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A microscopic approach has been developed for studying the magnetic dynamics of thulium

iron garnet (TmlG) based on Mori"s general method of dynamical relaxation functions. The trans-

verse magnetic excitation spectrum is analyzed. Calculating the static correlations in the mean-

Seld approximation, the temperature dependence of both the magnetic excitations and their

efFective g factors are obtained. The latter displays qualitative and even quantitative agreement

with the results of ferromagnetic resonance in TmlG. The emphasis is put on the crystal-Seld

effects which essentially inhuence the behavior of the e8ective g factor. The linewidth of the reso-

nance mode is also calculated assuming that the broadening results from the interaction of Tm'+

with the crystal lattice.

r. nnRODUenoN

Thulium iron garnets (TmIG) display an unusually
low value of the effective g factor at room tempera-
ture. ' Pure TmIG has a g value of 1.63.' Thulium
iron garnets doped with nonmagnetic iona have even
lower g values. As an example, for
Tmz 481' QFe3 7Gai 30@ g is equal to 1 .0 which is the
largest deviation from g =2 reported in the literature.
Moreover, the effective g factor was observed to be in-
creasing with temperature rather than decreasing, i.e.,
contrary to the prediction of the isotropic spin-wave
theory with no relaxation effects.

As the aim of this work is the microscopic interpreta-
tion of the anomalous behavior of the effective g factor
of thuhum iron garnets observed in microwave reso-
nance, it seems to be judicious initially to study a simple
model of pure TmIG. Then the approach developed for
TmIG wi11 be considered as the limiting case in the in-
vestigation of the magneto-optical properties of thulium
iron garnets doped with nonmagnetic ions, especially
with bismuth. The latter have been studied extensively
and widely in recent years because of their interesting
applications. The crucial role in our model is played by
the thulium sublattice. Tm + ions are rather strongly
coupled with the lattice, and due to the crystal Seld act-
ing on them, as well as due to their rather fast rehxa-
tion, they in6uence ihe g factor immensely.

In TmIG the octahedral [a] and the tetrahedral (d)
sites are occupied by Fe3+ ions whose ground state is
the orbital S state, S5&2. Tm + ions occupy the dode-

cahedral positions Icj. The ground state of Tm + is
iH& with large orbital contribution to the total angular
momentum operator, J. Because of the spinlike nature
of their ground states, the iron ions in the first approxi-
mation are not affected by crystal fields. The magnetic
properties of thulium, however, are extremely sensitive
to the in6uence of crystal Selds produced by the environ-
ment. The in6uence of the crystal Seld on the magnetic
properties of TmIG, especially its effective g factor, is
studied. The major complication in a theoretical study
of this problem arises from the complexity of the crystal
structure of garnets. Moreover, until now there has
been insufficient information available on the crystal-field
parameters in TmIG. Absolute values of crystal-field
parameters are very hard to estimate both experimental-
ly and theoretically since there is a considerable uncer-
tainty about the radial extent of the 4f orbits and the
shielding effects of the closed 5s and 5p shells. The crys-
tal field at the thulium site is considered to be cubic with
a trigonal distortion and the orthorhombic distortion is
neglected. The unique axis is chosen to be the (111).
Assuming the most probable crystal-field energy struc-
ture for Tms+ permitted by the symmetry of its environ-
ment, the model is fitted to experimental data such as
the temperature dependence of magnetization. Unfor-
tunately there is an uncertainty concerning the oc-
currence of a compensation point in TmIQ. Pauthenet
reports the compensation point between 4 and 1S K,
whereas later results ' do not confirm its occurrence.
All authors, however, claim that thulium has a strong
infiuence on the magnetization of TmIG, especially at
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lower temperatures.
Both the iron-iron and thulium-iron exchange interac-

tions are assumed to be isotropic with negative values of
the exchange parameters between nearest neighbors.

The efkctive g factor is defined as a coeScient of the
uniform spin-wave spectrum according to the microscop-
ic mechanism of the resonance in which it is observed.

In order to analyze the spin-wave spectrum of TmIG,
Mori's formalism of a continued-fraction representation
of a dynamical relaxation function is used. ' The de-
tailed analysis of the spectrum is limited to the center of
the zone (q=0). However„ the formalism can be applied
immediately to the other points in the zone. The fre-

quency and linewidth of the modes are obtained and the
effective g factors are calculated as the derivatives of the
frequencies of the spectrum with respect to the magnetic
field.

The relaxation mechanism postulated for the thulium

sublattice is inferred from a comparison of the
linewidths of ferromagnetic resonance in YIG with those
of TmIG. In our approach the influence of the relaxa-
tion parameter on the effective g factor of the resonance
mode is investigated as well as on the linewidth of the
latter.

The static correlations, which appear within the
framework of Mori's formalism, are treated in the
mean-field approximation. It is not easy to establish the
extent of the errors introduced by the latter approxima-
tion. However, it appears to work quite well for many
rare-earth systems. Even here in the case of an antiferri-
magnet, the approximation does not seem to be bad for
our purpose since our calculations are carried out far
from the Neel point.

The analysis of the spin-wave spectrum of rare-earth
iron garnets was carried out earlier by Harris, ' who
uses the isotropic spin-wave approach. In the case of
rare-earth garnets the application of such an approach is
justified only for the iron garnets with gadohnium in its
c sublattice, i.e., when crystal™field effects can be totally
neglected.

Specifically the anomalous behavior of the effective g
factor in rare-earth systems has been studied by Huber. "
His approach will be discussed later in more detail since
it has some points in common with the approach
presented here. Yang, Cooper, Huang, and Sugawara'
have investigated the influence of the exchange interac-
tion on the effective g factor in paramagnetic cerium
monopnictides also by using the Mori memory-function
approach. The same memory-function technique has
also been applied by Seeker, Fulde, and Keller' to study
the linewidth of the crystal-fleld excitations in metalhc
rare-earth systems.

The organization of this paper is as follows. In Sec. II
our version of the general Mori's memory-function
theory specified for TmIG is presented. The mean-field
approximation and its results are discussed in Sec. III.
In Sec. IV the excitation spectrum and its e8ective g fac-
tors in the mean-field random-phase approximation
(RPA) are analyzed, including the extrinsic relaxation
effects as well. Section V contains a brief summary of
our conclusions.

II. THE THEORY

where the external field H' is applied along the direction
of the resultant magnetization of TmIG, i.e., along the
(111)crystal axis. VcF is the crystal-field Hamiltonian
of the c sublattice. All the exchange Hamiltonians are
postulated to be isotropic Heisenberg-like. In our fur-
ther calculation the exchange interactions are limited to
nearest neighbors, only. Moreover, from the start the
c -c and c-a interactions are assumed to be negligible in
comparison to the d cones. -As already mentioned, the
crystal field at the rare-earth site is treated as cubic with
a trigonal distortion. The ortho-'rhombic distortion is
neglected with respect to the exchange field of the d sub-
lattice. The crystal-field axis is along the threefold
(111) axis. The cubic crystal field splits the ground
state of Tm + into three triplets, a doublet, and two
singlets. The trigonal distortion removes the degeneracy
of the triplets. In order to obtain all passible energy-
level configurations of a trigonal field, six crystal-field
parameters are needed. For lack of information about
these parameters, the most probable configuration of the
trigonal field energy levels of Tm + that accommodates
the best fit to the temperature dependence of magnetiza-
tion of TmIG (Refs. 6 and 7) is assumed. Thus the
ground state of Tm + is the doublet I 3 and the next ex-
cited state is the singlet I

&
separated by the energy, h.

It is also assumed that the remaining energy levels of
Tm + are well separated from the two lowest-lying levels
and, consequently, they have no significant effect on the
magnetic properties of TmIG.

The operator J', which determines the order parame-
ter of the c sublattice, takes the following form in the
basis of the Tm3+ crystal-field states:

J'=il«» —L2i » (2)

where g is a fitting parameter in this model. In the
mean-field approximation, the exchange field of the d
sublattice splits the ground-state doublet I 3, producing
two singlets with their respective magnetic moments
equal to i) and —il (in Bohr magnetons). To fit i) to the
experimental values of the magnetization of the thulium
sublattice at T=o K, the value of q= —1.085 is re-
quired and from now on g is treated as a fixed parame-
ter. ' L~&(a,P=1,2, 3) are the Haley-Erdos standard-
basis operators introduced for the Tm. + single-ion ener-

gy structure. ' These operators obey the following com-
mutation relation:

[L~,Lg~p )=5' (5 @Leap 5pLp~ ~ ) . —

TmIG can be described by the following simplified
Hamiltonian:

JV= gp—AH g S;+ g Sdi, gy—piiH g Jy
iEa kEd f&c

+ g I'cF(f) ——,
' g J;;-'S.; S., —g J'i S.; Sdk

fEe
—

—,
' g Jki"Sdk Sd'i —g J„"gS„„&g,
k~l k,f

gs —2 a11d gJ —
6
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iq.{R+y~ )

S~((= g e SR+
R+y~

+ ~ iq{R+y ) +8 R+yc '
R+y,

(4b)

and y„y&,and y, denote the positions of respective
ions in the unit cell and R is the translational vector of
the lattice. As mentioned before, the actual calculations
are performed for q=O, i.e., for the center of the zone.
Moreover, taking the Fourier transforms in the form
given by Eq. (4} means that all the a sites are treated as
equivalent and the same holds for the d and c sites, re-
spectively. Consequently, the dimension of our problem
is reduced to 3 instead of the original 64. At the a and d
sites the spin operators S„andSdk, respectively, give
rise to transitions between the six equally distant
molecular-Seld energy levels. Each transition is accom-
panied by the change of the magnetic moment of a given
ion. At the c site, in the molecular4eld basis, the opera-
tors J&+ and Jf take the following form:

~f'=r«(i I fi }— (5a)

Jf =r«(3 1(z»—
where y is the crystal-field "transition" parameter which
will be Stted to the experimental results. J/+ and Jf can
be interpreted as transition operators moving a Tm +

ion between its mean-field energy levels originated from
the I'3r doublet and the nonmagnetic I', singlet.

The three dynamical variables are then arranged in
the form of a one-column matrix:

(6a}

and, consequently,

Ap [S, SqJ ], —— (6b)

where S,+, Sd+, and J+ are the respective Fourier trans-
forms with q=o. The dynaxnical transversal relaxation

Any operator can be written as a hnear combination of
the L~'s since they form a complete set.

In order to analyze the magnetic excitation spectrum
of TmIG, Mori's memory-function formalism is ap-
plied. ' The essential step in developing the fortnahsm
is to identify dynamical variables which are associated
with the excitations that are to be studied. The aim of
the interpretation of the ferromagnetic resonance is the
appropriate choice for the transverse dynamical vari-
ables 5, , S&, and J, where

(4a)
R+yo

function ( A p(t), A p ) takes the form of a three-
dimensional matrix whose elements are relaxation func-
tions de6ned as follows: '

( A(t) gt) I dg&eiHeiHtAe iH—te U—fg'f')

—P&A &&~'&, (&)

where P=(kT) ' and the angular brackets denote
thermal average.

The static (t =0} relaxation function, ( A, 8 ), is the
isothermal susceptibility, X&z.

The Laplace transform of the initial relaxation func-
tion matrix (Ao(t), A o) can be written in the foBowing
exact form, s

(Ao(ipt) ~ Aot)=[t'ttt itpo+—X(ito)] '(Ap, Aot), (S)

where

(Ap(iat), Ap)= J e ' 'dt(Ao(t), Apt) . (Sa)

(Ao, Ap} is the static (isothermal) susceptibility matrix
and itpp is the first-moment (frequency) matrix dined by

into=( Apt Ao)(Aot Ao) (Sb)

with Ao ——dAo/dt.
X(i tp } is the Laplace transform of the memory-

function matrix ( A, (t), A, )( A p, A p )
' where

~ i
= ~o —&o~o (9a)

A i =A o
—Ao(igloo)

+ (9b)

The dynamical variables A, display the time depen-
dence difFerent from that of Ao:

(t) it(1 —PbvA it( i PNf- —=8' )8

where the projection operator P is defined by

PX=(X, Ap }{Ap, Ap) 'Ao .

(10)

(10a)

In the mean-Seld approximation the inverse susceptibili-
ty ma«i» ( Ao, A ot } ' takes the form

{Ao Ao') p'={X~) '5
p
—J p(q=0)

where a,P=a, d, c .

Xo is the single-ion isothermal transversal susceptibility
which characterizes the sublattice and is expressed as
follows:

&m /S+ [n)&n /S fm)
Xp = g (P„P), —

E~&En Nl Pt

(12)

where
~
m ) are the single-ion mean-field eigenstates, E

are the single-ion energy levels, and I' are their thermal
populations. 8+ and S denote either the S=-,' spin
operators (a=a, d) or the ope'rators J+ and J (a=c)
defined by (5). J~ (q=O) is the Fourier transform of
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where the tdentity '

(A(t), 8 )= —(A(t), 8 ) (17)

1s Used.
The equations of motion for the initial dynamical vari-

ables are

iS,+ =g,PttH'S, +++Jtk (S,+;Sdk —S;;Sdk ),
i, k

iS d g,PttH'Sd++g J;k (SdkS;; SdkS,+;)—

(18a)

+g JkPSdk JI —Sdk JI+ »
k,f

iJ ' = eittaH'nJ—++~}'(I3i+I 23 }

+g Jkf( QSdk Jf + Y ~ )JfSdk } '

k,f

(18b)

Hence, the matrix elements of ( Ao(t), &0) contain
three-operator relaxation functions which are decoupled
in the following manner:

(~(t)S'.(t),8') (S:)(&(t),8'), (19a}

(S'(t) A (t),8 ) {S')(A (t), 8), (19b)

where S' =S,', Sz, and J' for a=a, d, c, respectively.
Thus the products of the order parameters and the two-
operator transversal relaxation functions are obtained.
They have a time dependence that is difFerent from that
of the analogous initial relaxation functions.

To the matrix elements of (Ao(t},AO}, the same

decoupling procedure is appBed twice: f]Lrst to the time-
derivatives on the left-hand side of the relaxation func-
tions, and, then, using the identity (17) the procedure of

the exchange integral.
Making use of the identity

(~',8')= —i&[~',8'] &,

along with the commutation relations for the spin opera-
tors S, ,S& and that for the operators

[J+,J-]=(y'z~)J',
the frequency matrix is obtained in the following form:

(co ) &
——{A )[(I ) '5

& J~(—q =0)], (15)

where A = —S;, —Sd, and (y /ri)J' for a=a, d, c, re-
spectively.

The magnetic excitation frequencies are given by the
eigenvalues of the matrix (15).

The damping is usually a complicated problem. Here
a decoupling procedure is proposed followed by an ap-
proach that is similar to that of Huber. " First the
memory-function matrix (A, (t), A, ) is rewritten in a
more explirit form:

( 3 )(t), 3 t)=(AO(t},i Ot) —{Ao(t), Jot)(iaido)+

+

(irido)(

A 0(t ), A 0 )

+(irido}(AO(t), Ao)(igloo)+, (16)
(J+(t),J )0——(Xo, ) 'e (21)

where ~, is the Tm + relaxation parameter related to the
ion's transitions between the crystal-field doublet and
singlet states. At this point of the discussion Huber's
idea of intrinsic and extrinsic damping is utilized. " Ex-
trinsic damping is not associated with Hamiltonians of
the type given by Eq. (1). In this model it results from
the direct interactions between the total-angular-
momentum Suctuations of Tm3+ and the heat reservoir.
The decay rate of the Suctuations is determined by r, .
The intrinsic damping arises from interactions between
the total- (or spin-) angular-momentum Iluctuations.
The decoupling in the form of Eq. (19), however, ex-
cludes the higher-order effects, so this discussion is re-
stricted to the extrinsic damping. Although Huber"
suggests that in systems having superexchange interac-
tions, an intrinsic relaxation can be of great importance.
This may not be true for TmIG, for due to the large or-
bital contribution to the total angular momentum of
Tm +, extrinsic damping, coming from the direct in-
teractions between magnetic degrees of freedom and the
heat reservoir, is the most important relaxation mecha-
nism. ' The problem of intrinsic damping is still open to
further discussion. A similar approach to extrinsic
damping has been suggested by Lehmann-
Szweykowska' for rare-earth systems with the Kramers
degeneracy using the density-matrix formalism. Later in
the numerical calculations different values of v, are used
to estimate its inhuence on the efFective g factor.

Of course, the Laplace transform of the normalized
memory-function matrix also has one nonzero element:

~ t g ~ . AQp ~~e
[(A, (iso), A ) )(Ao, Ao) ]„=i2+ p2 ~2+ p2

(19) is applied once again. The decoupling procedure
used here is equivalent to that of the mean-f][eld approxi-
mation so it is consistent with the rest of our calcula-
tions.

Aside from the decoupling, the approximation that is
postulated is similar to that of Huber. " It is assumed
that the possible damping is associated with the thulium
sublattice and is only indirectly influenced by the iron
sublattices. This assumption is realized by setting
Jd, ——0. It is a well-known fact that the resonance lines
in TmIG are much broader than those in YIG, which
are exceptionally narrow. It indicates the importance of
thulium in the damping mechanism and supports these
assumptions. %'ith J&, ——0 the normalized memory-
function matrix is obtained with all its elements equal to
zero save the last one, which takes the following form:

[(2 t(t), A ) )(Ao, Hot) ']„
&(J+—(t),J )0(XO, ) ', (20)

where (J+(t),J )0 is the single-ion relaxation function.
Next, the following time dependence is introduced into
the latter:



OR@ITAL EFFECTS IN MAGNETIC DYNAMICS OF THULIUM. . .

where I,=i}I/~, (A is Pianck's constant).
The last step of our procedure involves the transfor-

mation of the normalized memory-function matrix in or-
der to express it in the same basis for which the frequen-
cy matrix takes its diagonal form. After some very sim-
ple algebra the normalized memory-function matrix with
all nonzero matrix elements is obtained. The diagonal
matrix elements consist of imaginary and real parts
which determine the shift in the frequency caused by the
damping effects and the linewidth, respectively. The
influence of the ofF-diaIIonal matrix elements has been
omitted in this analysis. '

The poles of the Laplace transform of the initial trans-
verse relaxation function in Eq. (8) can finally be ex-
pressed as follows:

(23)

linewidth are originally frequency dependent. In Eq.
(23}, using co=re; (i =1,2, 3) in the expressions for the
respective co; means that the corrected values of frequen-
cy are not expected to dimer significantly from the
mean-field results.

Due to the transformation of the memory-function
matrix, the damping effects are obtained which at the be-
ginning are associated with the c sublattice only. Now
they are influenced indirectly by both iron sublattices.

For every branch of the magnetic transversal excita-
tion spectrum, a value of the effective g factor can be
calculated remembering that the magnetic moment of a
state is given by the derivative with respect to the mag-
netic field of the energy of that state. Hence

1

Pa BH

where

and

3 QPI —QPI

, (N; N„—)(COk —~„)(~/—~„)

NA. —COI

V;=
(N ( COqq )(—Qtk —Cog~ )(~i ~gg )

(23a)

(23b)

where i labels the modes.
It is obvious that the formula for g,s is very compli-

cated and the results can only be discussed numerically.
The g, ir is expressed as a function of the order parame-
ters for the three sublattices, i.e., & S;&, & Sd &, and & J'&,
the longitudinal isothermal susceptibilities X", , gd, and
X, , and the transverse single-ion susceptibility for the c
sublattice, Xo, . These static correlations will be calculat-
ed in the mean-field approximation.

where i =1,2, 3, k =2,3, 1, and 1=3,1,2; ro; (i =1,2, 3)
are the eigenvalues of the frequency matrix F00 and r0„
and co„aretwo of its diagonal matrix elements as seen
in Eq. (15).

From Eq. (22), both the shift in frequency and the

III. MEAN-FIELD RESULTS

The order parameters of the three sublattices are ob-
tained as solutions of the following self-consistent equa-
tions:

5h, 3h, h,
5 sinh +3 sinh + sinh

2 T

5h, 3h, h,
2 cosh +cosh +cosh

(25a}

5hg 3hd hg
5 sinh +3 sinh +sinh

2kT
~'

5he 3he hd
2 cosh +cosh +cosh

2kT

(25b)

&z*& =q(a, —p },
where

h. =g,I,a*+J,y..&S: &+J.,y.,&S; &,

hd =g.~a~'+J«y«&S'&+J. dyd. &S: &

+J;y,.& J'&,
kqk /kT

gk jkT —vk IkT
, =e ' +e ' +e

(25c)

(26a)

(26b}

h. =g.~.H'+J;y.,&S; & .

J, , J,&, Jdz, and J&, are values of the exchange integrals
between nearest neighbors of the respective sublattices,

y;;(q)=g e
J

where the sum is over nearest-neighboring ions in the jth
sublattice.

TmIG is a ferrimagnet. In order to solve Eqs. (25),
the following ground states are assumed as a starting
point for the three sublattices at T =0 K:
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(27b)

(27c)

As mentioned before, q is the fixed parameter
(ri = —1.085). It is assumed that the values of the ex-
change integrals J„,J,d, and J&z are the same as those
for YIG (Ref. 18) and that they are all negative. The
values of b, and Jd, have been chosen to St the experi-
mental magnetization data ' of TmIG, with M, de6ned
by

C9
CC 200
4J
bJ

I0C

50 I 50
1

250 350
TEMPERATURE (K)

1

450

~z(Resonance mode)

I=3g, &S;)+2g, &S; &+3g, &J'& . (28)

The results are shown in Fig. 1 and the best agreement
between the experimental and calculated temperature
variation of M has been achieved for b, =40 K and

J~, ———16 K.
The longitudinal magnetic susceptibilities, defined as

a& a, &x;= (29)H'

where A; =S,', Sd, and J* for i =a,d, c, respectively, are
solutions to the system of the three mean-field hnear
equations:

X~(1—J„y,g, ) Xd J,dy, d—X, =g,X, , (30a)

Xa JadydgXd+Xd[1 JddyddXd) Xe JdeyedXd gsXd

(30b)

—XdJ„,y„X,'+X, =g,X,', (30c)

x'. =p[&(s.*)')-&s:&'], (31a)

where the single-ion longitudinal susceptibilities are of
the Curie-i. angevin type:

FIG. 2. Energies of the transverse magnetic modes of TmIG
vs temperature. The resonance mode is indicated. 6=40 K,
Jg, ———16 K, y=1.

x', =p[&(s„')'&—&s; &'],

X', =P[&(J )'&-&J &'i and P=(kT)-'.
(31b)

(31c)

IV. DVNAMICAI. PROPERTIES OF TmIG

The spectrum of transverse magnetic excitations con-
sists of three branches as might be expected. Because of
the rare-earth ions on the c sublattice and the impor-
tance of crystal-field effects on that ion, the nature of
magnetic exntations in TmIG is not pure spin-wave-like.
Magnetic excitations in TmIG are combinations of spin
waves and magnetic excitons.

For all sets of the parameters 6, Jd„and y, the tem-
perature variation of the spectrum has the same pattern
as that shown in Fig. 2. Two spin-wave-like modes are
obtained: the acoustical mode (co2), i.e., the resonance
mode, and the optical high-lying mode (cubi). Both
display a rather pronounced temperature dependence.
The frequency of the third mode (co3) is on the order of
the crystal-Geld energy gap, 5, and is less temperature
dependent than the remaining branches. So it is con-
cluded that the third mode represents a rather excitonic

0

~ ~

Q 2

LQ

2

0
-!
-2

(3l

-6
-7
-8
-9

-)0

g, (Resononce)~gi

l50 250 350
TEMPERATURE I K }

I

450

FIG. 1. The magnetization of TmIG vs temperature for
different crystal-Seld and exchange parameters of Tm3+. Solid
Hne: 1, 5=40 K, Jg, ———16 K; 2, 5=40 K, Jg, ———8 K. Dot-
ted line: 1, 5=400 K, Jz, ———16 K; 2, 6=400 K, Jz, ———8 K.

FIG. 3. Effective g factors for the three transversal magnetic
modes vs temperature; g,m of the resonance mode is indicated.
6,=40 K, Jg, ———16 K, y = 1.



37 ORBITAL EFFECTS IN MAGNETIC DYNAMICS OF THULIUM. . .

gz I ~~=~& K~

gz

0-

f I

TEMPERATURE ( K j

FIG. 4. Efkctive g factors of the resonance mode vs temper-
ature for diferent crystal-Seld and exchange parameters of
Tm3 . Solid line: 1, 5=40 K, Jz, ———I6 K, y=1; 2, 8=40
K, Jz, ———8 K, y=l. Dotted hne: 1, 6 =400K, Jq, ———16K,
y=l; 2, 5=400 K, Jg, ———8 K, y=1.

type of resonance. The temperature dependence of the
modes is stronger at lower temperatures where a singu-
larity in the temperature variation of the magnetization
is also observed. Unfortunately the analysis does not in-
clude the problem of dispersion. These results apply
only to the center of the zone, i.e., the wave vector q=0.

The effective g factors for different sets of values of 5
and Jq, are shown in Figs. 3 and 4. Even omitting any
damping, the temperature variation of the effective g fac-
tor of the resonance mode remains in good agreement„
both quahtatively and quantitatively, with the experi-
mental data. ' '

As seen in Fig. 3, all three effective g factors are in-
creasing with temperature which contrasts strongly with
the prediction of the isotropic spin-wave theory. The re-
sults prove beyond any doubt that crystal fields are cru-
cial to the effect of change in the pattern of behavior of
the effective g factors from that of the isotropic spin-

250 350
TEMPFRATURE {K)

FIG. 6. g,N of the resonance mode vs temperature with (dot-
ted line) and without (solid line) damping. 5=40 K,
Jg, ———16 K, y=1.

wave theory. Or, going even deeper, it is the large orbit-
al contribution to the total angular momentum of Tm +

that is most influential. For such ions it is necessary to
include crystal-field eFects. Another consequence is the
strong coupling to the lattice which is an important re-
laxation mechanism. It is tacitly assumed that this re-
laxation mechanism is dominating in these systems and
it is included in the form of extrinsic damping of in-
dependent thulium ions modified in accordance with
Mori's formalism by the fractional susceptibilities of all
magnetic degrees of freedom. Intrinsic damping is ex-
cluded as already mentioned. As seen in Figs. 5 and 6,
this restricted damping does not in6uence signi6cantly
the former result, i.e., with no damping. In Fig. 7 the
linewidth of the resonance mode is shown where the nu-
merical results have been obtained assuming v, is on the
order of 10 ' -10 ' s.

In summary, a microscopic approach has been
developed for the transversal magnetic excitations in

g,'(I" =40K)
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FIG. 5. g,& of the resonance mode vs temperature with (dot-
ted line) and without (solid line) damping. 6=400 K,
Jg, ———16 K, y=1.

FIG. 7. Linewidth of the resonance mode vs temperature
for two different values of ~, =Pi/I, . 5=40 K, Jd, ———16 K,
y = l.
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iron garnets with thulium in the c sublattice. From a
comparison with experimental data it is concluded that
our approach, which considers the large orbital contri-
bution to the total angular momentum of Tm +, is suc-
cessful in interpreting the qualitative features of the re-
sults and to a certain extent, even the quantitative ones.
The modified Mori's theory allows the determination of
the temperature variation both of the eigenfrequencies
and the linewjdth of the transverse magnetic excitations
as mell as the eFective g factor as functions of the ap-
propriate fractional static correlations. The latter are
obtained in the mean-field approximation. The analysis
of damping is for extrinsic damping but it could be
equally well evaluated for an intrinsic damping.

Further studies are needed. It would be important to
go beyond the mean-Seld approximation in obtaining the
static correlation functions. Moreover, further analysis
of the damping mechanism is called for. The crystal-
field energy structure has been assumed in this model
and experimental measurements of the crystal field in
TmIG are desirable.

Nevertheless our preliminary microscopic analysis
predicts the origin of the anomalous behavior of the
effective g factor and iis low value at room temperature.
It has been shown that the large orbital contribution to

the total angular momentum of Trn + accounts for the
anomalous temperature variation of g,&.

From this analysis, as mell as that from other papers, '

it can be concluded that the same behavior of g,z can be
predicted by at least three diFerent models: a crystal
field, a strong anisotropy 6eld, or very fast relaxation of
the thulium ion. However, all can be considered as or-
bital effects. The conclusion is that the orbital contribu-
tion of the thulium ions lays the foundation for their in-
teresting and unusual magnetic properties.
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