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In studying the low-temperature state of an electron-hole gas in an optically pumped semiconduc-
tor there has been increasing realization that the pair approximation {similar to the Gor kov ap-
proximation for BCS super6uids} can deal with both the low-density phase of excitons in a Bose-
condensed state as well as the high-density excitonic insulator phase. Using functional
dieerentiation techniques, we use this pair approximation to give a systematic derivation of the
two-particle Green s function and the associated collective modes. Our equations of motion give
what is often called the generalized random-phase approximation (GRPA). The collective modes
are shown to correspond to the solution of the standard electron-hole ladder and bubble diagram
sum, but with 2X2 matrix propagators. Our model calculations are for a simple two-band direct-
band-gap semiconductor with parabolic bands and a positive band gap (the semiconductor limit as
opposed to the semimetal limit) and thus might be appropriate for optically pumped CuzO. In the
appropriate limits, our formalism lesds to the phonon modes discussed (in the late 1960s) by Maksi-
mov and Kozlov in the excitonic insulator and by Keldysh and Kozlov in the Bose-condensed state
of excitons. In the low-density limit, the excitation of these collective modes is crucial in under-

standing how the Bose condensate is depleted at higher temperatures. Besides the excitonic modes,
our equations of motion allow a systematic study of the complete spectrum of collective modes in

the GRPA, including plasmons. Throughout, we emphasize the formal similarity with the theory of
collective modes and. excited Cooper-pair states in BCS superfiuids.

I. INTRODUCTION

By optical pumping, a gas of electrons and holes can be
created in a semiconductor. As is well known„ the
Coulomb interaction between electrons and holes may
lead to the formation of excitons. If the density n of the
electron-hole pairs is small (na 0 &~ 1, where

ao =A eo/ttte is the Bohr radius of an exciton, m the re-
duced mass, and eo the dielectric constant of the medi-

um), these excitons behave almost like Bose particles' and
a Bose-Einstein condensation might be expected to occur
in the gas under the usual conditions. Properties of this
condensed exciton phase have been the subject of much
theoretical (for recent discussion, see Refs. 2 and 3) as
well as experimental investigation (see, for example, Refs.
4 and 5). Due to the small mass of the exciton and the
correspondingly high critical temperature fpr Bpse cpn-
densation, this system has been of especial interest in the
search for a Bose condensate in something else besides
liquid He or spin-polarized hydrogen.

In this theoretical study, we work with a simple direct-
band-gap two-band semiconductor model and attempt to
give a united discussion of both the single-particle and
collective excitations arising from the condensate of
electron-hole pairs at T=O K. We limit ourselves to the
semiconductor region (positive band gap) and assume the
number of electrons and holes is Sxed.

As the number of pairs increases, however, the exci-
tons no longer behave like idea1 Bosons. The correction
due to their fermionic structure must then be taken into
account. Moreover, as n reaches the Mott concentration
(nao = 1) where the exciton wave functions start to over-
lap, the pairs start to dissociate. At still higher concen-

tration of pairs (nao »1), the system consists of a degen-
erate two-component plasma of electrons and holes. Un-
der certain conditions, pairing of electrons and holes in
momentum space can still occur in this degenerate gas.
These new bound electron-hole pairs may then undergo a
Bose condensation leading to a new state sometimes
called the "excitonic" insulator. These pairs are, for-
mally, the complete analogue of Cooper pairs in super-
conductors. The properties of the excitonic insulator
were extensively investigated in the later 1960s (for re-
views, see Refs. 9 and 10) mainly in the setnimetal limit
(negative band gap Es gO or band overlap) in which the
conduction- and valence-band minima are separated by a
Suite wave vector w. As demonstrated by Zittartz, " the
excitonic insulator in this semimetal limit is not favored
in the more realistic situation of anisotropic band struc-
ture or by the presence of impurities. These two efFects

put severe hmitations on the observability of such a
phase. However, in this paper our interest in the exciton-
ic insulator condensed phase (in our direct-band-gap
semicpnductor model) is motivated by the reasons
elegantly expressed by Comte and Nozieres. In particu-
lar, studying the properties of this simple model over a
wide range of densities gives greater insight into the
physics involved in the Bose condensate of excitons at
low and intermediate densities.

In the simple model considered here, the electrons and
holes are treated as two distinct species of particles. %e
neglect all interband scattering processes (in particular,
electron-hole exchange) apart from the direct Coulomb
interaction that lends to the binding of electron-hole
pairs into excitons. A1though the interband transitions
may be quite small, they have important physical conse-
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quences. As discussed in Refs. 12 and 13, for example,
they lead to the destruction of the gauge invariance of the
Hamiltonian (2.2} and hence to the destruction of true
super8uid Sow characteristics. ' Nevertheless, we will
limit ourselves to our simple model and try to extract the
essential physics in it. This will set the basis for future
work which includes weak interband transitions. To
some extent, our model is appropriate for CuzO, which
seems to be the most promising candidate ' to observe
Bose condensation of the long-lived excitons (lifetime —1

p,s). However, in this paper, we do not consider the com-
plications arising from the optical pumping procedure.

The description of the low-temperature properties of
an electron-hole gas as a function of the density is a com-
plex many-body problem involving the self-consistent for-
mation of a bound state in a two-component gas of in-
teracting ferniions. Quite apart from its physical realiza-
tion, the model many-body problem we discuss in this pa-
per is of considerable methodological interest. Many at-
tempts have already been made to describe this system,
using a variety of techniques including canonical trans-
formations, Green's functions, variational techniques, as
well as mapping of the electron-hole Hamiltonian onto an
effective exciton Hamiltonian. These different ap-
proaches are reviewed in Refs. 2 and 4.

In this paper we discuss the collective excitations of
the electron-hole gas in a systematic manner using a
Green s function formalism in conjunction with function-
al differential techniques. We recover (and generalize
somewhat) the results already obtained by Keldysh and
Kozlov' at low density and those of Kozlov and Maksi-
mov as well as Jerome, Rice, and Kohn at high density.
Our theory of collective modes corresponds to the gen-
eralized random-phase approximation (GRPA) and is
formally quite similar to that firs developed for BCS
superfluids. ' ' While most of our discussion in this pa-
per is for zero temperature, we make some brief remarks
about the finite temperature case.

In the pairing self-energy approximation we use, the
single-particle Green's function is a 2 X 2 matrix, the off-
diagonal terms describing the pairing of electrons and
holes (i.e., the exciton condensate). These offMiagonal
terms vanish above a certain critical temperature Tc, in-
dicating that there is no longer a condensate of excitons
in the system. In superconductivity the vanishing of the
off-diagonal elements indicates the disappearance (or ion-

ization) of Cooper pairs above Tc. It is important to
remember, however, that whereas Cooper pairs only exist
in a Bose-condensed state, in our electron-hole system,
excitons may exist both in the condensate {n =1 and
q=o) and outside the condensate (excitons in excited
states n =2,3. . . and/or with finite center-of-mass
momentum}. Thus excitons exist above Tc. In the sim-

ple pairing approximation, on the other hand, only the
Bose-condensed excitons in the zero momentum state are
included. To adequately deal with the depletion of the
condensate or mth estimating T&, one must generalize
the pairing self-energy approximation to include the exci-
tation of the collective modes which we discuss in this pa-
per. We hope to discuss this extension in a future paper.

Section II of this paper is basically a review of the so-
called pairing formalism for the single-particle Green s
functions on which the rest of our analysis is based. Sec-
tion III proceeds with the systematic derivation of the
GRPA equations of motion for the various coupled two-
particle Green's functions. In Sec. IV, for orientation, we
discuss the structure of the GRPA equations in the ab-
sence of an exciton condensate. The zero-temperature
normal mode solutions of these equations are discussed in
Sec. V, with emphasis on the low-density case. In Sec. VI
we briefly discuss some possible extensions of this work.

II. THE PAIRING APPROXIMATION

We consider a simple nondegenerate two-band semi-
conductor with a direct band gap E at low temperatures.
The density n of electron-hole pairs is assumed to be con-
trolled by optical pumping, the number of electrons being
equal to the number of holes (N, =N„}. The dispersion
relation of the electrons and holes in each band is given
by (we set A'= 1 throughout this paper)

k2
E,{k)=Es+

2m,

(2.1)

k2
Ei, (k) =

2tplI,

and the effective Hamiltonian E=H —p, N, —p&EI, of
the system is taken as
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Here p, and pi, are the chemical potentials of the elec-
trons and holes, respectively, and the chemical potential
of electron-hole pairs is given by p=p(n, T}=p,+p„.
V(r) =e /our is the Coulomb interaction in the semicon-
ductor medium. The external Selds fV, g and q' are add-
ed for the purpose of generating th, e equations of motion
of the two-particle Green's functions by functional
diferentiation. They are usually set to zero at the end of
the derivation. The terms involving ri and g are symme-
try breaking terms. As a concrete example, one might
consider [letting ri(r, t)~ AV, /2m, where A is propor-
tional to the strength of the Seld] the excitation of
electron-hole pairs by an external electromagnetic field. '

In order to describe the condensed phase of this sys-
tem, one must consider the 2X2 matrix single-particle
Green's function

mahsm developed for G „only the Hartree-Fock-Gor'kov
terms of the matrix self-energy X(3,4) are considered.
[The Fock term, of course, can be easily generalized to
the screened Coulomb potential Vs(3,4) if we sum
higher-order bubble diagrams. ] Since the Hartree term
vanishes because of the global neutrality of the electron-
hole gas, we are left with

X(3,4)= —V(3,4)G(3,4) . (2.9)

Using (2.9) with a static potential Vs (and with the
external field set to zero), (2.5) is readily solved to
@ve20,2, 3

G, (z) F(z)
(2.10a)

G, (1,2} F(1,2)

Ft(1,2) —Gi, (2, 1)

—
& &yt(1)it,'(2) &

—
& &it (2)yt(1) &

where & ) stands for thermal average with the Hamil-
tonian X given by (2.2), and the numbers 1 and 2
represent space-imaginary time coordinates. The of-
diagonal terms of this matrix Green's function ' take
into account the pairing of electrons and holes (the Bose
condensate of excitons) in much the same way as one
does for Cooper pairs in superconductivity.

De5ning

u 2

G, (p, z)= +
Z —6) Z —F2p p

Gi( p, —z)=
2 2

Vp Qp+
Z —F) Z —F2p p

F(p,z)=F (p, z)=u~up
1 1

Z —F.)p Z —F.2p

where (i =e,h)

'i.ii =4+'i

(2.10b)

(2.11)

W(l) g (1)
ri(1) IV(1) (2.4) ri;u=E;(p)+X;(p) —p;;

I +m ' +p—Go(1,3)=I5(1,3),
p2

(2.6)

with

1I=
—I

0 PP1~

PFl

0
T

Pe
P= 0

The self-energy matrix has the expansion

X(3,4)=I5(3,4)fd5 V(3,5)[G,(5,5+)—G„(5,5+)]

(2.7)

and using (2.2), the equation of motion for G(1,2) is
found to be

G(1,2)=Gu(1, 2)+fd 3 Go(1,3)8'(3)G(3,2)

+fd3 fd4GO(1, 3)X(3,4)G(4, 2), (2.5)

where Gu(1, 3) is defined by

The gap function 5s ( which is the nondiagonal part of X}
is the order parameter for the condensed phase and is
given by

dL&
——g V(p —q) & cqd q ), (2.14)

and the coherence factors u& and u are defined by
'~

'gp 1 'gp
u =—1+p p f p p

~ v ~~ 1 Q V
2 Fp 2 Ep 2Fp

(2.12)

We note that in the degenerate case (m, =mi ), g =0 and
hence s, 2u

——kez. This simple case leads to results which
are formally identical to the single-particle Green's func-
tion for a BCS super6uid.

The diagonal part of X(p) is the exchange self-energy

X,„(p)=—yv(p —q)&cqcq& .

—V(3,4)G(3,4)

fd5 fd—6 V(3,5)G(3,6)
5$'(5)

(2.8)

where c and d are second-quantized destruction operators
for electrons and holes, respectively. %'orking at T=O
K, one has s»& 0 and e2u ~0, and the distribution func-
tions of electrons and holes are given by

where V(3, 5)= V(ri —r~)5(r3 —r5). In the pairing for = 2Plop=BI p=V p (2.15}
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Using (2.12)-(2.15) and taking account of the spin degen-
eracy, we have to solve the self-consistent system of equa-
tions

N =2+uu,
P

(2.16a)

4= V( — )u + P q
2( 2+F2)i/2

q q

(2.16b)

=sgn(IIu)(1 —4+~)' g V(p —q)gq, (2.17)
q

To lowest order in the density n, (2.17) and (2.16a) be-
come, respectively,

p 2

E,+2 —
t u P,=XV(p —qW,

N=2+fuI .
P

(2.18a)

(2.18b)

Equation (2.18a} is the familiar Wannier equation for an
exciton in momentum space {with zero center-of-mass
momentum). Its eigenvalues are

where ¹isthe number of electron-hole pairs.
DCSning g =—hul2cu, Eq. (2.16b) can be rewritten in

the fo~2p7, 20

2

Es+ —p —g V(p —q)[1—sgn(I)~)(1 —4p)'~2] g

2e'
p= — kF .

«o
(2.24}

The single-particle excitations in the pairing approxi-
mation are given by the poles of the matrix Green's func-
tion in Eq. {2.10), i.e., c» and e2u. To zeroth order in the
density we obtain

p 2

E)p~Eg+ — —P~ (2.25a)
2m,

are easily included.
As the density of pairs increases, the occupancy of the

states also increases. In the high&ensity limit (nau »1),
no exciton bound state can exist in r space. As vnth any
degenerate Fermi gas, the electrons and holes fill their
respective bands up to some Fermi level ks (note that
N, =Xi,}. The normal electron-hole plasma phase is ob-
tained by setting du=0. au and uu are then step func-

tions as in a normal metal, with uu
——6(ks —p). As in

the case of overlapping bands, ' this ground state is un-
stable with respect to the electron-hole interaction. i

Pairing of electrons and holes will appear at the Fermi
surface in a manner similar to Cooper pairs in a super-
conductor. There is then a solution with a small gap hu
in the single-particle spectrum arising from the field pro-
duced by the Bose-Einstein condensate "Cooper" pairs.
In this case, the chemical potential of the pairs is found
to be2

E—EN+go ——— 2, n =1,2, . . .
7g

(2.19}
p 2

~2 = — +Pa
2mI,

(2.25b)

p —E E {2.20)

1/2

Ni(p)

where Eo=e /2c'ufo is the exciton Rydberg. Equation
(2.18) describes a gas of noninteracting excitons at T=0
K. We expect to find all these excitons condensed in the
lowest excitonic state (n = 1) and so

Using (2.20), we can write approximately p, =E ——,'Eu,
p» = ,'Eu. Th—e —dispersion relations (2.25) are sketched
in Fig. 1. One pole is electronlike and the other one hole-
like, as in a semiconductor. The only diN'erence here,
which arises from the condensate, is the position of the
chemical potential at Es —Eo. The quantity

p 2

2cu=siu —c2u~EC+ (2.26)
2m

at low density is clearly the energy needed to excite a

Here Pi(p) is the Fourier transform of the ls-hydrogen
wave function describing the relative motion of the ls ex-
citon and is given by

I II. (2.22)
( 1+ul p2)z

In the next order in density {order n}, the correction to
the chemical potential is found to be'Iu 2

I =I.+, ~{n~u)E, , (2.23}

which arises from the exchange repulsion between the
electrons and holes that are involved in taro excitons. As
noted in Ref. 2, to this order in density, there should also
be a correction arising from the van der W~&s attraction
bctwccll fwo cxcltolls. This correction was evaluated ill
Ref. 20. It comes from screening effects which are not
taken into account in the pairing forma1ism but which

FIG. 1. Schematic plot of the single-particle excitations in
the pairing approximation in the 1o~&ensity limit. e» and s»
are de%net via (2.10) and (2.11).
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(p —kp)
if p)k~,

2m~
1P (k2 t)

if p &kp,
2mI

(2.27a)

(kF pi}-
if p&kF,

2m'
2P (

2 k2)
if p (k„.

2,me

(2.27b)

In the excitonic insulator phase, these dispersion rela-
tions are modified as indicated in Fig. 2. In this high-
density hmit, using

(pi k2 }2

28a=zip —zz ~2 +LaP P (2.28}

we see that minimum energy needed to break a con-
densed bound pair is equal to 25k . Taking m, =mi, in

condensed ls exciton (q=0) to some scattering state, the
minimum such energy being the binding energy Eo of the
exciton. As we will see in Sec. IV, the lowest value of 2za
is the minimum energy of a taro-particle excitation pro-
cess at T=0 K in the pairing approximation. Thus (2.26)
means that the only allowed processes involve creation or
destruction of Bose-condensed excitons. Clearly this does
not include excitation of such excitons into states of finite
center-of-mass momentum or into states {n =2,3, . . .).
In order to allow for such excitonic states, one has to
consider repeated scattering (T matrix} of electrons and
holes in the single-particle self~nergy diagrams. On the
other, as we show in later sections, such excitations will
arise in the two-particle Green s functions 6t which are
generated by functional diferentiation of the pairing
self-energy.

In the high-density electron-hole plasma phase {b,~=0),
we have

Fig. 2, we obtain the same dispersion relations as in a su-
perconductor. The excitonic insulator phase is thus for-
mally very similar to superconductivity as regards the
single-particle excitations. As w'e shall show in the next
section, there is a similar formal correspondence between
the collective modes.

IIL EQUATIONS OF MOTION
FOR THE TAG-PARTON-& GREEN'8 FUNCrIONS

$V(1,2)=
IV, (1,2) t)'( l, 2)

rI(1,2) Wi, (2, 1) (3.1)

We can generate the 16 possible two-particle Green's
functions of the condensed phase by functional
dilferentiation of the matrix Green's function 6&

In order to derive the collective modes of the electron-
hole gas, we use the functional differentiation approach
described by KadanofF and Baym. 2' This was originally
used in the theory of the collective modes for supercon-
ductors by Ambegaokar and Kadanol". Since then it
has been used to discuss collective modes in a wide
variety of condensed phases. This approach has several
advantages. (a) If the approximation used for 6, is con-
serving, then 6z derived by functional ddferentiation of
6, is also automatically conserving. (b) It is easily gen-
eralized to deal with finite temperatures as well as impur-
ity scattering. (c) It exhibits the structure of the theory in
a very transparent way, especially with regard to symme-
try properties.

Based on the pairing self-energy approximation, the
theory of collective modes which we will obtain corre-
sponds to what is called the generalized RPA. In the
case of superconductors, this approximation was original-
ly worked out using decoupling methods on equations of
motion. z3'zs Some of this early hterature gives useful in-
sights into the physics involved in the formally similar
problem we are dealing with. In turn, our formulation of
the generalized RPA may allow a more complete analysis
of the collective modes and excited Cooper pair states
(excitons) in BCS superfiuids.

Consider a coupling to some external scalar field as in
(2.2),

56,b(1, 1')

5W (2' 2) '
cd

starting from the identity

(3.2)

X6p(4, 1'), (3.3)

and the matrix equation of motion for the inverse Green's
function

FIG. 2. Schematic plot of the single-particle exritations in
the pairing approximation in the high-density hmit. In this
case, there is a gap of 2h at the Fera@ momentum k~.

6-'(1,2)=6 (1,2)-r(1,2)- W'(1, 2) .
Defining an efi'ective interaction " .„,(3,6,4, 5) by

(3.4)
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5X;J.(3,4)
:-,Jki(3, 6,4, 5)—:

kl
(3.5)

one finds the equations of motion for the coupled L's by
functional differentiation of (3.4}. The final result is (set-
ting the external fields to zero}

L,i„q(1,2, 1',2')= —6„(1,2')Ggi (2, 1')+Jd3 Id4 fd5 Id66„(1,2):",Jki(3, 6,4, S}Lkig(5, 2, 6,2')6 i (4, 1'), (3.6)

—Vs (3,4)6 (3,4), (3.7)

where the exchange term involves a statically screened
Coulomb potential Vs. The resulting theory will give us

I

where summation over repeated indices is implied. The
dispersion relations of the collective modes are given by
the condition that the homogeneous part of the system of
equations (3.6) has solutions. Clearly, the frequencies of
the collective modes cannot depend on the specific exter-
nal fields used. Since these frequencies are what we are
interested in, we shall leave the indices c and d implicit.

We now apply this general formalism to the single-
particle self-energy used in the pairing approximation
discussed in Sec. II. This self-energy is given by (we have
not set W =0 at this stage)

X(3,4)=I5(3,4)Jd5 V(3,5)fG, (5,5+)—Gi, (5, 5+)]

a theory of the collective modes for both high and low
densities, just as the pairing formalism gives single-
particle excitations appropriate to both high and low den-
sities.

When extracting the effective interaction from (3.7},
however, we will not assume that Vs is a functional of
Gi. Thus (3.7} may not generate a conserving approxi-
mation in the Baym-Kadanoff sense. s At low density
however, where we can use Vs = V, the approximation is
conserving. At high density, the introduction of Vz al-
lows an easy way of including the screening of the bare
Coulomb interaction. In the extreme limit of stron~
screening, Vs is often replaced by a zero-range potential.

The system of equations obtained in this way is what is
often called the generalized random phase approximation
for a Bose-condensed system with a matrix single-particle
propagator,

L, (1,2, 1',2') = —6„(12'}6„(2,1'}+f a3 J d46„(1,3)V(3,4)L "(4,2,4,2')6; (3, 1')

—f a3 I Z4 6„(1,3)V (3,4)L; (3,2,4,2')6 (4, 1') . (3.8)

The second term on the right-hand side (rhs) of (3.8) comes from the Hartree part of the self-energy and generates the
bubble diagrams in the diagrammatic expansion of L,b. The third term comes from the Fock and Gor'kov parts of the
self-energy and generates the ladder diagrams. Our equation for L,i, includes the usual Bethe-Salpeter ladder diagrams
that are responsible for the formation of excitons, which appear here as collective modes of the electron-hole gas. Be-
cause of the presence of the condensate, however, our ladder diagrams are expressed in terms of 2 X 2 matrix propaga-
tors. This will cause a modification of the exciton dispersion relations, as discussed in Sec. V.

Defining the Fourier transformed L,&(K;,Kk, KJ,Ki) by

L,i, (1,2, 1',2')—: iK,.Xi + iKi, X2 ix Xi, —iXiXi, — .
e ab i» k» j» I

Ka, K

(3.9)

where K=(k, icok) and X:(r, r) Here—, the ic.o associated with K, , Kk, KJ, and Ki are Fermi-Matsubara frequencies.
Denoting K; ~P +Q, KJ ~P, Ki ~K ~Q, Kk ~K, we obtain in momentum space

L,b(p, k;Q)= ——g 6„(P+Q)Ggb(P)5 „
1 Cg

+—g g 6„(P+Q)Gb(P)V(q)Lki, (p",k;Q)

——g g G„(P+Q)GJb(P) Vs(p —p")L~(p",k; Q),
l CO P

where we have used the contracted response function de5ned by

1 L,b(P + Q, K,P,K +Q):—pL, i, (p, k; Q) .
ld&, ifdi

(3.11)
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We note that Q is associated with a Bose-Matsubara frequency since it describes a collective mode (a pole of a two-
particle Green s function). The choice of K;,Xk,E&,E& made above corresponds to choosing r, =r, , I.

z
——rz. so that Q is

the momentum and frequency of the center of mass of the pairs at (1,1') and (2,2'). The expHcit matrix form of the sys-
tem of equations is (I,~—:L;J.,z )

(p k Q)= ——1

6„6„
loj' 62,6~2

'6 11611+6lzGzl

G»612+612622

yn 621611+622621

Gzl 612+Gzz 622

'G11611 G11621

611612 611622

621611 621621

Gzl G 12 Gzl 622

r

L1Z
V(q) L

' (p",k;Q)

(p",k; Q),
21

Ln

o o 6»611+6126zl
0 0 611612+612622
0 0 6216»+622621
o o 621612+622622

612611 612621

GlzGlz 612622
Vs(p —p")

622611 622621

622612 622622

(3.12)

where the first Gin each product has argument P+Q and the second 6 has argument P.
Evaluating the frequency sums with the aid of (2.10)-(2.12) for T =0 K, we obtain

L 11+122

12+ Zl
( k Q)L 12

—Lzl
L11—L22

(p, k;Q)

X
Ayq ~tI

1

Apq pal

pz'g 0

lpga)

0

ypK 0
—NI Pfd 0

zg

I'pc7l

rFC
NI pal—

0 0
0 0 8'„'

V(q) B (p",k;Q)
21

0 0 Bzz

IIIPCI— 811—Ims
Vz(p —p") B' (p",k;Q) .

Ill S &22

(3.13)

Since we are interested in finding the collective modes, we
have left out the inhomogeneous terms on the rhs of
(3.13) and integrate over the spin variables. The coher-
ence factors are defined by (we follow Ref. 1 in introduc-
ing y and p)

1—:l~~ =QUIIU —
UUUU

/PE = PPg
yl)

~ =Q
p Ppi +Pp Q pr

~ =~UU'="UUU'

(3.14)

with the further abbreviations p'—=p+q (p' will have this
IncalllIlg throughout thc rest of this paper),

A~ ——co —e, co=m+g& —g&., s—=s&+s&. . (3.15)

A system of equations similar to (3.13) has already been

t

considered by Kozlov and Maksimov in their treatment
of the collective excitations limit in the high-density limit
in semimetals. We shaH use (3.13) to discuss the collec-
tive modes in both the low- and high- density hmits in the
case of a positive band gap.

We can easily make contact with the equations of
Jerome, Rice, and Kohn (JRK), who used the same
method to generate the two-particle Green's functions in
the high&ensity hmit. In their analysis, JRK neglected
the Pock terms in the selfwnergy in Eq. (3.7). That
means that the terms —Vz(3, 4)6»(3,4) and
—Vs(3,4)622(3,4) are absent in their equations. [They
assumed that these terms were already included in the
dispersion relations (2.1).] As a result, terms with i =j
are also absent in the Pock term in (3.10) and in the fol-
lovang equations. As easily seen, it is then suScient to
consider only the three quantities 8$$,812,82}. Upon
de5n}ng
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L (Q)=—g V'~'(q)B»(p, k;Q),
P

Bi,,(Q) = g Vs{po—p)Biz(p. k'Q»

A, (g)=—g Vs(po —p)B„(p,k;Q),
P

(3.16)

and redefining the coherence factors as y ~1{q ),
l

1 ~i)(q), m ~m(q), y-+p(q), we recover the system of
equations (4.9)-(4.11)of JRK.

The coupled equations (3.13) can be further simplified
by defining the new functions C» ——B»/y, C» —B»/1,
C2, ——Bz, /y, Cz2 —— B—22/rn (assuming q&0). It is then
seen explicitly that C11 ——C21 and C12 ——C22, so that we
are left with a system of only two equations involving
62 =C11+C12

{~—s)G'»k'Q)=X [2&» &, V{q}—r»,)';;Vs{p—po}]G2+(po,k, Q)
I'opo PI})o p po

Po

+ X[27, 7 V(q) —F»,y, , Vs(p —po}]G2 (po, k;Q),
I'o

—(~+a)62 (p k Q)= g [2F„), V{q)—y»,p, ,, V, (p —p, )]G,'(p„k;g)
I'opo PPo p po

Po

+X[» ) V(q)-)»r Vs{p-p}]G2 {pok Q}
Po

(3.17a)

(3.17b)

where, as before, po—=po+q. Our approach to the collec-
tive modes of the electron-hole gas is somewhat difFerent
from that originally used by Keldysh and Kozlov' at low
densities. In particular, our work is strictly within the
GRPA while they include a subset of higher-order dia-
grams. As a result, our system of equations (3.17) is not
easily compared to the equivalent set given by Eqs. (40}
and {41)of Ref. 1, although the two theories bear some
obvious similarities. As we will show in the next section,
our system of equations reproduces the long-wavelength
acoustic mode obtained by Keldysh and Kozlov' at low
density. More generally, however, all the collective
modes (within the GRPA) can be extracted from (3.17).

The generalized RPA treatment of collective modes in
BCS superconductors leads to the same kind of matrix
equations given by (3.12) and (3.13), with Vs now being
the short-range attractive interaction responsible for su-
perconductivity. In this case also, the system of four cou-
pled equations can be reduced to a set of two coupled
equations, as we have shown above. This fact can be use-
ful in simplifying the discussion of collective modes in
BCS superconductors as well as in superfluid He.

IV. GRPA FOR THE NORMAL PHASE

In the concluding part of the last section, we limited
our attention to the zero-temperature case. Partly this
was for simplicity of analysis but, more importantly, it
was done because the pairing approximation is not ade-
quate to discuss the depletion of the exciton condensate
at Smte temperature. Since it does not include the possi-
bihty of excitons outside the condensate, the temperature
at which b, vanishes is related to the ionization of the
Bose-condensed excitons (with binding energy Eo).

We recall that the matrix self-energy given by (2.8) can
also be written in the form

X(3,4)=XH(3,4)

+ J d5 I d6 V(3, 5)L(3,5, 6,5+)G '(6,4),
(4.1)

where Xz is the Hartree self-energy matrix. The behav-
ior of the function b, (the nondiagonal part of the self-
energy X) is thus clearly linked to the two-particle
Green's function L. In particular, if we want to calculate
the Bose-Einstein condensation temperature as given by
h(T, n)=0, we have to include the right physics in the
two-particle Green s functions L in (4.1). The pairing ap-
proximation corresponds to only keeping the first line on
the rhs of (3.10). Thus one is ignoring the efFect of exci-
tons with finite centeref-mass momentum, whose excita-
tion is expected to be the main cause of the depletion of
the condensate of excitons in the low-density case. i As a
specific case, let us consider CuzO. In this material, 5'
eo= l0 and Eg ——2.2 eV sa that one Snds a0=10 A and
Eo=0.15 eV. Thus the temperature associated with the
ionization of the ls exciton is T=2000 K. In contrast,
the ordinary Bose-Einstein condensation temperature for
a gas of excitons is of the order of Taa =50 K, assuming
a concentration of n = 1.0 &( 10' cm and taking
m, =mi, =1.5mo (where mo is the mass of a bare elec-
tron}.

On the other hand, the GRPA equations of motion
generated from the pairing approximation do include the
excitons outside the condensate. Setting 6 [and the asso-
ciated anomalous Green's function F(p, ra)] equal to zero
in the GRPA equations in {3.10) will describe the "nor-
mal phase" of our system, including excitons. %'e gain
considerable insight into the complicated structure of the
GRPA equations of motion by Srst considering this Snite
temperature "normal" phase.

Before doing this, it is useful to explicitly exhibit the
structure of the two-particle electron-hole Green's func-
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L )2)2(1,2, 1',2')=G, (1,2')Gg(1', 2} . (4.2)

tion L,z&z(1,2, 1',2') within the Hartree-Fock-Gor'kov
(HFG) approximation. This is given by [see (3.6)]

%e assume m, =m&, in which case c& 2„——+a~. Fourier
transforming using the conventions of Sec. III and carry-
ing out the frequency sums, we obtain

L(p)2(p, k;Q)= —g G, (P+Q)Gg( —PSpg

Qp+q Qp Up+q Up+ [1—f (s~ ) f (s—
~ ~q )]5p g

Qp+q Vp Up+q Qp+ [f( ~e) f(—e~+s)]5p), . (4.3)

Since ez, s +v & 0, the Fermi factors f (e) all vanish at T=0 K. This example shows a general feature, namely that the
independent-particle approximation for the response functions L;, have poles at k(e~ —s~+~ ) at T&0 K, in addition to
the ones at +(sz+sz+s ) which were in evidence at zero temperature in the equations of motion at the end of Sec. III.

Finally, we consider the GRPA equations in Sec. III with b, =O. This allows us to make contact with the description
of an e-h system viewed as a normal two-component plasma. To be specific, we take c = 1 and d =2 in (3.12). Physical-
ly this corresponds to coupling into an off-diagonal scalar field denoted by g'(1, 2} [see (3.1}and (3.2)]. In this case,
(3.12}reduces to

L „(p,k; Q) =—g g G, (P +Q)G, (P)V(q)[L „(k",k; Q)+L2z(k", k; Q)]
lt

P

——g g G, (P+Q)G, (P) Vs(p —k")L()(k",k;Q),
Ecd k

(4.4a)

L12(p k Q)= —& & G, (P +Q)Ga( —P) Vs(p —k")L Jz(k &kyQ)
P ;„ g-

P

(4.4b)

L2)(p k'Q) =—g g Gg( —P —Q)G, (P) Vs(p —k")Lz)(k",k;Q),1
21 9 t

p
P

(4.4c)

L22(p, k;Q)= —g g Gp, ( P —Q}Gs(—P—)V(q)[L))(k",k;Q)+Lzz(k", k;Q)]
P ;„ ~-

——g g Gg( P —Q)Gp( —P—)Vs(p —k")L22(k",k;Q) .
EAl k

(4.4d)

G, (p, z) = 1

z vl
(4.5a)

G~(p, z}= (4.5b)

It is clear that the equations for L, &2 and L2& are similar
and, moreover, both are uncoupled from the response

In the normal phase (b, =O), the pairing approximation
for 6& corresponds to the usual Hartree-Pock approxi-
mation. Since the Hartree term vanishes in the expres-
sion for the self-energy, (2.5) reduces to a set of two un-

coupled equations for G, (1,2) and Gz(1„2) with the solu-
tions

I

functions L» and L22' The eigenvalue equation for L&2
can be written more explicitly as

X Vs(p —k")L»(k",p;Q) . (4 6)

This is immediately recognized as the usual equation for
an exciton, generalized to finite temperature. (See, for ex-
ample, Ref. 2.} Since we fix the number of particles in the
system, the chemical potentials for a normal phase at
7 =0 K would be given (neglecting the exchange self-
energy) by p, =E +kF!2m„pz =k~lmz, correspond-
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g [Li,{p,k;Q)+Li~(p, k;Q)]=—A(k, Q) . (4.7}

This has self-sustaining solutions given by the standard
RPA dispersion relation for a twowomponent plasma,

1=V(q) —g [G,(P+Q)G, (P)2

P p

+Gi, ( —P —Q)Gs( —Q)] . (4.8)

As discussed in the hterature, the solutions of this
equation include the usual high-frequency out-of-phase
plasmon as well as a low-frequency in-phase acoustic
plasmon (albeit strongly damped). We note that for
q =0, we can solve (4.4a) and (4.4d) exactly and we find
that the exchange term has no efFect on the plasmon fre-
quency, which justifies our neglect of it for small q.

ing to a degenerate gas at aB densities. Since the Bose de-
generacy temperature TaE of the excitons is roughly the
saxne as the Fermi degeneracy temperature T+, one ex-
pects that in the normal phase ( T)Tax ), the Fermi fac-
tors in (4.6) reduce to Boltzmann distributions with

f (g) « i.
If we can neglect the exchange term Vs in (4.4a) and

(4.4d), we can combine them to find a closed equation for
the quantity

V. COI.LECTIVE MODES
IN THE LOW-DENSITY I XMIT AT T =0

In this section we discuss the collective modes associat-
ed with the GRPA equations given in (3.17) in the pres-
ence of a Bose condensate. 2 Owing to the complexity of
these equations, we will consider only the long-
wavelength limit q~0. The rhs of these equations may
be viewed as corrections to the noninteracting particle-
hole excitation spectrum given by the poles of the L
functions. At T =0 K and to Srst order in the density
(nao «1), these are given by [using (2.11)]

ai+ ——ei~ —sz~-Es —p, + + +S(p}, (5.la}(p+aq) q

One Snds co =c2~.—e&z is given by —~+ with a re-
placed by P=m, /M. We consider the terms on the rhs
of (3.17) as a small perturbation and set q =0 in them.
We can now use the approximation y, ,

P Pp

=y =1—P . The limit q~0 in the Hartree term in-
PPp PPp'

volving V{q) will only be taken at the end since y» ——0
(we will approximate y» to first order in q}. Definin»g

A» =2y, y V(q),
PP POPp

with these approximations, (3.17) becomes

(5.2)

where a=mi, /M and

S(p)=a y V(p —pi)yi(pi)fbi(p) —y, (p, )] . (5.1b)

(co—ai+)Gz+ (p, k'Q)+ g Vs(p —po)G2 (po k'Q)
Pp

= g ~», [G2+ {po k'Q)+G2 {po k'Q)]+ g 7,',,Vs(p —po)[Gz+ {po k'Q) —Gz {po k'Q)]
Pp Pp

(5.3a)

(~—~ )G2 (p k'Q) —& Vs(p —po)G2 {pok'Q)
I'o

= —& ~», [G2+(po k'Q)+Go (po k'Q)]+ X 7 ii,Vs(p —po)l G2+(po k'Q) —Gi {po k Q)] .
&o Pp

(5.3b)

Accurate to terms of order n, we can write
I

These solutions can be shown to be given by

F'Pi,,= 2
[4'i(P) —4'i(PO)]' . (5.4}

The left-hand side (lhs) of (5.3}gives us the exciton ener-
gies for Vs ~V (i.e., bare Coulomb interaction) renormal-
ized by exchange and band-Slling corrections. The rhs
are corrections of order n to the energy of these "bare"
excitons.

One can solve {5.3) formally by introducing the auxili-
ary functions 62 de5ned as the solutions of

(a)—a)~)602+(p, k;Q)+ g V(p —po)G2*(po, k;Q)=+&~i, .
Pp

(5.5)

Go+( k Q ~ 4'r p+ixq 0r k+q
co+ i 5 (co,„p)— — (5.6a)

4, p+Pq 4; k+&q)
co+i 5+ (co„q p)—,

where P„(p} are the eigenfunctions of the Schrodinger
equation for the %annier exciton with a =mI, /M,
@=in, /M, and M =m, +m„r= In, l, m I . is the set of
quantum number for the exciton states whose renormal-
ized energies, in complete analogy with the hydrogen
atom, are given by [S(p) is defined in (5.1)]
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a)„q——Es—,+ + g I P„(p) I &(p) . (5.7)
X„R,„X„+(Q)f„'(q)

C, (Q):—
[1—2&, V(q)f;(q)f, (q}X, {Q}]

(5.18)

While we shall speak in term of these "bound" excitonic
states, formally the sum over r in (5.6) also includes the
scattering e-h states as well.

With the aid of (5.5) and (5.6), (5.3) can now be written

From the definitions (5.11) and (5.12}, we see that
8 (Q) =0 if we ignore the Hartree term V(q) ~0. On the
other hand, A„(Q}=0 if we ignore the exchange term,
V(po —p}

Equation (5.17}is of the form

8 (p»'Q)= g F ~,V(ko —po) A, (Q)= Q D„A,{Q), (5.19)

X8o+(P,ko;Q)8 (Po, k;Q) and thus the collective modes are given by the solutions
of

+ g Ai 8 (p, ko,'Q)8+(po, k;Q), det(I —D)=0 . (5.20)

where we have defined

8*(p,k;Q)=—Gz+(p, k;Q)+Gt (p, k;Q) .

{5.8)

(5.9)

Neglecting the q dependence of the wave functions in
(5.6), (5.8) can be rewritten, after some work, as a system
of coupled linear equations (both s and r represent the
complete set of quantum numbers I n, l, ni ] )

It is of course impossible to solve exactly (5.20) and we
must introduce some approximation. We suppose that,
when the density is low, the original exciton modes will
not be afFected too much by the presence of the conden-
sate. We thus look for solutions of (5.20) with
co=co, q

—p, where r'=(n', l', rn'). This is equivalent to
keeping in the summation over r = (n, l, m ) in (5.17) only
the terms with a denominator having r =r', i.e., the doM-
inant terms in the sum. It is easily seen that (5.20) then
reduces to

A, (Q)= QR,„(Q)X, (Q)A„(Q)

+ g R„(Q)X,+(Q)f„'(q)8(Q), (5.10a)
or

det(I' —D') =0, (5.21)

(5.22)

8 (Q)=2 g V(q)f„(q)X+(Q)A„(Q)

where we have defined

~,(Q)=—g 4;(pob ',V(po —p}8 {p k'Q»
HIPPO

8 (Q) = g Ppp V(q)8+(p, k; Q),
pk

~„=—X0;(po)4, (p)F ',V{p—po} ~

PPO

(5.11)

(5.12)

(5.13)

+2+ V(q)f„'(q)f, (q)X, (Q)8(Q), (5.10b)

q
2

g
2

m
1/2

(5.23)

I is the unit matrix of the same dimension. The condi-
tion in (5.20) can be interpreted as a coupling between the
dim'erent excitonic modes in the system due to the pres-
ence of the condensate [compare with (4.6) in the normal
phase where excitons are well defined]. In our
dominant-term approximation, the couphng between en-
ergy levels is ignored. For n'=1, the solution of (5.22) is
easy since one may show that f„,(q) =0 to first order in
q. In this case we obtain the phononlike dispersion rela-
tion

XP(Q) = + . , (5.14)
1 1

co+i 5 (co„q —p) c—o+ i 5+ (oi„q p)—
h R ~] given by

II ii = g I ki(p) I
'~(p) (5.24)

f„(q)—= g P,(p)p (5.15)

Clearly, one can immediately solve (5.10b) to give

2X„V(q)f„(q)X+(Q)A, (Q)
8(Q)=

[1—2X„V(q)f;(q)f„(q)X, (Q)]

(5.16)

(5.17)

and so (5.10a) reduces to

A, (Q) = g [R,„X„(Q)+2C,(Q)f,(q) V(q)X„+(Q)]A, (Q),

This is identical to the lowest-order correction to the
chemical potential found in the pairing approximation,
i.e., R» ——p —po. Using this fact, one sees that (5.23) is
identical to the result first derived by Keldysh and Ko-
zlov' using a somewhat difFerent formulation. In the lim-
it q~0, we note that the frequency given by (5.23)
satisfies our assumption that co ={oi, —p ).

The dispersion relation for the state r' is more general-
ly given by

1 —R„„X, (Q)—2C„(Q)f„(q}V(q)X+ (Q)=0 . (5.25)

Approximating C, by keeping only the dominant term as
explained above, we Snd
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8;„X,+f„'(q)
1 —2V(q) ( f;{q)I X,

and hence (5.25) reduces to

1 —2[ V(q)
~
f;(q) ~ +&„,]X,

+28;;V(q)
~ f;(q) ~

'[(X„)'—(X,+ }']=o (5.27)

1=2V(q) g
P Eo+

2p?f

Equation (5.32) thus becomes
(5.26}

-2 2

&~~ Eo+~
(5.35)

if the denominator of (5.26) does not vanish. All terms
proportional to V(q) are associated with the Hartree
term.

To order nac3, (5.27) leads to the dispersion relation (at
this point, we relabel r' by r }

co~=(co„—p, )2+2(a)„q—p)[R +2V(q)f„'(q)f, (q)],

+8R„,V(q)f„'(q)f, (q) . (5.28)

For r corresponding to an s state {I=0) one may show
that the Hartree term involving V(q) vanishes since
f„(q)=0 in the limit q~0. Using {5.7), we can write
(5.28) in the form

2 2

co = +(W„+R +P, )

2V( )y PP P P
y' (e+a )

g2 (e +e )2
(5.36)

a result which in fact is valid in both the high- and low-
density limits. Taking the low-density limit of (5.36)
gives (5.35) if we include the bound states.

Approximating the denominator in (5.35} by co2 —G2,
where 6 is an efFective gap, we find after some algebraic
manipulation that

2 2 2
AP =Eo +QPp) ~

where 6=So and

(5.37)

in the q ~0 limit and ignoring the exchange term.
This dispersion relation can be also obtained directly

from (3.13). Neglecting Vs(p —p") in (3.13), we find

+ W„+2W,R„,+4W,P„+48 P„, (5.29)

4mne
Npl =

m
(5.38)

2

c0=W„+R +p„+ (5.31}

Thus the excited-state exciton kinetic energy is not
modified, in contrast to the 1 —s exciton given by (5.23).
Clearly, further studies are needed taking account of the
off-diagonal terms of R„„,but this will probably require
numerical work.

In order to discuss high-frequency collective modes, we
neglect the exchange term in (5.10) (including both Har-
tree and Fock terms seems very diScult}. In this approx-
imation, both A„(Q) and R„vanish. Equation (5.10b}
then leads to the condition

1 —g V(q)f;(q)f„(q)X„(Q)=0 . (5.32)

We use the q ~0 approximation

f,(q)=«/2q V~gi{p)5, ~ . (5.33)

In the absence of bound states, (5.33) can be obtained
from (5.15) by the substitutions r~p,
P„(po)~P~(po}=5~+, and

p 2
g

2

QP+ —@~69 —P =Eo+ +Pfq 2m 2M
' (5.34)

where [EE„is the last term in (5.7}]

9„=E 1 — +hE, —ALP,
1

n,
(5.30)

2

co„q Is= W„+-~ , P, =2V(q)f;(q)f, (q) .

F«exes«d states (n =2,3, . . . ), the dominant-term ap-
proximation gives

~'=(2S)'+~'„, (5.39)

in complete formal analogy with (5.37). However, in this
limit, one has c0, ~~26 while in the low-density limit,

p)-Eo.
The plasmon damping is quite diferent in the presence

of an exciton condensate. In the normal phase discussed
in Sec. IV, the excitons are associated with the poles at
+(sz+s~+~) while the plasmon modes are associated
with the poles at k(e —e + ). In the Bose-condensed
phase, however, these collective modes are more compli-
cated because now the noninteracting spectrum involves
poles at both k(e +s + ) and k(e —s +z). In particu-
lar, at T =0 K, the single-particle spectrum into which
the plasmon can decay is given by (ez+s~+z) instead of
the normal (e&—e&+q). As a result, the plasmon mode
can be damped even in the long-wavelenth limit q~0.
Physically this arises because the charge Quctuations are
coupled into the order parameter fluctuations and this
opens up a new decay mechanism. Vfe note that the
same kind of plasmon damping occurs in 8CS supercon-
ductors, ' although it does not seem to have been ever
worked out in detail.

VI. CQNCI UDINCj REMARKS

The pairing approximation for the single-particle self-
energies has been extensively studied in recent years as a
simple way to discuss the exciton condensate in a two-
band direct-band-gap semiconductor (in both the low-

This shows clearly that the excitons must first be broken
before the electrons and holes can give rise to this high-
frequency collective excitation. Similarly, in the high-
density limit, (5.36) givess
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RIld 11Igh-dcIISIty hm1ts). USIIIg fun ctloIlal dcrtvatlvc
techniques, we have used this simple approximation for
the single-particle matrix Green's function to generate
the various two-particle Green's functions 62. We have
used the resulting equations of motion (generalized RPA)
to give a systematic analysis of the collective modes as
function of the density. Our resuhs make contact with
and generalize earlier theoretical studies. ' In the
low-density limit, we gave a detailed discussion of the
fiuctuations of the Bose condensate of ls excitons, i.e., ex-
cltolls III lllghcf-cIlcx'gy states (II =2,3, . . . ) Rs well Rs

those with finite center-of-mass momentum.
At finite temperatures, the ls-exciton condensate will

not be depleted by ionization but rather by excitation of
excitons (e-h collective modes} with finite center-of-mass
momentum. A major extension of the present paper
would be to generalize the BCS-like self-consistent equa-
tion for the order paratneter d [see (2.14)] to include the
I-matrix self-energy arising from such excitons. If one is
mainly interested in the temperature region close to the
Bose-condensation phase boundary, it is probably
sufftcient to base this extension on the t matrix for free
excitons [see (5.5)]. This will be discussed in more detail
elsewhere (see also Ref. 28).

In the normal phase where there is no exciton conden-
sate, the GRPA equations of motion for Gx describe a
phase in which the excitons are completely uncoupled
from the density fiuctuations (see Sec. IV). We call atten-
tion to the extensive work on the free energy of this
phase which includes both the contributions of electron
and hole Fermi quasiparticles Rs well as the Bose collec-

tive modes (the excitons) in a I-matrix approximation.
The simple direct-gap semiconductor model we have

discussed in this paper may be appropriate for optically
pumped Cu20. Further work is needed, however, before
one can make contact with experiment. ' In particular,
in evaluating the decay luminescense of a system with an
exciton condensate, we would need to calculate the
temperature-dependent weight of the excitonic modes we
discussed in Sec. V. The only study of the decay emission
spectrum in the hterature is based on a weakly interact-
ing Bose gas model. s One can showxs that the GRPA
equations of motion leads to results consistent with this
work. Ultimately one would also have to take into ac-
count the external pump mechanism as well as the vari-
ous relaxation and decay proces~ before addressing the
question of to what extent such a Bose condensate of ex-
citons would exhibit superfluid fiow characteristics. 'I

Note added in proof. (1) After this work had been
completed, we became aware of similar work using a gen-
eralized kinetic equation approach, including the effect of
the laser pumping field, by S. Schmitt-Rink, D. S. Chem-
la, and H. Hang (Phys. Rev. , in press).

(2) Related work on the collective modes of e-h conden-
sates in a high magnetic field is discussed by Y. Kuramo-
to, J. Phys. Soc. Jpn. 42, 1143 (1976).
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