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Donor transition energies and their line strengths in GaAs/A, Ga, „As quantum-well structures
in the presence of a magnetic field applied parallel to the interfaces
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%'e have calculated the transition energies between the ground state (1s-like) and three excited
states (2s-, 2p„-, and 2p, -like) of a hydrogenic donor associated with the Srst subband in a GaAs
quantum well sandwiched between two semi-in6nite layers of Al, Ga& „As in the presence of a mag-
netic Seld applied parallel to the interfaces. In addition, we have also calculated the line strengths
of these transitions in various polarizations. Results have been obtained both as a function of the
applied magnetic 6eld and the position of the donor ion along the direction of growth. %e have fol-
lowed a variational approach in which the trial wave functions are expanded in terms of appropriate
Gaussian basis sets.

INTRODUCTION

There has been a great deal of interest in both the
theoretical' and experimental ' investigations of
the behavior of shallow hydrogenic donors in GaAs-
A1~Ga& „As quantum-well structures in recent years.
Bastard' was the first to calculate the binding energy of
the ground state of a hydrogenic donor as a function of
the well size and the position of the impurity ion, assum-
ing an infinite potential at the interfaces. This work was
followed by several calculations ' ' ' ' in which the
authors calculated the binding energies of the ground
state and of several low-lying excited states of a donor as-
suming finite values of the potential at the interfaces.
The effect of a space-dependent dielectric constant on the
energy levels was investigated by Czavinszky and Elab-
sy' and by Oliveira and Falicov. Brurn, Bastard, and
Guillemot, Guillemot, ' and Hawrylak and Quinn
studied the e8'ect of electron-electron interaction on the
ground state energy of a donor in a quantum well. The
efFect of an electron-optical-phonon interaction on the
properties of donors in quantum wells was investigated

by several groups. ' ' ' ' ' Bastard et al. and Greene
and Bajaj have calculated the absorption profiles of
shallow donor transitions in quantum wells. Recently,
Bajaj and co-workers'o" have calculated the binding
energies of the ground state and of a few low-lying excit-
ed states of a donor in a quantum well in the presence of
a magnetic field applied perpendicular to the interfaces.
The transition energies thus calculated agree very well
with their measured values. '

In this paper we report a first calculation of the transi-
tion energies between the ground state (1s-like) and three
excited states (2s-, 2@~-, and 2p, -like), referred to from
hereon as 1s, 2s, 2@~, and 2p„respectively, of a hydrogen-
ic donor associated with the first subband in a GaAs

quantum well sandwiched between two semi-infinite
( & 100 A, in practice) layers of Al„Gai „As in the pres-
ence of a magnetic field applied parallel to the interfaces.
In addition, we also present the line strengths of these
transitions in various polarizations. Our results are given
both as a function of the applied magnetic field and the
position of the donor ion along the direction of growth.
We follow a variational approach in which the trial wave
functions are expressed in terms of appropriate Gaussian
basis sets.

THEORY

Within the framework of an efFective-mass approxima-
tion, the Hamiltonian of a hydrogenic donor in a GaAs
quantum well can be written as

2
1 eH= p ——A

2m,'
e + Vs(x),
ar

where the barrier potential Vs(x) is assumed to be a
square well of height Vo and width L,

0, ix i
&L/2

V&( '='V,
, [x [ ~r. /2. (2)

%e take the origin of the coordinate system to be at the
center of the well. The position of the electron is denoted
by r, where r =[(x —x;) +y +z ]', x; being the x
coordinate of the impurity ion. The quantity m, is the
electron effective mass, which is taken to be diferent in
the two semiconductors. The values of the static dielec-
tric constant eo are assumed to be the same in GaAs and
Al„Ga) As.

The vector potential A is defined as

A= —,'(BXr) .



37 DONOR TILA NSITION ENERGIES AND THEM I INK. . .

Assuming that the magnetic field is applied parallel to the
interfaces (taken to be the z direction), the Hamiltonian
of our system can be expressed as

, ~' ——+yL, +-,'y'(x'+y')+ V&(x) .
r

Here we have used the eftective Bohr radius in GaAs,
ao=eoiri /m'e, as our unit of length and the effective
Rydberg 8 =e2/2eouo as our unit of energy. For GaAs
(m ' =0.067m„@0=12.5) these quantities are 98.7 A and
5.83 meV, respectively. In Eq. (4), I., is the z component
of the angular-momentum operator (in units of vari}, and y
is a dimensionless measure of the strength of the magnet-
ic 6eld, de6ned as

(5)

In Ref. 11, where the magnetic field was perpendicular to
the interfaces, the Hamiltonian was cylindrically sym-
metric, and therefore I., was conserved. In the present
case, however, we do not have such a symmetry, and
therefore the wave functions will not be eigenfunctions of
I., The conduction-band discontinuity or the barrier
height Vo in Eq. (2} is taken to be 60% of the band-gap
di8'erence between GaAs and Al„Ga& „As. %e obtain
the band-gap difference from the empirical relationship
given by Lee et al

calculations of the energy levels of a hydrogen atom. The
donor-ofF-center case is obtained by replacing x by x —x, .

For convenience, we will refer to the terms proportion-
al to y and z as p and p, terms, respectively, and the oth-
er set of terms as s terms keeping in mind, though, that
the angular momentum is not a good quantum number in
the present case. The Hamiltonian [Eq. (4)] does not cou-
ple the p, terms with either the s or p„ terms, so that our
solutions will be either even or odd functions of z, which
reduces the size of our eigenvalue problem accordingly.
The s and p terms are coupled by the I., part of the
Hamiltonian (except when the donor is located at the
center of the well). This is because the function f (x) is
symmetric about the center of the well and not about the
location of the donor ion.

If the donor is located at the center of the well a wave
function proportional to x(p„) is associated with the
second conduction subband. ' For the well sizes we con-
sider the energy separation between the subbands
suSciently large that there should be negligible mixing
between them as long as the magnetic field parameter y is
not much greater than 1. If the donor is located away
from the center, the f (x) function introduces terms that
have p„symmetry. Consequently, we have not included a

EEg ——1.155x +0.37x eV . (6)

cos(kx),
i
x

i
&L/2

(x)= '

Ae "", ~x
~
)I /2. (8)

The parameter k is determined from the energy of the
first subband and quantities ~ and A are obtained from
the matching conditions at the interface. We require that
f (x) and (m'/m, ')(Bf/Bx) be continuous across the in-

terfaces.
We write G (x,y, z) as a series of terms of three distinct

symmetries, as given below:

5 —a r
G(x,y, z)= g (A;+B,y+C;z)e ' e @" +~ ',

We have calculated the eigenvalues of the Hamiltonian
described by Eq. (4) using a variational approach very
similar to that used in Ref. 11. We write the variational
wave function as a product of f (x), the wave function of
the ground state of the electron in the one-dimensional
potential Vo, and a function G(x —x, ,y, z} which de-
pends on the relative impurity coordinates,

g=f (x)G(x —x;, y, z) .

The solution to the square-well problem f (x) is given as K
Q

Nz

O. O 0.2 0.6 9.8 l.O l.2 l.4

where P is a variational parameter which is determined
from the minimization of the energy and is alected most
strongly by the size of the magnetic 6eld. As in Ref. 11,
the quantities u; (13.4, 2.01, 0.454, 0.123, 0.0267) are tak-
en from the results of Huzinaga, who performed a de-
tailed study of the use of Gaussian basis functions in the

MAGNETIC FIELD (y)

FIG. 1. Variation of the 1s-2s, 1s-2@~, and 1s-2p, transition
energies as a function of the magnetic Seld parameter y {de5ned
in the text) for a donor located at the center of the we11 of size
L =1.0ao. All energies are expressed in terms of an efFective

Rydberg 8 {=5.83 meV). Al concentration in the barriers is
x =0.3.
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group of terms proportional to x in the expansion of
G(x,y, z).

Since we use 6ve distinct ix; values (given earlier), ouf
even-z variational function contains ten terms, while our
odd-z function has Sve terms. For a given value of y we
solve the standard matrix eigenvalue equation for each z
symmetry. %e minilnize the energy of the lowest odd-z
state with respect to P. For even-z states, it is not feasible
for us to minimi2;e the energy of each state separately
with respect to P. For this case we minimize the sum of
the ground and the two lowest excited states. We believe
that this procedure yields good values of these energies
because the ground state is relatively insensitive to the
value of P, and the two excited states have roughly com-
parable energies. Our eigenvalues are upper bounds to
the correct values since the states are mutually orthogo-
nal.

The binding energy of a given state, say the 1s state,
E„,is then gt'ven by

E1s E1+7 (10)

where E, is the lowest subband energy of the square-well
potential, y is the energy of the Srst Landau level, and E
is the eigenvalue of the Hamiltonian [Eq. (4)1 correspond-
ing to the is level, which has been determined variation-

aBy. The value of E, is determined numerically by solv-
ing the foBowing transcendental equation,

1/2
1rZ L=cos (E, ) ~~—

Vo
' 2

The binding energies of the excited states are obtained in
a similar fashion.

RESULTS AND MSCUSSIGN

%e first consider the efkct of the magnetic 6eld upon
the transition energy from the ground state (which for
convenience we will call the ls state) to the first three ex-
cited states. %e will refer to the excited states as 2s, 2@~,
and 2p, in keeping with the symmetry type of the dom-

inant basis functions for each wave function when the
donor is at the center of the well. Note that these states
should not be identified with hydrogenic states of the
same names. In general, the wave functions of these
states are highly distorted by the barriers and by the
magnetic 6eld. The Al concentration in the barriers is
taken to be 0.3, and the conduction-electron mass in

Al„Ga, „As is given as rn,'/m, =0.067+0.083x.
Figures 1 and 2 illustrate the dependence of the transi-

tion energies on magnetic SeM. In Fig. 1 the donor im-

purity is located at the center and in Fig. 2 at the edge of
an isolated quantum well of width I.=1.0ao. In each
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FIG. 2. Variation of 1s-2s, 1s-2@~, and ls-2p, transition ener-
gies as a function of the Inagnetic field parameter y (de6ned in
the text) for a donor located at the edge of the mell of size
L =1.0ao. AB energies are expressed in terms of an e8'ective

Rydberg E. (=5.83 meV). Al concentration in the barriers is
x =0.3.

MAGNK TIC FIELD (y)

FIG. 3. Variation of the line strengths (expressed in terms of

a 0) of y polarization (I),y polarization (II), and z polarization as

a function of the magnetic Seld parameter y (de6ned in the text)
for a donor located at the edge of the mell of size L = 1.0ao. A1

concentration in the barriers is x =0.3.
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where E,f is the dim'erence in energy between the initial
and the final states. We have, therefore, examined the
matrix elements

and

I &ls Iy I2s& I, y polarization (I)

I & ls
I y I 2p» & I

2, y polarization (II)

I & ls Iz I 2p, & I, z polarization

for the three excited states discussed above. Because of
the symmetry of the Hamiltonian, the strength of the z
polarization is nonzero only for the 1s-2p, transition,
while that of the y polarization can be nonzero for both
1s-2s and 1s-2p~ transitions, depending on the s-p„mix-
ing. For the case of the donor at the center of the well,
there is no s-p mixing, so that the line strength for the
1s-2s transition vanishes for aB y. The strengths for the
other two transitions are nonzero, but they are roughly
the same size and relatively insensitive to magnetic field
in the range 0.0 & y & 1.5 ( -0.3 for ls-2p» and -0.4.for
ls-2p„ in units of ao), so that we do not illustrate this
case with a figure.

Things are more interesting in the case of the donor at
the edge of the well, as shown in Fig. 3. The y-
polarization curves clearly show the rapid exchange of

DONOR POSITION (XI/L)

FIG. 4. Variation of the 1s-2s, 1s-2p„, and 1s-2p, transition
energies as a function of the position of the donor in a GaAs
we11 of size I.= 1.0ao for a magnetic field parameter y (defined

in the test) of 0.5. All energies are expressed in terms of an
effective Rydberg R {=5.83 meV). A1 concentration in the bar-
riers is x =0.3,

I.e

case, the 2@~ and 2p, states are degenerate at y=0.0,
while the 2s state is spht ofF due to the barrier potential.
With the donor at the center of the well, the ls-2p» tran-
sition energy increases more rapidly than that of the oth-
er two states, crossing the 1s-2s transition energy at about
y =0.55. This crossing is allowed because, as noted ear-
lier, the Hamiltonian does not mix the two symmetries in
the on-center case. When the donor is at an interface, the
results are somewhat difFerent. Again the 1s-2p energy
begins to rise rapidly with increasing y. However, strong
mixing occurs between the 2s and 2p~ symmetries in the
region 0.4 ~ y ~ 0.6. Beyond y =0.6 the state responsible
for the curve that we have labeled ls-2s is actually dom-
inated by G(x —x, , y, z) basis functions with p» symme-
try.

A better understanding of these eeects can be obtained
by examining the line strengths for these transitions,
which are proportional to the square of the momentum
matrix elements between the initial and the Snal states.
Within the framework of the efFective-mass approxima-
tion, the momentum matrix elements can be expressed
as3s

l,4
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DONOR POSITION {XI~L)

FIG. S. variation of the line strengths (expressed in terms of
ao ) of@ polarization (I), y polarization (II), and z polarization as
a function of the position of the donor in a GaAs well of size
L =1.0ao for a magnetic 6eld parameter y (defined in the text)
of 0.5. Al concentration in the barriers is x =0.3.
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dominant symmetry type between the 2s and 2p states in

the region 0.4 & y g0.6. By contrast, the is-2p, strength
changes relatively little over the entire range of y shown.

The variation of these ground- to excited-state transi-
tion energies with donor position is shown in Fig. 4. A
typical value of the Geld, y=0. 5, was chosen for this
6gure. As was seen for the case of the magnetic field
along the growth direction, the transition energies de-
crease monotonically as the donor impurity is moved
from the center of the well to the edge. The zero slopes
of these curves for the donor at the center of the well
would normally suggest a peak in the absorption spectra,
but remember that the line strength of the ls-2s transi-
tion vanishes when the impurity is at the center. Values
of the hne strengths of the Is-2Jt, and ls-2s transitions in-
crease from 0.4 to near 1.0 (is-2p, ) and from 0.0 to about
0.3 (ls-2s) as the donor impurity is moved from the
center of the well to the edge (units of ao). The strength
of the 1s-2P transition is roughly constant (within 20%
of 0.35) over the same range.

In Fig. 5 we display the variation of the line strengths
of the various transitions as a function of the position of
the donor ion for a quantum-weil size I. =1.0ao for
y=0. 5. The strength of the y polarization of the ls-2s
transition increases rapidly as the donor ion is moved to-
wards the interface and into the barrier layer. The same
is true for the z polarization of the Is-2p, transition. The

strength of the y polarization of the ls-2P transition,
however, shows very little variation as a function of the
position of the donor ion.

It should be mentioned that it is not possible for us to
compare the results of our calculations with experimental
data as these data are not available at this time. Such
data, however, will be very useful in further understand-
ing the behavior of donors in quantum wells. Finally, for
a given value of the magnetic 6eld, the changes in the
binding energies of the various states are larger in the
case of the field applied perpendicular" than parallel to
the interface, as it is easier to modify the wave functions
in the former case.

CONCLUSIONS

%e have calculated the transition energies between the
ground state (ls-like) and three excited states (2s-, 2Jt»-,
and 2Jt, -like) of a hydrogenic donor in a GaAs-
A1„6a& „As quantum-well system in the presence of a
magnetic field applied parallel to the interfaces. In addi-
tion, we have calculated the line strengths of these transi-
tions in various polarizations. %e have presented results
both as a function of the applied magnetic field and the
position of the donor ion along the direction of growth.
%e have followed a variational approach in which the
trial wave functions are expressed in terms of appropriate
Gaussian basis sets.
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