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Gradient expansion of the exchange-energy density functional:
Effect of taking limits in the wrong order
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%'e show that if one uses a screened Coulomb potential V (K)=4m/{E +E, ) to calculate y, the
exchange-energy density-functional gradient expansion coeScient, one obtains Sham s result if one
takes E~0 before taking E,~0. The exchange energy is by its very de6nition an unscreened quan-

tity so that the correct order of the limits is K, ~0 before E~0, in which case y„=1.42y„"' .
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The gradient expansion becomes inaccurate when p(r)
contains high-K Fourier components, p(K). An expan-
sion accurate for any K as long as p(K) is small, is
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A few years ago one of us' claimed that y„=7
where y„"' =7/[216m(3m )'/ ] is Sham's result for the
exchange-energy density-functional gradient coe5cient in
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coe%cient for correlation only. Langreth remains un-
convinced that y„"' suffers from K -0 Coulomb
anomalies. Langreth and Vosko state that one can use
Sham's method to resolve any E-0 anomalies, since
such anomalies, if they exist (italics ours), must cancel out
of the sum in Eq. (6), so that y„may be taken equal to
y„"' . It is not the purpose of this paper to argue that
y„", and y, are incorrect, although we believe that to be
the case. (We believe that any calculation resulting in a
part of the correlation energy being first order in the cou-
pling constant e must be in error. ) Rather, it is our pur-
pose to make absolutely convincing what we have already
demonstrated, namely that Z„(E~O,K, —=0) results in

y„=—",y„"' . Perdew' ' suggested that our numerical re-

One may write (letting a =K /kF )

F„(tt)=F„(0)+xZ„(tt),

ln which case

y„=3Z (0)/2'(3m' )'

(3)
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follows, using kz ——(3n' po)'/ . Our disagreement with
Sham's result was attributed to Sham's use of a screened
Coulomb potential

V (E,E, ) =4m /(E +K, )

in calculating Z„(K) and taking K=O before allowing K,
to become zero. In fact, our result for y„was also in-
correct because we had discarded a term whose numera-
tor vanished by symmetry but whose denominator also
vanished. This we soon discovered when we calculated
Z„(K) numerically for finite a and found that the K~O
limit yielded y = —",y„"' . We concluded that Z„(K=0) is

not defined {for unscreened exchange), that y„must be
obtained from the x~0 limit, and if screened exchange is
used, that x, must be set equal to zero before the x'~0
limit is taken. Note that Eq. (3) which defines Z„(K) is
satisfied for Z„(K—=0) having any noninfinite value.

This controversy remains of interest because
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where y„, is the Langreth-Perdew exchange-correlation
gradient coemcient and yM~ the Ma-Srueckner6

FIG. 1. P1ot of (=Z„{K,Ks)/Z„"' as a function of K=K/kr
for various values of vz.
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TABLE I. Z„(x,x, )/Z„" for values of a =K/kz listed in the first column and ~&/k+ at the head of
the other columns. The results in parentheses at x=0.0235 are of less accuracy than those at
a =0.023 75 which were calculated using four times as many mesh points.

0
0.0235
0.023 75
0.0495
0.0995
0.1995
0.2995

Z„(0.3)

0.81992
(0.8212)
0.8204
O.S211
0.8235
0.8336
0.8488

Z„(0.1)

0.966 10
0.9688

0.9732
0.9907
1.0381
1.0860

Z„(0,0235)

0.997 10
1.0222

1.0707
1.1505
1.2436
1.2981

Z„(0.004)

0.999 88
1.1953

1.2832
1.3452
1.3894
1.4142

Z„(0.001)

0.99999
(1.3406)
1.3404
1.3821
1.4057
1.4239
1.4386

Z„(0)

(1.4116)
1.4200
1.4207
1.4264
1.4348
1.4461

suits would be unimpeachable if we calculated Z„(K,K, )

and found that Z„(K~0,K, ) agreed with the analytic re-
sult for Zq(O, Kq ), which includes Zq(O, Kq ~0)

Z Sham
X

Aside from using the screened interaction of Eq. (5) we

follow Ref. 4 to obtain

F„(K,K, ) = 3 (K)I (K,K, ),

I(K K ) d3k d3k, 1
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X g ( —1)'a, I b,' a,'+z'+z' —2kF'+2(k~ —z') ln[(z' z—'+a,'+b,')—/2a, ']

and f (k} is the Fermi function. After performing the same tedious analytic integrations as in Ref. 4 we arrive at an
equation which difFers only in the addition of E, to the a; and b; inside the curly brackets

I (K,K, )= (m /K) f dz f dz'(z +—,'K) (z'+ —,'K)—kp jg j

+2(kF —z' ) in[2(kFz z' )/(z z' —a,'+b, )—]], — . (10)

where

a,'=a;+K, ,
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sion of Mohammed and Sahni, "
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To obtain the principal value of the integral we normalize
to kF ——l and evaluate the integrand at mesh points z„
and z„' =+n /4000 with n even and require that
—,'a. =m/4000 with m odd. ' This gives better results for

x, —=0 and x~0 than we obtained in Ref. 4 where we
took n odd and m even. It has the disadvantage that
when we improve the accuracy by taking z„and
z„' =+n /8000, the allowed values of —,'a change shghtly.

In the 6rst row of Table I are listed values of
Z„(O,a; )/Z„"' obtained from the exact analytic expres-

F„(a,a, ) —F„(O,a, )
Z„(a,a, )/Z„"'

K324

where

(14)

F„(0,n, ) =—,'[1—( a; /2 ) ln( 1+4/a, ) ] (15)

may be obtained by using the screened interaction in

Taking a;=0 in (13) gives Z„"' = —,'„, which when in-

serted in (4) yields y„"' . The remaining rows of Table I
list
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Ref. 1."
Because of the I/K in Eq. (10) and the I/a in (14), at

the smallest x in Table I over six signi6cant 6gures of nu-
merical accuracy are lost relative to su= l. Also, in Eq.
(8) there is a singularity at k =k' which should result in a
loss of numerical accuracy for K, =0. This corresponds
to z =z' in Eq. (10) where it does not appear obvious that
a nonzero ~, will improve the accuracy. Using four times
as many mesh points' (i.e., z„and z„'=+n /8000) we
have repeated the x=0.0235 calculations' for x, =O,
0.001, and 0.3 with the results shown' in Table I. We
note a moderate change for x, =0 but a much smaller one
for ~, =0.001, so that obvious or not, even a very small

a, in Eq. (10) results in a large improvement in numerical
accuracy. The results of Table I (discarding those in
parentheses) are fit in Fig. 1 assuming a a dependence at
small I(. From either the table or the figure we note that
for nonzero x, the numerically evaluated Z„(a,a, ) join
smoothly to the exact ~=0 results, that
Z„(s=O, v, ~0)=Z„"' but that Z„(@~0,a, =0)
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98y its very definition the correlation energy when added to the

unscreened Hartree-Pock exchange energy is equal to the to-
tal energy. Therefore, y„,=y„+y,. Since y„+y„"' and Eq.
(6) is numerically verified, either y~~ is not the correct y„, or
y„"'~ and y, contain compensating errors so that
~Sham+ ~MB ~ +~

' J. P. Perdew (private communication}.
~~A.-R. E. Mohammed and V. Sahni, Phys. Rev. 8 29, 3687

(1984).
'2The omission of absolute-value signs on the z's in the limits of

integration in Ref. 4 was a misprint.
' %'e weight each point according to the fraction of its proximi-

ty square which lies within the integration limits. Thus z'=z
(including z' =z =0) and z =kF are weighted —,

' but
z'=z =kF is weighted —,'.

'41f one uses the screened interaction in Eq. (7) of Ref. 1, one
sees that the integral in Eq. (8) becomes

(1—p')kF
2 dpdp~-i ~-i K+2kFy, 2kF(1 p')+K,'—

The p' integral yields the factor in square brackets in Eq. (15)
of this paper.

5Each integration using Cray X-MP double precision requires
one hour of central processor time.

' The closest allowed values of a. to a =0.0235 when
z =z' =kn /8000 are x=0.023 25 and 0.023 75.

'78ecause of the weak x dependence of the x, =0.3 curve, the
more accurate value obtained at a =0.023 75 may be directly
compared with the value at x=0.0235. %hen the curvature
of the ~, =0.001 curve is taken into account, we estimate the
correction at x =0.0235 to be about twice the —0.0008 found
for a, =0.3.


