by the intra-atomic states.

This discussion demonstrates that there are no objec-
tions in principle against a further continuous improve-
ment of the local ansatz. At present we are only restrict-
ed by the difficulties of the HF calculation itself. Since
there is a steady progress on this field, different kinds of
solids will become accessible to a proper many-body
treatment. Our presentation of the pair correlation func-
tion as well as details and accuracy of the calculations in-
dicate the importance of a good understanding of many-
body effects in anisotropic systems.
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