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Electron —LO-phonon interaction in semiconductor double heterostructures
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The electron-LO-phonon interaction Hamiltonian is deduced in a systematic way from a model
of dispersive polar-optical vibrations for a semiconductor double heterostructure. LO phonons are
introduced along the lines of the Born-Huang approach valid in the long-wavelength limit, while

phonon con6nement effects are included in a model which can be imagined as a jellium slab

disposed between two rigid walls. The obtained Hamiltonian includes screening along the lines of
the static three-dimensional {3D}Thomas-Fermi approximation and contains the 3D Frohlich
Hamiltonian as a limiting case. The case of a single heterostructure is also contained as another
limit. We compare our results with earlier works on the subject. Estimations of the polaronic ener-

gy shift and mass are reported.

I. INTRODUCTION

There is a growing interest in the investigation of semi-
conductor heterostructures like inversion layers, superlat-
tices, multiple-quantum-well structures, and the like. In
such systems electronic confined states are responsible for
many new physical properties and effects with practical
importance in the fabrication of new devices in micro-
and optoelectronics. ' Different physical quantities have
been calculated for the above-mentioned structures,
where the usual materials are the weakly ionic III-V com-
pounds (and alloys), such as GaAs/Al„Gal „As
heterostructures. In these materials the electron-LO-
phonon interaction plays an important role, especially for
the description of transport and optical properties at high
enough temperatures. In the study of free-carrier absorp-
tion of light, ' ' scattering rates, " polaronic effects, ' '
etc. , the usual bulk Frohlich Hamiltonian for the
electron-LO-phonon coupling has been utilized after in-
voking the good matching of the material elastic proper-
ties at the interfaces (and also considering almost equal
dielectric properties).

However, presently it has been recognized that such an
assumption could be certainly misleading. For instance,
electron self-energies due to the electron-LO-phonon in-
teraction are divergent if calculated by means of the bulk
Frohlich Hamiltonian applied to a quasi-two-dimensional
(Q2D) electron gas. " Although such divergences can be
avoided by an appropriate consideration of screening, "
they could also be surmounted if a more realistic model
for LO phonons is utilized.

The effects of interface polar-optical phonons were
considered in the investigation of layered heterostruc-
tures, ' ' while experiments on magnetoabsorption and
cyclotronic resonance in InSb inversion layers, '

Ga„Ini „As-InP superlattices, ' and GaAs/
Al„Gai „As heterostructures' confirmed that there are
fundamental differences in the electron —LO-phonon in-
teraction of semiconductor layered structures if com-
pared with the strictly bulk case. Experiments on Raman

scattering in superlattices and multiple-quantum-well
structures' ' produced further concrete evidence about
the important differences detected in the LO-phonon
spectrum of the above-mentioned structures. Another
effect which has been also considered is the contribution
from image charges to the polarization field of the lay-
ered structure under the assumption of nonuniform
dielectric constant. ' Let us emphasize that for acous-
tic phonons the spectrum is not so deeply changed as in
the case of polar-optical phonons. For polar-optical vi-
brations the possible modes have been numerically
modeled for layered structures with the result that pho-
non modes are rather confined in each layer and the
penetration of the vibrations into the adjacent layer is
negligible. ' All the above arguments support the now
well-accepted fact of LO-phonon confinement in semicon-
ductor layered structures and the need for a deduction of
an electron- LO-phonon interaction Hamiltonian ap-
propriate for such systems. Attempts in this direction
can be already quoted. In Ref. 21 the Raman cross sec-
tion in a double heterostructure (DHS) was investigated
and, from an analysis of the inverse-dielectric-function
poles, the electron-LO-phonon interaction Hamiltonian
is obtained for a layered system using the potential creat-
ed by the polarization field; in Ref. 15 the electron-LO-
phonon Hamiltonian is induced from an analysis of the
electron-energy-loss problem and, more recently, the su-
perlattice case was considered under the assumption of a
uniform dielectric constant and an a priori suggested po-
larization field that includes the LO-phonon confine-
ment.

The fundamental aim of the present work is to investi-
gate electron-LO-phonon interaction in a DHS on the
basis of a continuum (hydrodynamic) model for the long-
wavelength polar-optical vibrations assuming they are
dispersive and completely confined to the layer. We also
assume uniform dielectric properties throughout the
whole structure.

The assumed model for long-wavelength optical vibra-
tions was suggested in Ref. 26 and resembles the Born-
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Huang model but includes dispersion. In Sec. II we show
how the equations of Ref. 26 for LO waves, entailing con-
ditions of complete con6nement in the DHS, can be
solved; after that, the corresponding polarization Seld is
derived snd quantized. In Sec. III the electron-I. O-
phonon interaction Hamiltonisn is deduced for a DHS
using the already obtained polarization 6eld; screening is
included in the deduction from the very beginning on the
basis of a three-dimensional (3D) static Thomas-Fermi
approximation; the limiting cases of the bulk semicon-
ductor and the single heterostructure are discussed. A
completely second-quantized version of the Hamiltonian
(including the confined electron system) is also obtained.
In Sec. IV the particular case of completely confined elec-
trons is briefiy discussed and the obtained results are ap-
plied to the calculation of the polaronic energy shift and
mass. Section V is devoted to the general conclusions.

II. POI ARIZATION FIEI.D

%e are only concerned with long-wavelength I 0 pho-
nons and, therefore, a continuum approach along the
lines of Born and Huang for the classical vibrational
field is appropriate, which, afterwards, must be properly
quantized. As was remarked in Sec. I, a relatively simple
hydrodynamic model was suggested recently for polar-
optical phonons in a DHS. In the framework of this
model the dynamical equations for the lattice are written
in the following form:

' 1/2
1u= —coru+ (eo—e„)2

4m'

—U V(V'u) —UbV ll,

' 1/2

(e'0 —e' ) [~r—~ +U, V(V )+UbV ]u,
NT

(4)

P= [4ncoT(eo —e„)]
X I(eo —1}coT—(e„—1)co

+ (e„—1)[U,'V( V )+Ub V ]I u,

' 1/2
4m

2 (eo—e„)
Ny

X I e~r —e „co'+e„[U,V( V )+vb V ] I u . (6)

2 2
COI o—6)

V2+ ui, (r, co)=0, (7)

where ei o ——(eo/e„)co& (the familiar Lyddane-Sachs-
Teller relation) and U =u, +ub In the .bulk case Eq. (7)
leads to a quadratic dispersion law:

Equations (1)-(3) are satisfied by a displacement field
decomposed in the form u=uT+uL, where V uT —0,
V Xu &+0, V uz +0, and V X uI ——0.

For ur the equation V D=0 is satisfied with D+0 and
the corresponding (dispersive) polariton modes are ob-
tained. However, we are only interested in the longitudi-
nal displacements uz where the equation V D=O is
satisfied automatically because D=O. For ur (r, co) the
following equation is obtained:

T

IP = (eo —e„)
4m

' 1/2 e„—1
Q) TQ+ 8,

4m
(2)

N& =NLo —U f2 — 2 2 2

For the longitudinal electric and polarization fields we
obtain

1 1.VxH= —D, VxE= ——H,
C C

(3)

where the medium is assumed to be nonmagnetic and
D=E+4nP. Assuming u(r, t}=u(r) e '"', we obtain

where u(r, t) is the effective ionic displacement (the units
are such that u =v pw, where p is the mass density and w
the real displacement field with units of length}, eo and e„
are static and high-frequency dielectric functions, coT is
the limiting (bulk) transverse-optical frequency, E is the
electric field, P is the polarization field associated with
the vibrations, and v„v& are vector parameters with di-
mensions of velocity. Equations (1) and (2) are analogous
to those of Born and Huang for an isotropic continuum
but include dispersion effects through the terms propor-
tional to v, and v&, as discussed in Ref. 26, this disper-
sive modi6cation of the Born and Huang equations is
especially appropriate to account for the boundary condi-
tions at the interfaces of the DHS.

For a charge-free (and current-free} system Eqs. (1) and
(2) are supplemented by the Maxwell equations:

V D=O, V 8=0,

1/2
4+a)go

QL

QL (10)

where 1/e = 1/e„—1/eo (and therefore Dz —0). I et us
now consider a DHS with interfaces at Z =(}and Z =u
(the Z axis is perpendicular to the interfaces). For
0&Z &a we have a given material (say, GaAs) and for
Z & 0 and Z & a we have another material (say,

„As). In Ref. 26 boundary conditions of con-
tinuous p

' ~z and U p' V.Q at the interfaces are im-
posed along the lines of an hydrodynamic (or jellium)
model; the Srst quantity is the Z component of the veloci-
ty Seld and the second quantity is the pressure. %e will
not discuss the more general solution of Ref. 7, but rather
the one entailing complete conSnement of the I.O vibra-
tions. This particular form of vibrations should provide
an appropriate description for the observed highly
confined LO phonons (see sec. I). Therefore, we solve Eq.



37 EI.ECTRON-I. O-PHONON INTERACTION IN SEMICONDUCTOR. . .

(7) under the following requirements:

uz(r, co)=0 for Z=0 and Z =a

(from now on subscript I. is avoided and u will describe
purely longitudinal vibrations). Conditions (11) involve a
"jellium" slab disposed between rigid walls at Z =0 and
Z =a as a macroscopic model for completely confined
LO vibrations, that is, a model excluding penetration of
the polar-optical vibrations from a given layer into the
adjacent ones. We must emphasize that this kind of mod-
el is in good agreement with experimental facts' ' and
numerical simulations, and also provides the possibility
of working out analytical expressions for the displace-
ment and polarization fields.

After substitution of u(r) =g(Z)e ' ' in (7) we obtain

can be transformed into

u(r)= g g q(Aq e'q'+Aq e 'q')
q = —N(q )

(15)

with 'q q J +qz ez and ~ * = —A, the latterql jn I ql, n~
condition ensuring that u is a real quantity.

Obviously, Eqs. (15) and (14) are completely identical
expressions, but (15) is inore convenient in what follows.
Substitution of (15) in (10) yields P{r,t), the polarization
field, while the corresponding canonical conjugate
momentum is given by s

, +qz P»=0

qz=, { io—2 1 2 2 2

U

(12)

The parameters g must be chosen appropriately in
4, [n (

order that the corresponding quantized fields P and II
can satisfy adequate commutation relations.

We just report the final expression form P(r):

gz(0) =gz(a) =0 .

N(q~ ) ~2
P{r)=g

q ll N(q ) 8FF Gild V

' 1/2

For qz ~ 0 the solution of (12) is

k(»= ~ f(qi+qzez)e ' +(qi —qzez)e 1 (13)
)& (e'q'bq+c. c.), (17)

A. A fwhere bq, b
q

are second-quantization Bose operators
such that

Let us note that (13) satisfies Eq. (12) with the given
boundary conditions and, when substituted in the expres-
sion for u, ensures the condition V Xu=0 for the longitu-
dinal displacements. It is easy to include the case qz ——0
just allowing n to be zero in (13). For qzi ~ 0 no solutions
exist satisfying the given boundary conditions.

From (13) we obtain the general solution for

u(r)= g g Aq f(q, +qzez)e
ql n&0

fb, b, l=fbqbql=O

fb, .b q1={iq,q

Expression (17) is the fundamental result of this section
which must be used to derive the electron-LO-phonon
Hamiltonian for a DHS. The main difference with
respect to the usual (bulk) polarization field is the discrete
nature of qz nn /a and——the fact that P(r) is defined just
for the layer 0&z &a.

—lqZZ lql I'j
+{q&—qzez)e le (14) III. INTERACTION HAMII. TONIAN

where qz ——nm/a and A are constant parameters. Letql, n

us note that the sums over qj and n cannot be in6nite.
We must require co =coLo —u q &0 (only if u ~0 do we
obtain infinite sums). We should agree to sum in the fol-
lowing way: n will be summed in the interval
0 & n & X(qi ) where N {qi ) is the higher integer less than
(coLo/u —q j ) foi' a fixed qi', after that, qj will be
summed for all values inside the circle limited by
q i=q„+q~=(co~/u) . Notice that the change q~ by—qi does not alter the latter summation. Expression (14)

The interaction Harniltonian can be deduced from

y( ) f ef —~' P(r')1, -(r-r (qadi„.

where, for the sake of generality, we have included a
screening length A, along the lines of the (bulk) Thomas-
Fermi static approximation. Let us, however, remark
that the obtained results are perfectly valid in the limit
A~QQ ~
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[Cq ie'q'@'q i (Z)bq+c c. ]., (20)

where

Substitution of (17}in (19) yields, after straightforward
integrations, the following Hamiltonian for the DHS:

N(q~ )

PDHS y
q, n=-W(q, )

q,

1 j2
LO

uqe V
(21)

is the usual (screened) coupling factor of the bulk theory
(the unscreened coupling factor is defined by

Cq =11mi Cq i }and

—,'e [1—( —1)"e 9'] for Z &..0,
4 (Z)= 1 ——,'e [e 2 +(—1)"e~' "] for 0&Z ~a,q, A,

—,'e z [(—1)"e+—1] for Z )a,
(22)

where Q =qj+1/A, .
The structure of 8 I is very clear from the physical

side. Due to LO-phonon confinement the Z component
of the phonon wave vector q bears a discrete, nature; the
coupling factor Cq z is the same as in the bulk (screened}
Frohlich Hamiltonian, but now a certain modulation
function CqHis(Z} is present describing the efFect of
conlinement; in fact we must notice that 4 & (Z) is
evanescent for Z & 0 or Z & o; for 0 & Z & e, &so)s(Z) has
two terms: the Srst term {equal to unity) is just the bulk-
like contribution, while the second term involves two
contributions coming from the interfaces at Z =0 and
Z =a. The unscreened limit (A,~ ao), is obtained without
diSculties just taking g-+q~ in (22) and the correspond-
ing expression for (21). A more realistic screening theory
can be obtained from the unscreened 81 just dividing Cq
by a proper dielectric function e(q, co) (see, for instance,
Ref. 1}. Nevertheless, our screened formula for 81 pro-
vides a certain estimation of screening effects of qualita-
tive importance and can be handled analytically.

One important feature of the obtained expressions
[{20)-(22)]is that the three-dimensional (3D) (bulk) limit-
ing case can be achieved if we firstly shift the coordinate
origin by means of Z =Z'+a/2 and, afterwards, take
the limit a~)x). Hence we obtain the well-known
screened Frohlich Hamiltonian (for dispersive LO pho-
nons):

mation just taking U ~0 and co ~co„o. This approxima-
tion is justified for the long-wavelength LO phonons con-
sidering that U is small enough (in Ref. 26, U is estimated
as -5 X 10 cm/s) and, therefore, Uq ~&coLo. Let us note
that the dispersive model for LO phonons used in this
work is needed in order to account for the boundary con-
ditions of a DHS, but once the expressions for P(r} and
81(r) are obtained we can safely take the nondispersive
limit for which the calculations are evidently easier. In
this case N» ~ 00 and the involved summations are both

infinite and well de6ned.
In the DHS case we can describe the con6ned electron

system by means of the quantum field

)p(r)= g e ' 'tttl(Z)&k
J., I

(25)

P DHS I fj t(r)P DHS(r)fl(r)d3 (26)

where S is the normalization area parallel to the inter-
faces, ki=—(kz, k„) is the electron wave vector for the
motion in the (X, I') plane, ((I&(Z) are the wave functions
for the motion of the electrons in the confinement direc-
tion, and Bi, is the annihilation operator of an electron

j., /

in the state ki i. A completely second-quantized version
of the electron-LO-phonon interaction Hamiltonian can
be obtained from

Pl (r)= g(Cqie'q'bq+c. c. ) . (23) By means of (20},(25), and (26) we obtain

Another important limiting case can be deduced from
our expressions if we directly take a~t)0 in (20)—(22).
This is the case of the single heterostructure (SHS) where

X X X [~II' (%. ki kI.+q~ t ag' I
+c.c ]

C)SHS( Z)
(Q —iqz )Z—e Z&0

—(g+ 'qz )Z
2

(24)
and

I u'n(qx ki kj.}=&g i,
' ~II' (qj.}

j.' j.+ql
(28)

Substitution of (24) in place of @DH&s in (20) piovides the
given Hamiltonian 8 isHs(r).

We should emphasize that our expressions [(20)—(24}]
contain in a well-de6ned way the nondispersive approxi-

10'(qi}=Cq~, I 4'(Z}A(Z'}e ' @,~'(Z}dZ . (29)

For the calculation of the form factor I II „(qi) the elec-
tron wave function tI)i(Z) must be specified. We should
emphasize that no restrictions in the nature of (()i(Z) are
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assumed in our deductions. The Hamiltonian (27) in-
volves more information than (20), as far as the electron
quantities are explicitly included.

IV. FORM-FACTOR FOR COMPI. KTKI-Y
CONFINKD KI.KCTRQNS

An interesting application of the above-obtained ex-
pressions is the case when the electrons in a DHS are
completely confined due to in6nite potential barriers at
Z =0 and Z =a. In this case,

], /2
2

((}((Z) =
0 for other values of Z .

ml
sin Z for O~Z ga,

(30)

Substitution of (30) in (29) provides the corresponding
form factor. After more or less straightforward
mathematical manipulations, we have obtained the fol-
lowing result:

1 II .(qi) =Ja. +

where

2n Qall'C i[1+(—1)'+'+"]

[Q a +n (I+I'} ]

[(—1)"e ~' —1]
[Q a +n (I —I') ]

(31)

Cq i for I =I' and n =0,
J0 „—— ——,

'
Cq i for n =k(l +I'),

—,'C i for n=k(I —I') and I —I' .
(.

(32)

Expression (31) can be used to estimate the polaronic en-
ergy shift and efFective mass for the case of a weak-
coupling polaron and T =0 K. This can be deduced from
perturbation theory up to the second order by a well-
known procedure. Avoiding details, we just report the
obtained results:

(0) A ki
al(}lrei.ol, l l, /

I

where

(33)

+E01, E0 ——
2m 2ttlQ

(34)

m, =m(1 —y() (35)

y F0((( (36)

and

Parameters aj and yl determine the polaronic energy
shift and e5'ective mass, respectively (in the parabolic ap-
proximation}, assuming the electron in the I subband and
considering all intersubband and intrasubband transitions
induced by the electron-LO-phonon interaction. %e ob-
tain that

1/2

3/2

QI —327l Q g Fg' (37)

where F&'(' (1 = 1,3}are functions of ((lcoLo which will not
be reported explicitly in the present work and

~2m 1/2
Q ~

2 i /2g3/2~» ~1/z (38)
Q)g g

is the Frohlich constant. Let us note that the 3D theory
predicts al~a and y&-+a/6, while the strictly 2D
theory predicts a, ~(n.a)/2, y, ~ma/8. ' ' Our evalu-

ation of al and y& for I =1 in a DHS of GaAs with
a = 100 A and taking A, ~ ao yields

0.) -1.6a, y ) -0.37a,

which are larger than the 3D case but lower than the 2D
case. An investigation of the polaronic effects on the
basis of the Hamiltonian deduced in the present paper
deserves an independent work to be published in the near
future.

V. CQNCI. USIONS

The main contribution of the present work is the sys-
tematic deduction of an electron-LO-phonon interaction
Hamiltonian for a semiconductor DHS incorporating the
peculiarities of dispersive confined LO phonons. Our
deduction is based upon a relatively simple model for
long-wavelength phonons, considering a continuum (hy-
drodynamic) approach and assuming a phonon dispersion
law quadratic with the wave vector [see Eq. (8)] where

qz nm/a i——s discrete. This model for the LO phonons is
in very good agreement with experimental results on Ra-
man scattering in superlattices for a GaAs/Al„Ga, „As
heterostructure' [compare with expression (12) and Fig.
9 of Ref. 19]. As was emphasized in Sec. I, this model is
also in good agreement with other experimental facts (for
instance, experiments on the magnetophonon effect 9)

and with numerical simulations of the polar-optical vibra-
tions, 2» where it was clearly determined that the penetra-
tion of optical vibrations from one layer to the adjacent
ones is rather negligible.

The general structure of the Hamiltonian obtained in
the present work resembles the Hamiltonian induced in
Ref. 15 from electron-energy-loss expressions (where the
author also considers the effects of a certain system of
"modi6ed" image charges, by means of which the possi-
bility of diferent dielectric constants is included). How-
ever, some diN'erences between our results and those of
Ref. 15 can be easily noted, especially in the coefFicients,
and therefore the predicted intensities of the
electron-LO-phonon interaction are not the same.

One important advantage of our results is that they
contain the usual 30 Frohhch Hamiltonian as a limiting
case. Another advantage is that we worked out an expli-
cit model for polar-optical vibrations, a model which is
reasonable from intuitive physical grounds and in good
agreement with experimental facts as has been stressed in
the above discussions. Of course, the possibility of as-
suming more realistic conditions for the utilized model is



C. TRALLERO GINj!R AND F. CQMAS 37

always present for this kind of deductions (for instance,
we could assume dilerent dielectric constants in the sys-
tem or not completely confined I.O phonons}. However,
one important aspect to be pointed out is that our results
are relatively simple analytical expressions.

For the case of a superlattice the electron-LO-phonon
interaction Hamiltonian was proposed in Ref. 25 assum-
ing uniform dielectric constant throughout the structure.
The author supports his deductions on an a priori sug-
gested formula for the polarization field (which seems to
be plausible for intuitive physical reasons). We think that

our results, properly extended to the superlattice case,
could be used to verify the Hamiltonian of Ref. 25.
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