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Density of states in a two-dimensional electron gas: Impurity bands and band tails
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%e calculate the density of states of a two-dimensiona) electron gas in the presence of charged
impurities within Klauder s best multiple-scattering approach. The silicon metal-oxide-
semiconductor (MOS) system with impurities at the interface is studied in detail. The 6nite exten-
sion of the electron wave function into the bulk is included as well as various dependences of the
density of states on the electron, the depletion, and the impurity densities. The transition from an

impurity band at low impurity concentration to a band tail at high impurity concentration is found
to take place at a certain impurity concentration. If the screening parameter of the electron gas is
decreased, the impurity band shifts to lower energy. For low impurity density we find excited im-

purity bands. Our theory at least qualitatively explains conductivity and infrared-absorption experi-
ments on impurity bands in sodium-doped MOS systems and deep band tails in the gap observed for
high doping levels in these systems.

I. INTRODUCTION

The band structure and the formation of an impurity
band (IB) are of vital importance for the understanding of
the electronic properties of two-dimensional systems.
The relevant quantity is the density of states (DOS). In
this paper we calculate the DOS of a two-dimensional
electron gas in the presence of disorder.

A two-dimensional electron gas can be realized in the
inversion or accumulation layer of a silicon metal-oxide-
semiconductor field-efFect transistor (MOSFET) struc-
ture. By applying a gate voltage between the metal and
the semiconductor, a two-dimensional electron gas is
formed near the oxide-semiconductor interface. The
electron density can be varied by means of the gate volt-
age. By drifting sodium iona to the interface, the forma-
tion of an IB and the transition to a band tail (BT) can be
studied experimentally. The density of sodium ions can
be determined in the experiment. In this sense, a
sodium-doped silicon MOSFET is a well-defined model
system in order to study the effects of disorder on the
electronic properties of a two-dimensional electron gas.
The distance between the electron gas and the oxide-
semiconductor interface depends on the depletion densi-
ty. Our model system is characterized by three parame-
ters: the electron density, the impurity density, and the
depletion density. For a review see Ref. 1.

Consider a two-dimensional electron gas at a low elec-
tron density. A charged impurity at the interface will
bind an electron, and a Coulomb-like bound state is
created. %ith increasing impurity concentration, a
broadening of these bound states into an IB is expected.
For even higher impurity concentrations, the IB will
overlap with the conduction band (CB) and a BT descrip-
tion may be adequate. The density of states and the
transport properties of the electron gas are expected to be
quite diferent under these diferent circumstances.

The transport properties of the electron gas for low

temperatures are determined by two scattering mecha-
nisms. At low electron density, impurities at or near the
interface determine the conductivity. For high electron
density, the surface-roughness scattering becomes dom-
inant. For a review see Ref. 1.

In the dc conductivity versus density measurements, a
peak structure for an impurity density between 10" and
10'z cm has been found in sodium-doped silicon MOS-
FET systems. ' This peak was interpreted in terms of an
IB. At higher impurity concentrations the peak structure
disappeared. The conductivity at the peak was found to
be strongly dependent on the temperature. This behavior
indicates that the electrons are bound or localized. The
dependence of the peak structure on the impurity density,
the electric field at the interface, and the temperature
have been measured recently.

In the above-mentioned experiments, the IB was
found in conductivity measurements. The relation to the
DOS seems to be clear. Direct experimental information
on the DOS is obtainable from deep-level transient spec-
troscopy (DLTS). These experiments test the DOS in the
depth of the band gap. A wide BT, depending on the im-
purity concentration, was found below the CB in
sodium-doped silicon MOSFET systems.

Most theoretical work in connection with experiments
on, IB's has been carried out in the limit of a single im-
purity. In this case, the energy spectrum of the electron
in the Coulomb-like potential of the impurity has been
calculated. Assuming that the electron cannot penetrate
the oxide, the lowest bound state is a hydrogenlike 2p
state with a binding energy of 0.2S Ry. The 6nite gate
voltage gives rise to an additional triangular potential
which pushes the electron gas to the interface. For an
ideally two-dimensional Coulomb problem, the ground
state is a bound state with a binding energy of 4.0 Ry. In
a real MOSFET system, the binding energy is located be-
tween these two limiting values.

Binding energies for the single-impurity problem have
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been calculated IQ various approMmatlons. It %'as

found that the lowest bound state has an energy of about
1 Ry in the silicon MOSFET and that the electric field
dependence does not play a very important role. Screen-
ing efFects, ho~ever, reduce the binding energy by orders
of magnitude. ' ' It is clear that in the single-impurity
approach the width of the IB cannot be calculated; in ad-
dition it is impossible to calculate the critical impurity
density, where the IB begins to overlap with the CB.

IB's in silicon MOSFET systems have been treated
theoretically only recently. In this case the Ishida-
Yonezawa method' was used. It is also a multiple-
scattering theory based on the Matsubara-Toyozawa
scheme which uses a tight-binding description for the
DOS. It is essentially a single-band scheme. Therefore it
cannot account for the conduction band. A BT descrip-
tion is therefore not possible. The reason is that there the
IB is not treated as the effect of a perturbation on the CB
but rather as a band in an amorphous system. Particular-
ly in this approach, an IB will always exist, independently
of N, .

There exist two other calculations on the DOS for a
two-dimensional electron gas. The work in Ref. 16 for
quantum wells treats the strong deviations of the DOS in
comparison to the ideal two-dimensional DOS near the
CB. IB's are not discussed there. The deep band tail, due
to impurity concentration fluctuations according to
Halperin and Lax, ' is discussed for quantum wells in
Ref. 18. IB formation has not been formulated within
ibis approach. Impurity concentration fiuctuaiions are
not considered in the present work but could be described
within our theory, as it was done for three-dimensional
systems in Ref. 19.

The electronic transport properties of disordered elec-
tron systems have been studied in some detail in recent
years. For a review see Ref. 20. The absence of a metal-
lic behavior at zero temperature in a nomnteracting elec-
tron system for dimension d & 2 for arbitrarily weak dis-
order was suggested by the scaling hypothesis for the An-
derson localization problem due to the existence of quan-
tum interference efFects. ' In the scaling approach, the
assumption that the DOS is finite is essential. For a
noninteracting electron gas with disorder, %'egner
pointed out that no impurity band exists and the DOS is
always finite within the band,

In the following we will show that for an interacting
electron system with charged impurities, a gap in the
density of states exists for weak disorder (low impurity
density} and for two dimensions. However, we do not
consider transport properties of the system. Instead of
being defined by a zero dc conductivity, the nature of the
localized states in our approach is defined by the spectral
density. The dilerence between the physics discussed in
the scaling approach and the elects, which we discuss
here, is the following: In an IB, the electron is localized
essentially at one impurity atom, while in case of a short-
range random potential, as considered in the scaling ap-
proach, the electron is locahzed in a large number of po-
tential 6uctuations. In the scahng theory the driving
mechanism for localization is the interference of pairs of
waves in the backscattering direction which involves

phase coherence of waves scattered by many impurities. '

For an interacting electron system a singularity of the
DOS at the Fermi energy due to the disorder was predict-
ed. This efFect is neglected in our theory.

It is well known that the tight-binding coherent-
potential approximation can only account for short-range
random potentials. However, Klauder's multiple-
scattering approach allo~s the treatment of realistic

scattering potentials.
For the three-dimensional systems, the equations in the

best Klauder approximation (the Mth approximation)
have been solved in Ref. 28. A screened Coulomb poten-
tial was used for the electron-impurity interaction. For
low impurity concentration a well-defined IB was found.
At higher impurity concentrations the IB overlapped
with the CB.

Recently it was reported that within a separable po-
tential approximation Klauder's equations are simplified
considerably. In this case Klauder's nonlinear integral
equation can be reduced to a transcendental algebraic
equation for the three-dimensional system. The numeri-
cal results of this approach describe the trends of those of
the full equations quite satisfactorily.

In this paper we use the fifth Klauder approximation
to calculate the density of states in a MOSFET structure
in the presence of charged impurities. The impurities are
assumed to be screened. Results for weakly screened im-
purities are also presented. A transition from an IB re-
gime to a BT regime is described. In addition we discuss
the separable potential approximation and compare it to
the full Klauder solution.

The paper is organized as follows. In Sec. II we define
our model and specify the Klauder equations. The re-
sults for the DOS for a fully screened potential are dis-
cussed in Sec. III. The results for the weakly screened
potential are presented in Sec. IV. In Sec. V we use the
separable potential approximation to calculate the DOS.
In Sec. VI we consider the low impurity limit of our
theory and compare it to other theoretical results. Sec-
tion VII contains a comparison of our theory with experi-
mental results. The conclusion of our paper is presented
in Sec. VIII. In the Appendix the Klauder equations are
generalized for a distribution of remote impurities.

II. MODEL AND THEORY

In this section we present the equations and specify our
model to calculate the density of states.

A. The Green f'unction

As usual, we describe the one-electron properties of the
interacting electron system by using the one-electron
Green function G (k, E), where k and E are the wave vec-
tor and the energy of the quasiparticle, respectively. The
Green function is expressed as

G(k, E)= 1

E —s(k) —X(k,E)
s(k} is the kinetic energy of the noninteracting electron
system; we use a parabolic dispersion relation with an
efFective mass m'. s(k) =A k j2rn'.



37 DENSITY OF STATEls IN A T%0-DIMENSIONAL ELECTRON. . .

A (k, E)= + —ImG (k„E+i0)1
(3)

and the DOS per unit of energy and per unit of volume
via

p(E)= —g A (k,E) .1

0 ~

The summation over o indicates that, in principle, one
has a summation over the spin degeneracy g, and the val-

ley degeneracy g, . 0 is the volume.

8. The multiyle-scattering approach

We calculate X,.;(k,E) in Klauder's best (fifth)
multiple-scattering approximation. Serre and Ghazali
used a linear transformation to solve the integral equa-
tion of Klauder more eliciently for three-dimensional
systems. We use the same method in this paper. Details
of the method can be found in Ref. 28. The self-energy
for the electron-impurity interaction is then determined
by

The self-energy X(k,E) is the sum of exchange and
correlation contribution X„,(k,E) (due to the interaction
of the electrons) and the electron-impurity contribution
X, ;(k,E) (due to the disorder in the system):

X(k,E)=X„,(k,E)+X, , (k, E) .

The self-energy describes the modification of the DOS
due to the interaction and to the disorder in comparison
to the density of states for the free-electron gas.

The Green function determines the spectral density
A (k,E) via

The equations which have been given until now are
generally valid for two-dimensional systems. In princi-
ple, we can discuss MOSFET systems, heterostructures
or quantum wells. In comparison to three-dimensional
systems we mention the following. The two-dimensional
integral equation in Eq. (6) involves the same numerical
expense as the corresponding equation for three-
dimensional systems. In this case one integral was evalu-
ated analytically.

C. The model

%e consider an electron gas as realized in a silicon
MOSFET system. The wave function 4(z) perpendicular
to the interface (in z direction) has a finite extension into
the bulk and it is characterized for the lowest subband by
the variational form [Eq. (3.25) of Ref. 1]

' ]/2

&
—bz /2

$3
(8)

2

The parameter b determines the extension into the bulk.
The mean distance between the charge and the oxide-
semiconductor interface is given by (z ) =3/b. The elec-
tron density N and the depletion density Xd de6ne b via

[Eq. (3.30) of Ref. 1]

48~e m,

SC

m, is the mass perpendicular to the interface, e is the
electron charge and e is the dielectric constant of the
semiconductor. The electric 6eld F seen by the two-
dimensional electrons also depends on X and Nd. In a
triangular-well approximation one gets ':

X, ;(k,E)= U(k, k, E)—N; V(0) . F = (iiid+N) .
&SC

(10)

X, is the impurity density and V(q) is the electron-
impurity interaction potential (the Fourier transform). It
is specified in the following subsection of this chapter. In
order to calculate U(k, q, E), the following integral equa-
tion must be solved:

U(k, q, E)= N, V(k —q)

+ I d'q'V(q' —q)G(q')U(k, q', E) .1

(2n )

The fifth Klauder approximation can be used to derive
the so-called self-consistent Born approximation for the
self-energy. In the lowest order, we find with Eq. (6)
U(k, q, E)=N, V(k —q). If we use this expression on the
right-hand side of Eq. (6) we get

X„.(k,E)= J d'q'i V(q' —k) i'G(q')
(2m)

for the self-energy. An analogous equation has been de-
rived by Klauder as his third approximation. The self-
consistent Born approximation does not describe IB's and
underestimates the disorder effects. This result has been
found for three-dimensional systems.

V, ;(q)= F;(q)—
El q

(12a)

The electron density in the MOSFET structure can be
varied by means of the gate voltage. The depletion densi-
ty depends on the concentration of bulk acceptors and
can be varied (for fixed electron density} by a substrate
bias. A negative substrate bias (for a p-type bulk) in-
creases the depletion density. Inversion layers (p-type
bulk) have a typical Nd —10" cm . Accumulation lay-
ers (n-type bulk) have a typical Nd -109 cm

%e consider an electron-impurity interaction which is
screened because of the electron-electron interactions de-
scribed by the dielectric function e(q) of the interacting
electron gas:

v, ;(q)
V(q)=

e(q)
%'e assume that the impurities with charge Ze are ran-

domly distributed at the interface of the oxide and the
semiconductor. According to the 6nite extension of the
wave function into the bulk, V, ;(q) is the Coulomb po-
tential for two dimensions with a form factor F;(q} [Eq.
(4.28) of Ref. 1]:
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and

F;(q)= 1

(1+qjb)
(12b)

The average dielectric constant eL is calculated as:
eL ——(e +e;„)/2. e;„ is the dielectric constant of the insu-
lator. Ze is the charge of the impurity. In the random-
phase approximation (RPA} with local-field (exchange-
correlation) correction, e(q) is given by

(1)-(6) for the calculation of the self-energy X, , (k,E).
For the exchange-correlation contribution to the self-
energy, various approximations have been discussed in
the literature. ' The energy dependence of X„, is a weak
one. The k dependence of the exchange contribution E,„
nearly compensates for the k dependence of the correla-
tion contribution E, . %e approximate the numerical re-
sults of Vinter for k =kz by the following analytical ex-
pression

V, (q)= —F,(q)
2%8 1

(14a)

e(q) =1+V, (q)[1—G(q)]&0(q) .

V, (q) is the electron-electron interaction potential where
finite-extension elects are included

&.c«F E)=Ee.+E.
with

E,„=—0.7108 (Na' )
'

Ec ———0. 1228

(18a)

(18b)

and [see Eq. (2.52) of Ref. 1]

1+ ', qjb+—', q /b—
E, (q) = —1+

(I+qjb)'

1 &Ia1—
2

1

( I+q/b)6
(14b)

G(q)=

1
q +2kF

mg„kF
1 q)2kF .

2g~

(16)

In the Thomas-Fermt approximation the q dependence of
Xo(q} is neglected and G(q)=0. For the ideally two-
dimensional system with I/b =0, the screening function
in the modified Thomas-Fermi approximation is written
as

0se(q)=1+—.

In Eq. (17) we introduce a screening number q, =aq, in
order to study the screening effect on the DOS. o. is a di-
mensionless parameter. q, is the Thomas-Fermi wave
number, given by the density of states pF or the general-
ized Bohr radius a ' via q, =2me ~p~/eL ——2g„/a '. In the
classical Thomas-Fermi approximation we set o;= 1.

Our impurity-electron potential [Eq. (12)] is the stan-
dard potential used in the calculations of transport prop-
erties. The cases b =0 and 1/b =0 and the effects on the
binding energies will be discussed in Sec. VI 8.

Our Eqs. (11)—(17} specify V(q} which enters Eqs.

Xo(q) is the Lindhard function for two dimensions and is
expressed as [see Eq. (2.35) of Ref. 1]

Xo(q)=p„[1—8(4k' —q )(1 4k'/q—)i~i] (15)

with pF as the density of states of the free electron gas
and kF as the Fermi wave number. For the local-field
corrections G(q), we use an analytical function which
reproduces approximately the numerical results of Ref.
33:

Because X„,(kF,E) is real, it produces a rigid shift of the
band in comparison to the band of the free-electron gas.

In this paper we have solved the equations for Si(100)
MOSFET systems with m ' =0.19mo, m, =0.916mo,
m~=11.5, e;„=3.9, g„=2, and g, =2. mo is the vacuum
mass of the electron. Our results are, however, more gen-
eral. This is due to the fact that the natural length scale
in our system is the Bohr radius a'=ezfii/m'ei. The
screening wave number is given by q, a ' =2q, . The natu-
ral energy scale is the effective Rydberg R =m'e4/
2eL R . For the silicon (100) MOSFET we have
a'=21.45 A and R =43.6 meV. Because of the natural
scales, we present our results in these units. The density
of states is presented in units of p= 1/2nRa'2. For the
free-electron gas we have p=g„p. For Si(100) the unit of
the DOS is p=7. 93X 10' eV 'cm . In the following
the energy of the lowest subband is set to E =0.

III. RESULTS
FOR THE FULLY SCREENED POTENTIAL

In this section we present our results for the DOS in
the Klauder approximation and in the case in which the
RPA [Eq. (13}]is used for the screening. The RPA is cer-
tainly valid for high N. However, we believe that it de-
scribes at least qualitatively the DOS for low electron
densities. In Sec. III A we discuss the DOS and in Sec.
III 8 the spectral density is considered.

A. The density of states

The DOS depends via Eqs. (4)—(6}on the impurity den-
sity. The electron density and the depletion density
determine the parameter b, and b modi6es the electron-
impurity potential in Eq. (11}. The electron density also
modifies the screening function, Eq. (13), for finite q via
the Fermi wave number.

%e have salved the integral equation de6ned in Eqs.
(1), (2), (5), (6), and (11) with impurities at the oxide-
semiconductor interface [Eq. (12)] using the RPA screen-
ing function [Eq. (13)]. In Fig. 1 we show the DOS ac-
cording to Eq. (4) versus energy for fixed electron and de-
pletion densities (N =2X10" cm 2 and Nz ——3X10"
cm } and for different values of N; For high impur. ity
concentrations the CB exhibits a BT at low energies. For
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FIG. 1. Density of states {DOS} versus energy (E} for
difFerent impurity densities {N, ) according to the Klauder ap-
proximation and the random-phase approximation.
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FIG. 2. Band-edge energies {as indicated in the inset) versus
impurity concentration according to the Klauder approxima-
tion and the random-phase approximation.

high energies the DOS of the free electron gas is reached.
As X; decreases the BT shrinks, and for ¹ g5&(10'
cm an IB split o8' from the CB by an energy gap is
formed. The shift of the CB due to the electron-electron
interactions (X„,) is of the same order of magnitude as
the effects due to disorder (X,.;), which are responsible
for the IB or the BT for E ~E„,. For N, =0 the density
of states is given by p(E) =g„gb(E E„,) and e(x—) is the
step function. A disappearance of the IB was also found
in three-dimensional systems. The impurity concentra-
tion N;, where the IB disappears, is characterized by the
dimensionless number f» for a d-dimensional system,
defined by N,'~ a'=fd. For three dimensions with
N=N„ f,=0.1& was found. Our N, =5X10" cm '
corresponds to f2 ——0.05. This number depends, howev-
er, on X and Nd.

It is obvious from Fig. 1 that the states in the IB stem
from the edge of the CB. The width of the IB is already
significant at the lowest impurity concentration which
can be reached experimentally (1)&10' cm ). We have
veri6ed that the number of states in the IB between its
edges E3 and E2 is indeed given by

p e, c=gg„N, . (19)
3

In Fig. 2 the CB edge and the IB edges versus impurity
concentration are shown. For ¹~0,the energy of the
impurity level is located at —0.4R; the binding energy Ea
is 0.18.. The width of the IB increases with increasing
impurity concentration. A similar behavior as in Fig. 2
was found in three-dimensional systems. In this case
the impurity dependence of the band-edge energies is
stronger because the electron density has been varied ac-
cording to N =X,-. In Fig. 2 the same parameters as in
Fig. 1 have been used for X and Nd.

In Fig. 3 the energy dependence of the DOS for fixed X
and N, and three values of N~ are shown. For N~ =0 (ac-
cumulation) we find a band tail„while for Nq=6X10"
cm an IB is found. VAth increasing N& the electron
wave function is pushed to the interface, the electron-
impurity interaction becomes more ideally two-

2. —

t I I I I I I 1 ~ I I I ~

Q

V)
C)
C}

-0.~ -Q2

ENERGY (R)

FIG. 3. Density of states versus energy for three diferent de-
pletion densities {Nz) according to the Klauder approximation
and the random-phase approximation.

dimensional, and the binding energy of the bound state
increases. This will be discussed in more detail in Sec.
VI. For N& ——0 the impurity concentration (N, =N
=1X 10"cm ) is already high enough to produce a BT.
For Nd ——3X10"cm an IB is found, which is, howev-
er, not split oF from the CB. From the split-off IB for
Nd ——6X 10" cm we estimate that fz ——0.07 instead of
0.05 as found in Fig. 1 for some other N and Nz.

The DOS versus energy for N; = 1)& 10" cm
Xd ——3X10" cm and three difkrent electron densities
is shown in Fig. 4. The increase of N increases the bind-
ing energy via the con5nement parameter b. Yet accord-
ing to the parameters used in Fig. 4 this efFect is small;
see Eq. (9). The increase of N also increases the screening
properties; see Eq. (13). This is why an IB becomes a BT
with increasing electron density, shown in Fig. 4.

For every electron density we used the DOS versus en-
ergy according to Fig. 4 to calculate the DOS at the Fer-
mi level. This DOS versus electron density is shown in
the inset of Fig. 4, where we used a degeneracy of
g,g„=1. The non-split-oft' lB in the DOS versus energy
as seen in Fig. 4 is reflected in the DOS versus electron
density.
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FIG. 4. Density of states versus energy for three diferent
electron densities according to the Klauder approximation and
the random-phase approximation. The inset shows the density
of states at the Fermi energy versus electron density.

B. The spectral density
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FIG. 5. Spectral density [A (k,E)] for typical energies versus
wave number (k) for N =2&10"cm and Xz ——3&10"crn
and for two different impurity concentrations according to the
Klauder approximation and the random-phase approximation.

In order to get some information on the spatial behav-
ior of the electron wave function, we consider the spec-
tral density; see Eq. (3). A (k, E) measures the probability
that the electron with energy E is in a state with wave
number k. In Fig. 5 we show an example for N =2X 10"
cm and N~ ——3X10"cm

For E; = 1 X 10' cm, as in Fig. 5(a), a split-off IB ex-
ists; see also Fig. 1. In the CB (E =0) the spectral densi-

ty peaks at a fimte k and the width b,k is very narrow. In
the IB (E =0.4A) the peak is at k =0 and the width is

very large. According to the uncertainty equation
hk b,r= constant we conclude that in the first case the
state is extended in real space, while in the IB the state is
localized in space.

As in Ref. 28 we define the ratio r = A (k =O, E)/
A (k,E), where k is the value of k for which A (k,E)
has a maximum. In Fig. 5(a) we find r =0 for the state in
the CB and r =1 for the state in the IB.

For N; =2X10"cm, as in Fig. 5(b), we are in a BT
situation, see Fig. 1. For E = —0.36R, E = —0.2R, and
E =0, we get r =1, r =0.51, and r =0.024, respectively.
As in d =3 we find, starting from the band edge, succes-
sively localized, hybrid, and extended states as the energy
increases.

In order to calculate thc density of states at the Fermi
level one has to know the spin and valley degeneracy of
the IB or the BT. In the IB regime we expect an impuri-
ty to be able to bind only one electron (g, =1). The IB is
full for N =Ã, and for temperature zero if we assume

g, =1. In the CB we expect g,g, =4. Therefore we be-
lieve that g,g„varies from 1 to 4 when the Fermi energy
goes from the IB to the CB. Because our electron-
impurity potential does not depend on the spin or the val-
ley degeneracy, the problem of the degeneracy of the
DOS cannot be solved.

IV. RESULTS FOR THK WEAKLY SCREENED
POTENTIAL

In this section we present our results for the DOS in
the Klauder approximation in the case of the modified
Thomas-Fermi approximation [Eq. (17)] being used for
the screening. %e expect this approximation with q, ~0
to be realistic for %~0 (the Fermi energy is in the IB).

A. The in8uence of the screening parameter

The experimental results on the sodium-doped silicon
MOSFET system indicate that the electrons in the IB
are localized. The temperature dependence of the con-
ductivity in the IB has been fitted with a single-particle
hopping model for noninteracting electrons.

In case of localized electrons we expect the screening
behavior to change substantially in comparison to the
screening behavior of free electrons. However, a qualita-
tive theory for the screening properties of localized elec-
trons in an IB is not available from the literature in two
dimensions. One expects that for localized electrons the
screening function for q~O is finite as in an insula-
tor 35,36

For these reasons we have studied the Klauder approx-
imation within the modified Thomas-Fermi approxima-
tion given in Eq. (17). The screening wave number q, was
reduced by a factor of 80 in comparison to the value of
the free electron gas. Because of the singular nature of
the unscreened potential for q~O, we were not able to
solve Eq. (6) with an unscreened electron-impurity in-
teraction (q, =0). We believe, however, that the reduc-
tion of the screening wave number simulates a weakly
screened potential. %e will present further arguments rc-
galdlng th1s po1nt 1n Scc. V.

In Fig. 6 we have plotted the DOS versus energy for
X =2&10" cm, X, =1&10" cm, Xd ——3&10"
cm, and for various screening parameters q, =aq, . For
a= 1 (the full screening in the modified Thomas-Fermi
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approximation) we find no IB and the CB starts at
—0.338, which corresponds roughly to the shift of the
band due to E„,. With decreasing a (decreasing screen-
ing) the CB edge moves to lower energy.

For o; =0.05 some peaks in the DOS are observable for
low energies. For a & 0.0125 these peaks disappear again
and the DOS becomes smooth. The origin of these peaks
are excited IB s; this will be discussed below. From Fig.
6, however, it becomes understandable that a screened
potential underestimates the shift of the CB edge due to
disorder.

FIG. 6. Density of states versus energy for different screening
parameters q, according to the Klauder approximation and the
modi6ed Thomas-Fermi approximation.

preted according to Fig. 7 as follows: Kith decreasing o;
the ground state of the IB shifts to lower energy and ad-
ditional excited IB's are shifted from the CB into the en-
ergy range of the bound states (E &E„,). With a further
decrease of o, the IB's become broader and the overlap-
ping of the dift'erent IB's and of the CB results in a mono-
tonic energy dependence of the DOS. As for the fully
screened potential (Fig. 2), Fig. 7 shows that for
o, =0.025 the overlapping begins for X;=5)&10' cm
Although the weakly screened potential is stronger than
the potential screened within the RPA, the critical im-
purity concentration to obtain a split-off IB does not
change dramatically due to the existence of overlapping
excited IB's.

For a complete description of the system, a self-
consistent calculation of the screening behavior and of
the DOS would be necessary. Therefore a complete
theory for the metal-insulator transition must be avail-
able. This is not the case. Given this theory, one should
expect the screening properties of the electrons to change
from insulating to metallic if the Fermi energy increases.
We believe our theory with a= 1 (full screening) to be
realistic if the Fermi energy is greater than E„,. Our re-
sults for a weakly screened potential (a~0) are more
realistic if the Fermi energy is much smaller than E„,.

V. RESULTS FOR THK SEPARABLE
POTENTIAL APPROACH

B. The exrited impurity bands

The disappearance of the structures in the DOS in Fig.
6 for a ~0.0125 motivated us to study this effect in some
detail. In Fig. 7 the DOS versus energy is shown for
X =2&10"cm, N& ——3)&10"cm, a=0.025, and for
various impurity concentrations. The curve with
X;=1)&10"cm was also shown in Fig. 6. %'ith de-
creasing impurity concentration the structure in the DOS
for E gE„, reappears, and for N;=SX10 cm we iden-
tify three IB's at the energies —0.85R, —0.488, and
—0.034R. The exchange-correlation contribution to the
self-energy is E„,= —0.2958.

The origin of the disappearance of the structure at the
low-energy tail of the DOS in Fig. 6 for a &0.025 is inter-

In this section we discuss the fifth Klauder approxima-
tion assuming that the electron-impurity interaction po-
tential is a separable potential. The good qualitative
agreement between the separable potential approximation
and the Klauder approximation for three-dimensional
systems motivated us to study this approach for two-
dimensional systems; especially because the numerical
e6ort for the separable potential approximation is much
lower than for the Klauder approximation. Furthermore
the limit N;~0 can be studied analytically in the sense
that the binding energy can be calculated within this ap-
proach. We found, however, some features in the separ-
able potential approximation, which we did not expect
from our calculation within the Klauder approximation
and which we attribute to the separable potential approx-
imation.

A. Theory

Q
Cf

N 1

V)
C)
Cl

-10 -0.6
E(R)

- 0.2

FIG. 7. Density of states versus energy for different impurity
densities according to the Klauder approximation and the
modified Thomas-Fermi approximation.

The essential assumption of the separable potential ap-
proximation is that the electron-impurity interaction po-
tential can be written as

V(q —q') =ZC(d) V'~ (q) V'~'(q') .

The dimensionless parameter C(d) determines the energy
of a bound state for X;~0 for the d-dimensional system
and will be determined later. It is obvious that the separ-
able potential approximation is exact for a q-independent
electron-impurity potential (zero range potential in nor-
mal space}. With Eq. (20) we can solve Eq. (6) and get

U(k, q, E}=ZC(d)V'~ (k)V'~ (q) . (21)



A. GOLD, J. SERRE, AND A. GHAT LI 37

X, , (k,E-)=Z C(d)V(k)N,
8 (E}

(22a)

with

8 (E)= f dq q V(q)G (q, E)
27K 0

According to Eq. (5) the self-energy X, ;(k,E) can then be
expressed as a product of a k-dependent function (the
electron-impurity potential) and an energy-dependent
function

N =N. = & ~ $ crn
10 -2

g~-3x)0 cw11 -2

I
l 'i

I

li
I

O
IX

C4
e

(3
C3

2

8 (E)=C(d) f dq E —q /2m

for Z = —1. For E & 0 we And explicitly

(23)

(24)

According to Eq. (22a) we expect a bound state when
1 Z8 (E)=0—is fulfilled. For an ideally two-
dimensional system the bound state is at —4R. VA'th Eq.
(24) we conclude that

C(2) =2/m' (25)

to reproduce a bound state at —4R within the separable
potential approximation and for Z= —1. For three-
dimensional systems the parameter C(3) was determined
in Ref. 29: C(3)= —,'.

In the following part of this section we discuss the se-
parable potential approximation for d =2 and compare it
with the results of the Klauder approximation.

B. The f}IBscreened potential

In this subsection we discuss our results for the separ-
able potential approximation [Eq. (22)] and the electron-
impurity interaction potential according to Eq. (11). For
the screening we use the RPA [Eq. (13)].

For N =X,. =1&(10' cm and X& ——3X10"cm the
DOS versus energy is shown in Fig. 8. The sohd curve
corresponds to the Klauder approximation and the
dashed curve corresponds to the separable potential ap-
proximation. The separable potential approximation de-
scribes the IB quite weB; the energy range and the width
of the IB are in reasonable agreement with the Klauder
approximation where the RPA was used. %e believe that

for d =2.
For a three-dimensional system the function 8 (E) can

be calculated analytically within the Thomas-Fermi ap-
proximation for the screening. In our case, however,
because of the form factor E;(q), we have to solve 8(E)
numerically. We can also study numerically the in6uence
of the various approximations on the screening function
(RPA, modified Thomas-Fermi approximation) and we
can use various approximations for the electron-impurity
interaction potential.

The function 8 (E) depends via G (q,EJ on the impuri-

ty density. In the limit N, ~0, for 1/b =0 (ideally two-
dimensional system} and for an unscreened potential,
8 (E) which we denote by 8 (E) is given by

-0.2 -0.5 -Q3 -02
E(R}

0.0

FIG. 8. Density of states versus energy within the random-

phase approximation. The solid and the dashed lines corre-
sponds to the Klauder approximation and the separable poten-
tial approximation, respectively, The dotted line corresponds to
Eq. (7).
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FIG. 9. Band-edge energies (as indicated in the inset} versus

impurity density according to the separable potential approxi-
mation and the random-phase approximation.

the structures on the CB edge in the separable potential
approximation are due to the approximation involved in
this approach. The dotted line in Fig. 8 results from the
self-consistent Born approximation [Eq. (7)]. However,
the q-dependence of the self-energy was neglected:
X, , (k,E)=X, , (O, E). The numerical eff'ort for this
simpli6ed self™consistent Born approximation is the same
as for the separable potential approximation.

We have also studied the influence of the screening on
the DOS for the same parameters as in Fig. 8. Within the
Thomas-Fermi approximation (modified Thomas-Fermi
approximation, a=1) we did not find an IB in the
IGauder approximation. The same result was observed
within the separable potential approximation. The q-
dependence of the screening function in the RPA is re-
sponsible for this behavior. Since we did not find a
significant change in the IB neglecting local-field correc-
tions in the RPA, we conclude that the q-dependence of
the I.indhard function [Eq. (15)] is most important for the
existence of the IB.

The band structure is characterized by the CB edge
and the two edges of the IB; see the inset in Fig. 9. The



37 DENSITY OP STATES IN A TWO-DMENSIONAI EI.ECTRON. . .

dependence of the band edge energies versus impurity
density for N =2X10"cm and N& ——3&10"cm, as
in Fig. 2, is shown in Fig. 9. A split-off' IB is found for
N; &N, =1.8&10' cm . For N, ~Owe 6nd theimpur-
ity level at 0.0278 below the CB. In the Klauder approx-
imation the impurity level is found at 0.1R below the CB
(see Fig. 2). Thus we only found qualitative agreement
between the separable potential approximation and the
Klauder approximation. The binding energy (for N~ ~0)
and N; depend on N. For N = 1 X 10" cm and
N& ——3)(10" cm we found in the separable potential
approximation a split-off IB for N; gN;=5X10' cm
and the bound state for N, ~O is observed at 0.0768
below the CB.

The width I of the IB is well described by

I =Io
10' cm-

where the prefactor I o depends on N and N&. The ¹

dependence is in agreement with the coherent potential
approximation (CPA) results. 3 For N =2X10" cm
and Nz —3X10" cm we find I e=0.051R, while for
N =1&10" cm and N& —3g 10" cm we 6nd
I c=0.0908. For these values of N and Nz the extension
parameter b is not very different in the two given cases.
The origin of the difFerent I ii must then be screening
differences due to the diNerent electron densities.

Within the Klauder approximation our numerical re-
sults for the width of the IB (Fig. 2) can also be Stted by
the Eq. (26). For N=2X10" cm 2 and Nz ——3X10"
cm we get I ii=0. 110R. A similar equation as Eq. (26)
also holds for the maximum of the DOS in the IB:
p ~ N, '~, in agreement with the CPA result.

C. The weakly Icleened potential

The modified Thomas-Fermi approximation [Eq. (17)j
can be studied in the separable potential approximation
too. The advantage of the separable potential approxi-
mation in comparison to the Klauder approximation is
that the limit q, =0, i.e., the completely unscreened
Coulomb potential, can also be discussed. For this
reason we consider it worthwhile to study the separable
potential approximation in the limit a~0 in some detail.

If we reduce a from 1 to 0 we qualitatively find the fol-
lowing behavior for the DOS. With decreasing a the IB
shifts to lower energy and becomes broader. There is a
drastic shift for a between 1 and 0.01. For a g0.01, it
seems that the lower band edge goes to very low energies
and the IB is very broad. However, the DOS at very low
energies is small. The long tail in the DOS is certainly
due to the long-ranged nature of the unscreened poten-
tial. The upper band edge of the IB and the energy where
the DOS in the IB is maximum are no longer varying for
a ~0.01 and go to finite values for a~O. A qualitatively
similar result has been found in the Klauder approxima-
tion (see Fig. 6). The impurity concentration N; where
the IB merges with the CB also increases drastically with
decreasing a, in disagreement with the Klauder approxi-
mation. This behavior stems from the fact that in the se-
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FIG. 1O. Band-edge energies (as indicated in the inset) versus
impurity density according to the separable potential approxi-
mation and the modi5ed Thomas-Fermi approximation with
a=10 (E„,=0).

parable potential approximation we did not 6nd excited
IB's (for a~0), while in the Klauder approximation the
excited IB's Nl the gap in the DOS between the lowest IB
and the CB.

On the CB edge we found an increase of the DOS with
decreasing a. %e expect that this behavior is also a de-
fect of the separable potential approximation.

In Fig. 10 the band edges (as indicated in the insert)
versus impurity concentration for N =2&(10" cm
N& ——2&(10" cm and the unscreened electron-impurity
potential (a=10 ) are shown. Comparing Figs. 9 and
10 we observe that the energy of the bound state for
N;~0 goes from Ez ——0.038 in the screened case to
Ez ——0.68. in the unscreened case. ¹ changes from
1.8X10' cm in the screened case to 5X10" cm in
the unscreened case. We conclude that, without a de-
tailed knowledge of the screening behavior in the IB, a
definite conclusion on N; cannot be reached. The width
of the IB in Fig. 10 does not depend significantly on N;
for ¹ p 0.5 X 10" cm and the width is of the same or-
der of magnitude as the energy of the bound states for
¹

—+0.
Because of the satisfying agreement of the binding en-

ergy in the hmit N, ~0 with exact calculations (see Sec.
VI), we have used the separable potential approximation
to calculate the DOS versus electron density. For an un-
screened potential and Nz &N the DOS versus energy is
nearly independent of N. The reason is that the potential
is only determined by b. In Fig. 11 we have shown the
DOS versus electron density for N& ——3X10" cm and
N, =3X10" cm . First we calculated the DOS versus
energy for N =1X10"cm and then we ulled the IB
with electrons up to the Fermi level. For the left-hand
and the lower scales in Fig. 11 a degeneracy of g,g„=4
was assumed, while we used g,g, =1 for the right-hand
and the upper scales. The DOS versus density is very
similar to the result which we have shown in the inset of
Fig. 4.
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FIG. 11. Density of states ai the Fermi energy versus elec-
tron density according to the separable potential approximation
and the modified Thomas-Fermi approximation for a=10
(E„,=0}. The scale on the left-hand side and the lower scale
correspond to g,g„=4. The right-hand side and the upper
scales correspond to g,g„=1.

In connection with the separable potential approxima-
tion we mention the following: Our approaches for a ful-
ly screened and for a completely unscreened potential
must be considered as two relevant physical limits. How-
ever, we have not found a criterion to test the quality of
the separable potential approximation in case of an un-
screened potential. Therefore we believe that these re-
sults must be considered with caution.

VI. THE LQ%-IMPURITY-DENSITY LIMIT

In order to compare our theory with exact results, we
have calculated the DOS in the hmit of very small impur-
ity concentrations.

A. The Klauder approach

The binding energy of an unscreened electron bound to
a charged impurity has been calculated by solving the
Schrodinger equation. ' In order to compare these re-
sults with our theory we have studied the DOS versus en-
ergy for N; =5X10 cm and Nz ——2X10"cm within
the modi6ed Thomas-Fermi approximation. The screen-
ing parameter a has been reduced to a=0.0125. For
a&0.01 we got numerically uncertain results, because
the impurity potential becomes more singular for q~0.
The calculations are done for N =0. Let us mention that
the binding energy does depend on X via the parameter b
However, we know, from the separable potential approxi-
mation that the shift of the IB with decreasing a is small
for a ~0.01. In Fig. 12 the DOS for q, a =0.075 versus
energy for E ~0 is shown. Eo indicates the ground state
IB, E, indicates the Srst excited IB, %e have studied the
energy of these two IB's as functions of a. The results
are given in Table I. For the two lowest values of a a sat-
uration of Eo and E& is obtained. Then the lowest values
of a give a good estimate of Eo and E& for the fully un-

FIG. 12. Density of states versus energy according to the
Klauder approximation and the modified Thomas-Fermi ap-
proximation for q, a =0.075 (a=0.019). Eo and E& indicate
the energy of the bound state and the first excited bound state,
respectively (E„,=0).

screened potential (a=0). Vinter" found —0.69R for
the Eo state and —0 298 for the E, state for
Nd ——2 X 10" cm . The agreement between these values
and our values for q, a ' =0.05 is satisfactory.

From Fig. 12 we see that between the CB edge (here at
E =0 because we used E„,=0) and E, additional bound
states exist. Unfortunately only the two lowest bound
states have been discussed in the single-impurity ap-
proach. Therefore we cannot compare the binding ener-
gies of our additionally excited bound states (IB's) with
other theoretical work.

In order to get further information on the nature of the
excited IB's we have calculated the spectral density. The
parameter r, which we have introduced in Sec. III B, indi-
cates in a certain way that all states in the various impur-
ity levels are localized. We found for the IB's shown in
Fig. 12 the following values for E/r: —0.08R /1,
—0.12R /0. 52, —0.18R /1, —0.28R /0. 58, and
—0.68R/1. For E = —0.08R we found a node in the
spectral density at ka ' =0.15 and a relative maximum at
ka~ =0.3. According to our discussion in Sec. III B the
electrons in the excited IB s still have an atomiclike char-
acter. We believe that further theoretical studies could
lead to a better understanding of the spectral density.

TABLE I. Energies Eo and El (as indicated in Fig. 12) for
N; =5&10' cm, Nd ——2&10" cm, N =0, and for diN'erent

screening parameter values.

q, (units of 1/a ) Eo (units of 8) El (units of 8)
0.20
0.10
0.075
0.05

0.05
0.025
0.019
0.0125

—0.30
—0.50
—0.68
—0.72

—0.04
—0.18
—0.28
—0.32

8. The separable potential approach

In the separable potential approximation the bound-
state energy can be calculated without solving the full
equation for the self-energy. In Sec. V A we used the se-
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parable potential approximation ln the limit X;~0 to
determine C(2) [see Eq. (23)] for a 1/q potential. The ar-
gument can be generalized by using realistic potentials.
The bound-state energy EB for S,~0 is defined by F,(q)= 1

(1+q/b')' (29a)

Phenomenologically we argue that we must replace Eq.
(12b) by

1 ZB—(Es)=0 .

Here Z = —1, and B (E) is given by

(27a)
with

b'=b+b„.

E~ =x(ba') R

and x is determined by

ba'= — (x —3)( —3 —lnx +x)2 1

~ (1+x)

(28a)

+(12x —4) 1 ——
4 &x

(28b)

The parameter b was defined in Eq. (9) and depends on
X and Nd. The binding energy versus Ng and X =0 cor-
responds to the dotted line in Fig. 13. For Nd~(x&
(b ~ ac ) the binding energy goes to 4R, the binding ener-

gy of the ls state in the ideally two-dimensional system.
For Nd ~0 (b ~0) our binding energy goes to zero. This
behavior is a drawback of our model. For b~0 the
electron-impurity interaction potential also goes to zero
due to the fact that the parameter b was calculated within
a variational method. The correct limit for the binding
energy for b ~0 is E& ——0.258.

B (E)= I dq qV(q)
E —q /2m

In case of an unscreened potential with finite thickness
effects [see Eq. (12)], the binding energy is expressed by

For b~0 the effective thickness parameter b goes to
bz~. We define bz~ via (z )i ——(z )2. The average (z ),
is defined by the wave function given in Eq. (8) with
b =bz . The average (z2)2 is defined by the hydrogen
wave function of a 2p state 0'(r, e, p) ~re "~ cosee™.
We get (z ),=12/bz~ and (z )2 ——18a'; then bz is

given by

bqp
——0.6/a' . {30)

The binding energy according to Eq. (28) and to the
effective thickness parameter b ' according to Eq. (29b) as
function of Nd for N =0 represents the solid curve in Fig.
13. The theoretical results of Lipari, Martin and
%allis, ' and Vinter' are also shown. These results are
in satisfactory agreement with our theoretical results. In
Refs. 9 and 10 the binding energy versus an external elec-
tric field was evaluated. We used Eq. (10) with N =0 to
relate Ez and Ii; see the upper scale of Fig. 13.

In all our calculations of the DOS we have used Eq.
(12) for the electron-impurity interaction potential. Com-
paring the dotted line with the results of Refs. 9, 10, and
12 we see that for inversion layers with Nd -10" cm
the quantitative agreement is satisfactory. For accumula-
tion layers with Nd -10 cm our binding energies are
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FIG. 13. Binding energy versus depletion density according
to the separable potential approximation and the modified
Thomas-Fermi approximation for a =0 and for X=0. The full

line according to Eq. (28) with b =b, which is given in Eq.
(29b). The dotted line according to Eq. (28) with b given in Eq.
(9). The dashed and the dashed dotted lines according to Refs. 9
and 10, respectively. The dots are theoretical results from Ref.
13. The electric 6eld I"' (upper scale) is calculated according to
Eq. {10).

FIG. 14. Binding energy versus screening parameter accord-
ing to the separable potential approximation and the modified
Thomas-Fermi approximation as full and dashed lines for the
electric field I' =1.5 X 10' V/cm. The dots according to Ref. 12
for the same electric Geld.
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too small for %=0. %e mention that in this case the
binding energy for 5nite electron density is determined by
the electron density. The ideally two-dimensional elec-
tron gas with E ——4R is outside the range of the experi-
mental possibility.

%e can also calculate the binding energy for a screened
potential in the limit N,.~O. The screening reduces the
binding energy drastically. For Xd ——3.6g 10" cm and

X =1&(10' cm within the RPA we get a binding ener-

gy Es ——(4X10 )R. In the Klauder approximation we

find for the same parameters Es ——(6X10 )8, while
Vinter'3 gets (1.4X10 )R using the density-functional
theory. The binding energy depends in a sensitive way on
the screening function. For high electron densities the
bound states become very shallow.

In Fig. 14 we have shown our results on the binding
energy versus the screening parameter. We used the se-

parable potential approximation and the modified
Thomas-Fermi approximation in the following form:
e(q)=1+F, (q)q, /q. According to Eq. (10), various sets
of X and Ed result in an electric field F =1.5 X 10 V/cm,
which was used in the single-impurity approach of Ref.
12. The two sets of X and Nd which we used in Fig. 14
are in reasonable agreement with Ref. 12.

In this section we compare our theoretical results on
the DOS with experimental results found in sodium-

dopcd slllcoil MOSFET systcllls.

A. Condnetivity measurements in the impurity band

In the conductivity versus electron-density measure-
ments on sodium-doped silicon inversion layers the
following behavior has been discovered: For lower sodi-
um concentrations (typically 5X10"cm ) a peak in the
conductivity at low electron density (typically 1X10"
cm ) is found. For higher electron densities the con-
ductivity increases rapidly with increasing N The peak.
wss interpreted as an IB induced by the sodium ions, and
the strong increase of the conductivity at higher electron
densities was interpreted as the conduction in the CB.
For higher impurity concentrations (typicaBy 1X10'2
cm ) the peak in the conductivity disappears. This be-
havior was interpreted as a merging of the IS with the
CB (band-tail description).

We agree with this interpretation. Our theoretical re-
sults (see Fig. 1 and the insets of Figs. 4 and 11) are in
qualitative agreement with the experimental results. For
low impurity concentrations we found an IB, while a BT
occurs for higher impurity concentrations.

Quantitatively our impurity concentration N;, where
the IB merges with the CB, is reduced by a factor of 10
compared to experiments. For Nd ——3g 10" cm and
X =2X10" cm (1X10" cm ) we found
N; =O. S lXOcm (1X10"cm ) [compare with Fig.
1 (Fig. 4)]. Our electron density, for which the IB is filled
Uslllg g g = 1 (scc lllsct of Fig. 4), compares weil with thc
experimental results. Of the 6rst experimental measure-

ments it was claimed that there is one electron state for
each oxide charge in the IB. This implies that the spin
and valley degeneracies are lifted [see Eq. (19)]. Recent
experimental results, however, show the following be-
havior: For N;=3.4&10" cm and X;=9.3&10"
cm the electron densities necessary to 611 up the IB are
found to be 1&10"cm and 3X10"em, respective-
ly. %'e conclude that the effective impurity concentration
which contributes to the IB is 3 times smaller for g,g„=1
and 12 times smaller for g,g„=4 than the experimentally
determined impurity density. The factor of 3 has also
been used in Ref. 4 to describe the temperature depen-
dence of the conductivity within the model for hopping
conduction in the IB, where the DOS of the IB is the in-

put. The misfit, found experimentally between N and N, ,
will be discussed below. With the factor of 3 the impuri-
ty concentration turns into s typical 3 X 10"cm, where
the peak in the conductivity disappears. 4 In comparison
to our theoretical result N; = 1 X 10" cm (see the inset
in Fig. 4), a discrepancy of a factor of 3 remains.

For the discussion of the hopping conduction it was as-
sumed in Ref. 4 that the DOS in the IB is constant snd
given by Ã, /Wand that W'is the width of the IB. In or-
der for the theory and the experiment to agree well, a de-
crease of 8'from 10 meV at N; =3X 10" cm to 3 meV
at N, = 12 X 10" cm was found to be necessary. The
unexplained behavior of the decreasing width with in-

creasing impurity density raises the question whether the
assumptions on the hopping conduction model are realis-
tic. In our theory the width increases with increasing im-

purity concentration and is of the size of the binding en-

ergy.
In the separable potential approximation with an un-

screened potential (see Fig. 10) our theoretical value
¹

=5 & 10" cm is in better agreement with the experi-
mental results. However, the electron density scale in

Fig. 11 is two times too large (for g,g„=1 ) in comparison
to the experiments. Since we only have a mathematical
but no physical motivation to use the separable potential,
we do not believe as much in 6gures which result from
the separable potential approximation.

The depletion density was varied in Ref. 4 by a sub-
strate bias. It was found that for fixed ¹ the maximum
of the conductivity in the IB decreases with decreasing
Ed. This is in qualitative agreement with our results; see
Fig. 3.

Conductivity versus electron-density measurements
have also been taken on sodium-doped accumulation Iay-
ers.~ The peak structure which was found in the dynam-
ical conductivity was quantitatively attributed to
plasmon dynamics. ' No indications for an IB in accu-
mulation layers have been seen in experiments for
X; ~ 2&10"cm, which is nearly the residual impurity
density of the studied accumulation layers. This is in
qualitative agreement with our results (see Fig. 3 for
Xd —0). The binding energy is decreasing with decreas-
ing Nd (see Fig. 13). It is obvious that N; also decreases
with decreasing Nd.

In our model we have assumed that all impurities are
located at the interface of the oxide snd the semiconduc-
tor. In experiments it was found that the sodium ions are
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B. Deep-level transient spectroscopy
(DLTS) measurements

DLTS measurements have been performed with sodi-
um drifted silicon MOSFET systems. In the recent ex-
periment the DOS versus sodium concentration was
determined in the band gap for E = —l.SR. A strong in-
crease of the DOS for N; & 3 X 10' cm was found.

In Fig. 15 we show the DOS versus energy for
N =1g 10"cm, N& ——3 X 10" cm and high impurity
density (1X10' cm ~N, ~1X10' cm ). We used
the IGauder approximation and the RPA. With increas-
ing impurity density the CB edge shifts to lower energy.
The shift AE, ;, due only to the disorder, is given by

hE, .; = —0.888
0.46

10' cm
(31)

In the separable potential approximation we find within
the RPA

located within 50 A of the interface. Dil'erent distribu-
tions of the sodium within this distance might be realized
in different samples. A discussion on the dif5culties to
determine the impurity density in experiment can be
found in Refs. 44 and 45. We have found that N;(z; ) de-
creases if the impurities are moved from the interface to
the oxide. For given N, & N;(z, ) for z, &0 the remote im-

purities result in a BT in the DOS, but for the same
N; & N;(z; =0) the impurities at the interface result in an
IB. This might be the reason %'hy an effective impurity
concentration has to be introduced in the experiment of
Ref. 4.

The IGauder approximation for a distribution of im-
purities in the oxide is discussed in the Appendix. We
mention, however, that the mobility versus electron-
density measurements, ~here the Fermi energy is in the
CB, have been quantitatively explained theoretically by
assuming the impurities to be located at the interface and
by using the experimental values X, .

AE, ; = —0.648 10"cm-'

0.49

(32)

C. Infrared measurements

Far-infrared measurements of the intersubband absorp-
tion in sodium-drifted silicon MOSFET systems have
been reported. 8' 9

The experiments on inversion layers with
Nd ——1X10" cm showed a positive sodium induced
shift of the resonance for fixed electron density. This
shift was saturated for ¹ g4&10" cm . For fixed
sodium concentration the disorder induced shift seems to
disappear for Np2¹. The resonance for Xg2N, - has
been interpreted as a transition from an IB associated
with the zeroth subband to an IB associated with the first
subband. The disappearance of the shift for N & 2Ã, has
been interpreted as a screening effect. Yet it is unclear
to us which structures of the DOS can be seen in the in-
tersubband absorption measurements. Our theory gives
some indication why the split-off IB disappears for fixed
Nd and N, and a BT appears when the electron density
increases. This effect is attributable to screening. In Fig.
4 the DOS versus energy for X;=1&10"crn is shown.
For N ~ 1)& 10" cm we found an IB and for
N) 2)(10"cm ~ a BT.

The saturation of the sodium-induced shift was not ex-
plained in Ref. 48. Within a BT situation we would ex-
pect that for tugh N, a transition from the zeroth sub-
band to the edge of the Srst subband depends on X; only
weakly. The impurities have a stronger effect on the
zeroth subband than on the first subband because the
latter is more extended into the bulk. The X; dependence
of the edge of the zeroth subband is a weak one for the
studied impurity density according to Eq. (31).

The experiments on accumulation layers also exhibit
a positive sodium-induced shift of the resonance. Be-
cause of the absence of IB's in accumulation layers and
the increase of the shift with increasing X;, the effect has
been explained as a plasmon effect.

From Fig. 15 it becomes obvious that for a given energy a
threshold impurity density N; exists, below which
p(E)=0, while for Ã, &Ã, the DOS increases with N, .
From Fig. 15 we find ¹ =4& 10' cm for E = —1.8R.
The DOS for this energy and for X; ~X, is ten times
larger than in experiment (for g,g, =l). This might be
due to a distribution of impurities into the bulk of the ox-
ide, as discussed before. In addition we expect impurity
concentration fluctuation effects to be important at the
CB edge 17, 19

Similar results have been found within the unscreened
separable potential approximation. However, there is no
sharp increase of the DOS for a certain threshold impuri-
ty density because the unscreened potential has a very
long low-energy BT.

FIG. 15. Density of states versus energy for high impurity
concentrations according to the Klauder approximation and the
random-phase approximation.

VIII. CONCI. USIGN

%e have used a multiple scattering method to calculate
the electronic structure of a two-dimensional electron
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gas, i.e., the inversion and the accumulation layers in
sodium-doped silicon MOSFET systems.

Vhthin a separable potential approximation the
simplified Klauder's equations have been discussed and
the results have been compared with those obtained from
the complete solution; see also Ref. 50.

%'e have shown how the band tail is transformed into a
split-o8' impurity band below a certain impurity concen-
tration. This concentration is found to vary with electron
and depletion densities.

Our description of electronic properties of these two-
dimensional systems are in qualitative agreement with re-
cent experiments on impurity band conductivity and in-
frared absorption, ~s in sodium-doped silicon MOSFET
systems as well as with deep band tails found in deep-
level transient spectroscopy. A good quantitative agree-
ment between our theory and the experiment could be
reached if it is assumed that a fraction of impurities lies
inside the bulk, instead of at the interface.

We thank F. Koch for critical and encouraging discus-
sions. A. Gold was supported by the Ernst von Siemens
Siftung of the Siemens Aktiengesellschaft. The Groupe
de Physique des Solides de I'Ecole Normale Superieure is
a "Laboratoire associe au Centre National de la Re-
cherche Scientiffque. "

K (k, q, E,z; ) =Ã, (z; ) V(q —k, z; )

+ f d q'V(q —q', z; )
(2n )

X G (q', E)U(k, q', E,z; ) . (A3)

N;(z;) is the two-dimensional impurity density in the
sheet at z, . The quantity

X(k,E,z;)=U(k, k, E,z; ) N,—(z; )V(0,z;)

determines the self-energy
M

X,.;(k,E}= g X(k, E„z;),

(A4)

X(k,E)=X, , (k, E)+X„,(k, E)

and the Green function is expressed as

1

E —e(k) —X(k,E} (A7)

V(k, z(}8(E,z; )
X, ;(k,E)=Z C(2) g N;(z(}

i=1 i

and

(AS)

By increasing the number of impurity sheets the set of in-
tegral equations (Al) —(A7), however, becomes difficult to
solve.

In the separable potential approximation we 6nd

APPKNMX:
THE GENERAI, IZED KI,AUDER EQUATIGNS

8(E,z;)= f dq qV(q, z, )G(q, E}C(2)
2S 0

(A9)

The Klauder equation [see Eq. (6)] has to be general-
ized for difterent kinds of scatterers. For a two-
dimensional impurity sheet in the oxide at a distance z,
from the interface the electron-impurity interaction po-
tential is given by

2m.Ze 1 1 —q~,
V, ;qz; = 38

e (I+q!b)'
The screened potential is expressed as

V, , (q, z, )
V(q, z;)=

e(q)

The generalized (fifth) Klauder's approximation for I
sheets of impurities is rewritten for i = 1, . . . , M as

for d =2. In the limit X;(z, )~0 we express the condi-
tion for bound states as

1 ZB (E,z;)=—0

fori =1, . . . , M with

(A10)

g'(E, z,.)= f "dqqV(q, z, ) — . (All)
2% 0 E —eq

It is obvious that our model has the property to explain
qualitatively the N and X; misfit in the conductivity mea-
surement in IB's found in the experiment. The general-
ized Klauder's equations are also relevant for the band
gap renormalization and for homogeneously distributed
background impurities. This mill be discussed elsewhere.
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