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A theory of both thermal and quenched difFuse scattering from incommensurate crystals and

quasicrystals is developed. We explore, in particular, the efFects of strain fiuctuations due to
phasons which have dropped out of equilibrium at high temperatures, providing a source of
quenched, spatially varying disorder. The theory leads to anisotropic peak shapes, in analogy ~ith
Huang scattering in ordinary crystals. In contrast to Huang scattering, the peak shapes vary greatly
along a given direction in reciprocal space. Analysis of pesk shapes can be used to infer informa-

tion about phason elastic constants. %e illustrate the theory ~ith explicit computations using
icosahedral quasicrystal elastic constants taken from recent density-functional calculations.

I. INTRGDUCTION

A number of recent reviews, ' collections of papers, '

and books attest to the explosion of research generated
by the experimental discovery of icosahedral quasicrys-
tals. The relative sharpness of the icosahedral difFraction
spots initially led to the suggestion that these materials
could be described by atomic decorations of the two unit
cells embodied in the Ammann tiling, a three-
dimensional version of the Penrose tiling. Decorations
(based on the known crystallography of large unit-cell
conventional crystals) for two broad classes of materials
have indeed been proposed. 'o" Various kinds of disorder
must then be invoked to account for the detailed experi-
mental observations. Elser, for example, has argued (us-
ing the projection technique' ) that one can relax the rig-
id constraints of a literally self-similar Penrose tiling by
locally scrambling the tiles. He gave plausible arguments
that this could be done in three dimensions (but not for
one- or two-dimensional quasiperiodic tilings) in a way
which preserved the delta-function character of the
peaks, but made pronounced changes in the relative peak
intensities. '3 A combination of long-wavelength phason
strains and dislocations have been invoked' to account
for details of the spot positions and the observed peak
widths.

The finite linewidths (leading to translational correla-
tion lengths which are at most several hundred
angstroms) observed in rapidly quenched materials' have
stubbornly refused to go away, even in samples grown
slowly from the melt. '~ These results lend credence to
computer generated "icosahedral glass" models, in which
strict long-range icosahedral bond orientational order is
imposed on sequentially deposited clusters which need
not have Infinite range translational order. ' Although
Stephens and Goldman find finite translational correla-
tion lengths with this method, ' Elser has shown that
growth with a modest amount of annealing can sharpen
the peaks considerably. '

Although we have no strong opinion on this controver-

where the pure phonon and phason parts are

Fpgo„[u] =f (pn~j + t knkk )d X (1.2)

sy, we think it worthwhile to explore further the conse-
quences of long-range icosahedral translational order,
and study in particular the shapes of various Bragg
spots. ' Socolar and Wright have recently examined
this question, and postulate a superposition of uniform
phason strains, arising from growth anisotropies, to ac-
couirt for some of the experimentally observed shapes;
the main peak is replicated in slightly different positions
to give rise to an apparent anisotropic shape.

Here, we study an alternative mechanism, triggered by
spatia/ly varying strain fiuctuations due to an initially
thermalized phason population which has dropped out of
equilibrium at an elevated temperature. Similar strains
due to quenched random impurities in conventional crys-
tals are well known to lead to anisotropic diffuse scatter-
ing, often called Huang scattering. ' Diffuse scattering is
likely to be much weaker than the mechanism proposed
in Ref. 20. It is usually down relative to the main peak
by an amount proportional to the ratio of a unit-cell size
to the translational correlation length. We shall see,
however, that there are special enhancement effects pecu-
liar to quasicrystals. Large translational correlation
lengths are required to distinguish diffuse scattering from
the contribution of a broadened main peak. Experimen-
talists are probably just at the limits of being able to
detect diffuse scattering in quasicrystals.

The theory we construct describes both thermal and
quenched dil'use scattering in quasicrystals. If a sample
is cooled rapidly, one expects phasons to drop out of
equihbrium quickly during the solidi6cation process.
The continuum elastic free energy of a well-equilibrated
icosahedral crystal with both phonon displacements u(x)
and phason displacements w(x) is

+phon [u]+Fphas [w ]++int [u, w]
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F ~[w]= lj (t),.ui. )~+ I(Q ui„)~—~4(B, io }2+[(qB,iu +q. '8 io, ) +cyclic permutations]) d &, (1.3)

and the coupling between phonons and phasons is contained in

F,„,[u, w]=
2 15 I [Bito i ( u i i ru 22 + r u J3 )+2u, z (~ 'B, ipse

—rB2w, }]+cychc permutations I 1'x

The quantities m3, m&, and ms are elastic constants, A,

and p are the Lame coef6cients, and u;J = —,'(8;u +8 u; ).
Suppose the phasons drop out of the equilibrium at an
elevated temperature T during the cooling process. At
lower temperatures, the frozen phason displacement Seld
wq(x) will appear in a quenched random efFective free en-

Fphas [wq ]
Pq[wq ]~ exp

8 q

(1.6)

Because of the complexity of the quenched quasicrys-
taihne elasticity theory embodied in Eqs. (1.5) and (1.6),
we have found it illuminating to compare our results with
the simpler case of ordinary Huang scattering from a spa-
tially varying impurity concentration c(x). ' In continu-
um models of Huang scattering, the phonon displacement
field u(x) is coupled to quenched random impurity con-
centration fluctuations Sc(x)=[c(x)—co]/co, where co is
the average value of c(x). Instead of Eqs. (1.5) and (1.6),
we now have an efFective elastic free energy density

E~g = PQIJ + ~ Qkk +QQI k X (1.7)

and a quenched probability distribution for 5c(x),

P [5c(x)]cc exp ——,'5 Jd3x(5c P/kaT

Fes'=Fphon[u]+Fmi[u~wq] ~

where ensemble averages calculated with (1.5) must now
be averaged over a quenched probability distribution

Pq [wq ],

[C—1(k)] q
y~ka Tq k k~'

&(2@+A,)~ kq

As illustrated in Fig. 1, the second, difFuse scattering
contribution to S(q) leads to contours of constant intensi-
ty which are pairs of spheres whose common tangent is
perpendicular to the radial direction. The intensity in-
creases like k, and the shapes of the contours around
any particular spot are identical. When the anistropic
elasticity appropriate to, say, a cubic crystal is incor-
porated into the theory, one Ands that the shape of the
contours depends only on the direction of that spot rela-
tive to the origin and not on its distance away. ~'

Before quoting the analogous result for icosahedral
quasicrystals, we first recall that Bragg spots are most
conveniently indexed with six&imensional hypercubic
reciprocal-lattice vectors (Q Q ), where Q is the projec-
tion of a hypercubical reciprocal-lattice point orito a
three-dimensional subspace with icosahedral symme-
try. '~' ' ' This subspace is the usual physical ~sace in
which the Bragg peaks are actually observed, so Q plays a
role of a conventional reciprocal-lattice vector. With this
notation, the structure function for icosahedral quasicrys-

, q&

where 5 has the dimensions of an elastic constant. Note
that we have assumed an isotropic crystal, and that 5c(x)
couples to the phonon field in much the same way as the
quenched phason field Vw(x) does in quasicrystals.

In Appendix A, we show that the structure factor near
a reciprocal-lattice vector Q for Huang scattering at tem-
peratures small compared to T~ takes the form

S(q) cr I5(k)+Q, [C '(k)];~QJ Jfo(Q), (1.9)

where fo(Q} is analogous to the usual Debye-Wailer fac-
tor,

fo(Q}=exp Jd'S Q;—[C '(p)];,Q,
4

and k=q —Q is assumed small compared to an inverse
»ttice constant. The 3 X 3 matrix C '(k) is given in
terms of the elastic constants p and k and the coupling to
the quenched impurities y by

&~Jr @I)

FIG. 1. Constant intensity contours in the (q„,q~) plane for
Huang scattering from quenched random impurity concentra-
tion fluctuations at zero temperature, Vfe have assumed a cubic
crystal ~ith isotropic elastic constants for simplicity.
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tais near q=Q has the form (see Secs. II C and III)

&(q)~ &(k)+ —,'(Q Q )C '(k)

xf.(Q,Q')1~(Q, Q')
I
', (1.12)

OOo C)OC} ooo
o 0 O8ooclbo oo

o&C $&o
where k=q —Q, W is a function characteristic of a par-
ticular quasilattice, and fo ls a Debye-Wailer-hke factor

(1.13)

ooo~oogo oo
OOo C}oO o Oo

We have again suppressed thermal diffuse scattering
for simplicity. The phason-induced quenched diffuse

scattering which remains is determined by the 6X6 ma-

trix C '(k), which, like Eq. (1.11), is proportional to
ks T'» and inversely proportional to k . It varies with the
direction of k in a complicated and interesting way which
depends on all five quasicrystal elastic constants.

To illustrate our results, we have evaluated Eq. (1.12}
using elastic constants extracted from a simple density-
functional calculation for quasicrystals. ' i 3» Density
correlations of a dense random packing model of metallic
glasses are used as input. A.s shown in Fig. 2 for
diffraction normal to twofold, threefold, and fivefold sym-
metry axes, the shapes of intensity contours vary
kaleidoscopically from spot to spot, even for spots
aligned with a particular direction in reciprocal space.
We expect a similar rich variation in real experiments,
even though the precise magnitudes of the elastic con-
stants obtained in Ref. 32 may not be rehable. If a
diverse set of shapes Hke those in Fig. 2 could be detected
and measured with precision, one could work backwards
and use the theory presented here to extract information
about phason and phonon elastic constants. Then the
phason-phonon coupling constant m5, in particular, is an
especially important parameter in interpreting experi-
ments.

At higher temperatures, or if phasons are not
quenched, thermal diffuse scattering might become im-
portant. For ordinary crystals, contours of constant
difFuse scattering intensity sufficiently near a reciprocal-
lattice vector Q are given by

a(k) i
kiOC g (1.14)

=i lu «)]'
where U (k) and s (k) are the three velocities and polar-
izations Of phonons propagating in direction k. To estab-
hsh a contact with the subsequent formula for quasicrys-
tals, we note that a (k) are eigendirections of the 3X3
hydrodynamic elastic matrix C(k) [see Eq. (1.11)],while
the [u (k)] are proportional to its eigenvalues.

In the case of icosahedral quasicrystals, Eq. (1.14) gen-
erahzes to

(e)

00 O
0 0

0

o O

0

Fissa4eaaeatal Q:

Funclameatal Q:

OO OO
0 0 0 00QooOa

Q (}o o() Q
O oo O0 C) 0 C)

OC) 430

a=1

[Q s (k)+Q'. e',(k)]'
k2~ g (1.15}

where now the hydrodynamic elastic matrix C(k) is a

FIG. 2. Contours of constant dimuse scattering in planes per-
penchcular to (a) bvofold, (b) threefold, and (c) fivefold symme-
try axes of an icosahedral qa~aaicrystal mth quenchexi random
pb~mn disphLcements at zero temperature. Oaiy contours near
Sragg spots arith indices 0 or +1 are shown.
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6X6 matrix with six eigendirections and six eigenvalues.
If phasons are quenched, the form Eq. (1.15) remains, but
the elasticity matrix is replaced by an e8'ective, quenched
elasticity matrix whose eigemvalues and eigenvectors do
not correspond any more to real propagating modes. It
should be noted that phonon and phason degrees of free-
dom will generally be mixed so that for any given
o.=1, . . . , 6 both 7 and E will be nonzero.

The theory of diSuse scattering from quasiperiodic
crystals, summarized above for icosahedral quasicrystals,
is developed in detail in Sec. II. The general theory al-
lows for both thermal diS'use scattering from equilibrated
phasons and phonons, and also for the thermal and
quenched scattering present when phasons drop out of
equilibrium. Characteristic scattering contours similar
to Fig. 2 for other circumstances in icosahedral quasi-
crystals are tabulated in Sec. 111. A discussion of ordi-
nary Huang scattering, which parallels the more compli-
cated calculations for incommensurate crystals and quasi-
crystals, is given in Appendix A. Derivation of some for-
mulas used in Sec. II and III is given in Appendix B. The
coordinate systems which we use for icosahedral quasi-
crystals are specifie in Appendix C.

II. SCA j.l I;RING FROM MSGRDERED
QUASIPERIODIC CRYSTALS

A quasiperiodic crystal is a crystal whose three-
dimensional Fourier transform (or diffraction pattern}
vanishes except on a discrete, but dense set of wave vec-
tors generated by a 6nite set of basis vectors. This set can
be called the reciprocal quasilattice. The smallest num-
ber s( of wave vectors which generate a reciprocal quasi-
lattice is necessarily greater than three. Quasiperiodic
crystals can be further divided into incommensurate crys-
tals and quasicrystals depending on whether or not the
rotation symmetry of the reciprocal quasilattice is crys-
tallographic. Since this distinction is not important here,
we shall use the term quasicrystal generically.

We want to evaluate the effects of positional disorder-
ing on diffraction from quasicrystals. First, we shall in-
troduce necessary notation and a description of the densi-

ty of a "perfect" quasicrystal. By "perfect, "we mean a
quasicrystal with 5-function peaks and no difuse scatter-
ing; such a crystal need not be generated by literally self-
similar inflation rules. We shall also associate an elastic
energy with phonon and phason positional disordering.
Theo, we shall use this elastic energy to derive correc-
tions to the ideal structure factor due to thermalized pho-
nons and thermalized or quenched phasons.

A. Quasicrystai density and its Ponrier transform

The set of ideal atomic positions of a quasicrystal can
be always represented as a cut through a higher dimen-
sional periodic arrangement of sttrfaees. 6 These
"atomic*' surfaces have dimension equal to the dimension
of the higher dimensional space minus the dimension of
the physical space and can have complicated topolo-
gy. ' For example, to obtain the three-dimensional
Ammann quasilattice it is necessary to consider a three-
dimensional (physical space) cut through a six-

dimensional hypercubic periodic lattice whose vertices
are covered by identical (three-dimensional) rhombic
triacontahedra perpendicular to the cut. The triacon-
tahedra are projections of a six-dimensional unit hyper-
cube onto the three-dimensional complement of the
three-dimensional physical subspace. *'

Generally, a quasilattice can be represented by density

pi(x~ } p(x, x =0), (2.1)

g 51(xi—Ri —si(x' —R')) W(x —R) (2.2)

where
~~

and J. denote the physical subspace and its or-
thogonal complement, R=(Ri, R ) is a hyperlattice
point, u, denotes unit hypercell (or its volume), and

pi =si(g') g'Cu' (2.3)

is the equation of the atomic surface decorating the unit
hypercells. This surface is deflned over the domain
("window" ) u which can be characterized by the window
function

0 otherwise.
(2.4)

Since there must be a minimal separation between the
ideal atomic positions the domain u must be finite. ' We
shall assume here that there is a single atomic surface per
unit hypercell. The extension to a more general case is
obvious.

As a result of Eqs. (2.1)-(2.4) the quasicrystal density
can be written as

p (x )= +5'(x —R —si{—R ))W( —R ) .
R

(2.5)

Since there is a one-to-one correspondence between R,
R, and R~~ a functional dependence on R can be re-
placed by a dependence on R or Rll. However, both s
and 8' would be high1y irregular functions of these vari-
ables.

The Fourier transform of the hypercrystal density Eq.
(2.2) is

p(q}=fp(x)e '« *d"x=-'g 5(q —Q) W(Q),
U~ q

(2.6)

l
~ f, xpe[ i qi s~'(g) —iq g]de'—g, . '(2.7)

and Q=(Qi, Q } is a reciprocal hyperlattice vector. A

where p is a periodic density in the hyperspace. Explicit-
ly,

p(x) y f 5(x R g)51((II sll(g ))tf

f 511(xll —Rll —sll(gj ) )
g 0

X5j.(xi RJ, gl )g e —3gi
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particular normalization is chosen so that W(q) is dimen-
sionless and equal to unit at q=0. Since the Fourier
transform of a cut is equal to a projo:tion of a Fourier
transform, "

and the new, (d —3)X 3 phason strain matrix

Bu'
Bxll

' (2.15)

pII(q)II —fp(qll qi)dd &pi (2.8)

we can immediately write the Fourier transform of the
physical, quasicrystal density Eq. (2.5) and obtain a set of
weighted delta functions

Ui
~il(qll) — g 6ii(qll qll) p'(q) (2.9)

~c q

2 p™p'~J"J
and de6nes the elastic modulus tensor M. That is,

(2.16)

The elastic free energy E of a uniformly strained quasi-
crystal of volume V" is, to lowest order, quadratic in the
strain,

F= 'VII(—e.M e)+

B. Phoaom and yhason disorderiag of qn~icrystals
1 BF

BeBe
(2.17)

A perfect quasilattice can be disordered by allowing
displacements of the surface sii(f~). That is, the surface
associated with the hypercell at R should be replaced by
sii(g )+ui(R, f ). Ill addition, all 'the singlllar polllts fg
(that is, the branching points of the surfaces or the
boundary of U ) could be allowed to move. However,
only displacements of the surfaces at the intersection
with the physical subspace are relevant. Consequently,
without lack of generality, we can restrict our attention
to rigid surface displacements u(RII) which are indepen-
dent of g' (u might also carry another index to label
difFerent sheets, if sii is multivalued '}. That is, R+g' in
Eq. (2.2) should be replaced by R+g+u(RII) rather than
by R+g'+u(R, g), which would be appropriate if we
were interested in disordering of the hypercrystal itself.
Therefore the quasicrystal is disordered by substituting

R~R+ u(RII) (2.10)

(2.12)

Thermodynamic potential of a quasicrystal does not
change under uniform phason or phonon displacements
so that nonuniform displacements must be considered.
Such displacements can be described by a d)&3 strain
matrix, e, which, in the long-wavelength limit, is de5ned
as the gradient of the displacement Seld,

BUE'=
Bxii

(2.13)

In the block-matrix form, nonzero components of e are
the usual, 3 X 3 symmetric strain matrix

Buii
pll»ll— (2.14)

in Eqs. (2.2) and (2.5). It is important to note that disor-
dering of a quasicrystal requires the new, "phason" dis-
placements u (Rii) in addition to the usual, "phonon" dis-
p»cements u {R } '(I('ith t»s substitution Fouri««ans-
form of the hypercrystal density, Eq. (2.6), becomes

p(q) Ul y e —iq [R+n(R)) pr(q)
R

while Eq. (2.9) is replaced by

pll(qll) Ui g f e
—ih [R+n(R)]1V(k)(ill(kll qll}ddk

or, in the component notation,

B I'

BE@ j Be'y J
(2.18)

where indices i and j run over the physical,
~~

coordinates,
while p and v run over both

~j
and l coordinates. The

tensor M can be also written in the block form with the
blocks Mil'Ii'll Ii Mli Ii i II= 'Mi II ii II and Mi II i' ll For a
slowly varying strain, expression (2.16}for the elastic free
energy generalizes to

"M
vii Bxii Bxil

or, in terms of the Fourier transforms u{p'),

P ( f u( pll). (pll. M.pll). u(pll)d&pll

(2.19)

(2.20)

The elastic free energy Eq. (2.20) can be also written in
terms of phonon, phason, and phonon-phason interaction
contributions,

+phon[u ]++phas[u ]++int[u &u (2.21)

P „,[u ]—i f uii( pii). (pll. MII II'Ii ii.pli). uli(pll}de il

(2.22)

p h [ui] —( fui( pll). (pll. M&. ll'&, Ii.pli). ui(pil}de ll

(2.23)

C. Structure factor of disordered quasicrystals

From Eq. (2.9} we can immediately obtain the struc-
ture factor for the perfect quasilattice

Q. ,[uii, ui] —fui( pil). {pii.Mi II'll Ii.pii). uii(pll)d3~II

(2.24)

These elastic free energies will determine probability dis-
tributions over which functionals of phonon and phason
displacement fields will be averaged.
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sll(qll) —~ ~ q ~ — y {ill(qll Qll)
l
p (Q)

II ( II )

~ll U

(2.25)

where ere used a generalization of the usual substitution
for the square of the delta function, proved in Appendix
8, and where Nil is the number of the quasilattice points.
Nll equals the number of the surfaces sll cut by the physi-

cal subspace.
In order to calculate structure factor of a disordered

quasicrystal, the density given by Eq. (2.12} rather than
by Eq. {2.9) must be substituted into Eq. (2.25). More-
over, the resulting structure factor corresponds to a par-
ticular realization of disorder u(R) so it has to be aver-
aged over a distribution P[u] of displacements. There-
fore me can verite the structure factor, averaged over a
distribution of u, as

l2
Sll(qll) —" y f e fff (k )g (k )gll(qli kll){ill(qll kjl}d k

~ll
1 2

(2.26)

where f denotes the average

f=f&[ ] ' ' ' 'P[ ] (2.27)

As we shall see below, independently of whether
phasons are thermalized or quenched, the distribution
P[u] will be Gaussian,

P[u] cc exp ——' fu{—pll) C(pll) u(pll)de ll, (2.28)

where u{pll) is a Fourier component of u,

u(RII ) f iePI lR(u. pl)ld 3p (2.29)

and d &(d matrix C(pll) which is even under pll +

Hermitian, and positive definite, is related to the elastic
modulus tensor M. Then, following the derivation given
in Appendix 8, the structure factor can be written as an
expansion,

s ll (qll ) —s((qll ) +s ll ( qll ) + ~ . . (2.30)

whose first two terms are the Bragg scattering

S((q )= " (2~)"-'y. fi (ql -Ql)
[ W(Q) [

'f (Q)
U~ g

(2.31)

and the lowest-order diffuse scattering

U
j.

st(qll)= ' (2~)"-'
2U

qll

(qll Qi}.C i(qll QII }.

X f
Wqll, Q') i'fo(qll, Q'), (2.32)

fo(q)=exp ——,
' fq C '(p )-qd'p (2.33)

is analogous to the Debye-%aHer factor.
As can be seen from formulas (2.30)-(2.33), near a par-

ticular quasilattice point Q the structure factor can be

written as

Sll(QII+kll)
" (2ir)2d —i[gll(kll)+ i Q.C—i(kll). Q]
Uc

x l W(Q)l fo(Q) (2.34}

This is a generalization of the formula (1.12) quoted in
the introductory section. It follows from the second term
in the above equation that sufficiently near a Bragg spot,
contours of constant diffuse scattering are given by

Q C '(kll) Q=const . (2.35)

It will be shown in the last part of this section that C(k")
is quadratic in k. Therefore Eq. (2.35) can be written
mare explicitly as

[Q" «)l'
l

kll
l
2=const' g

[Qll.all(k ll}~Qi.zi{k II)]z
=constX g

=1 [ii «)l' (2.36)

where z (k I) denotes the d unit eigenvectors of C(kll}
while [U (k ll)]z are proportional to the corresponding d
positive eigenvalues of C(k II). Clearly, for a very large
Q and relatively fixed Qll, the shape of the contours will
be dominated by the Q contribution. Equation (1.15)
quoted in the Introduction is a special case of the above
formula.

It should be also noted, that unlike for ordinary crys-
tals, even for a fixed direction Q II, the shape of the con-
tours depends also on the magnitude

~

Qll l. The reason
is that spots with collinear Qll need not have collinear Q.
For example, in icosahedral quasicrystals there are
diffraction spots Q I which are collinear and in proportion
to the golden mean. Such spots, however, do not have
collinear Q's and, consequently, they should have
different difFuse shapes.

The d Xd matrix C(pll) which determines the probabil-
ity distribution Eq. (2.28) can be related to the elastic
modulus tensor of the quasicrystal. If phasons, as dwell as
phonons, are thermalized, then the distribution function
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Eq. (2.28) is simply the Boltzmann distribution associated
with the elastic energy given by Eq. (2.20}. Consequently
tlie matrix C(p } iil Eq. (2.28) is ill tllls case

and the C ' block given by

Cl, l(pll) Cj.,i(pll)+( i, ll(pll) [CII ll(pll)]
—i.CII &(pll)

C~,-(p )—=
„. z

(P'~~, ;;JPJl)
peg T

(2.37)
where

(2.41)

P,&[u"] a: exp
8

(2.38)

where the quenched random efFective free energy F,fr is

F —F „[ull(pll)]+F. [ull(pll) ui(pll)] (2.39)

and where F h „and Fl„, are given in Eqs. (2.22) and
(2.24}. Second, this ensemble average must be averaged
over a quenched probability distribution P~ f u~ ],

T

[uj (pll)]
Pq [uq ] ~ exp

8 q

(2.40)

where F h„ is given in Eq. (2.23). The average over the
phason distribution can be viewed as an average over an
ensemble of different samples, or as "self-averaging" in a
single, but very large sample.

It can be easily veri5ed, using the results of Appendix
B, that the two averaging steps with Eqs. (2.38) and (2.40)
are equivalent to a single step as in Eq. (2.28) with C ',
Ci II, and Cll i blocks of the matrix C given by Eq. (2.37)

where T is temperature and kz is the Boltzmann con-
stant. %e shaH call this matrix the hydrodynamic ma-
trix. It is easy to verify from corresponding hydro-
dynamic equations that eigenvalues of C(pll) are propor-
tional to the squares of velocities of the eigenmodes asso-
ciated with the wave vector p~I.

If, however, phasons drop out of thermal equilibrium
at a temperature T, then at a lower temperature T, pho-
nons will equilibrate in the presence of a quenched
phason displacement field u~. Therefore, the average in

Eq. (2.27) will require two steps. First, the ensemble
average over phonons must be completed using the
effective Boltzmann distribution

1[( i ~(pll)] pll~~iII'~ lip(I
B q

(2.42)

The last term in Eq. (2.41) compensates for a spurious
term which ~ould arise from averaging over the phonon
field. It should be emphasized that elastic modulus ten-
sor M will generally depend on temperature so its values
at T and Tv should be used in Eqs. (2.37) and (2.42), re-

spectively.

m. RESULTS FOR ICOSAHEDRAL
QUASICRYSTALS

(3.2)

Cll &(pil) ~Ci ll(pil) —c C II i(pll)

where prefix r denotes transpose, and

(3.3)

A density pll(xll) whose diffraction pattern consists of
Bragg peaks which can be completely indexed with the
six vertex vectors of an icosahedron, can be always
viewed as a cut through a six-dimensional hypercubic
crystal. i The orientation of the icosahedral group with
respect to the coordinate axes in the physical and the
complementary spaces can be speci6ed by specifying the
orientation of the projections (components) of the six
orthonormal vectors, which span the six-dimensional
space and which are assumed perpendicular to the five
faces of the hypercubic unit cell. With the specific orien-
tation given in Appendix C, and using group theory, it
can be shown that the hydrodynamic matrix C(pll) can be
represented as a sum of five basic matrices:~i

Cll ll(pll) c C II ll(pll)+c C ( II(pll) (3.1)

C"(pll) =.,C", (pll)+.,C "(pll)

EJ
2 6 I J (3.4)

[C( ll(pll)], . (3pllpil
I

pll
I

&(i . ) (3.5)

[C,'(pll)], =-,'
I p

—
I

Pll
I +& PV &PV-

—2pIIpI

—2piIpI

—2pqp(

—,
' Ip I'+~ 'pV —~pI'

I

I
z+~—iplI2 ~p)Iz

(3.6)

(3.7)

pll' —~pII'+r 'pP
CII'(pll}= -2.p@II&60

—2~& IIp(

pP —~p~P+r 'pP

(3.8)
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The coeScients c; are simply related to the five indepen-
dent elastic moduli m; by

7?l-

) / 1 f ~ I ~ )
k~ T' (3.9)

Ooo QQQ ooO
OOO(P ~0~ OOO

In order to obtain equations quoted in the Introduction
it is necessary to change the notation according to
(uII, u')~(u, @),xII~x, pII~p, kII~k, (aII, a')Ms, e'), and
(QII Qi)~(Q Q ). Also, by projecting longitudinal and
transverse components out of Eqs. (3.4) and 0.5), it is
possible to verify that the I.amme coefficients )I, and p,
which appear in Eq. (1.2) are related to m, and m2 by
m, =(2p+-,'A. )~6 and m2 ——A( —", )'~ .

A meiastable quasicrystalline icosahedral structure
and its elastic modulus tensor's'3~ M have been previous-
ly investigated for hypothetical icosahedral quasicrystals
using a density-functional theory. This theory is based
on an expansion of the interaction part of the Helmholtz
thermodynamic functional around a reference, super-
cooled liquid state. The expansion is usuaBy truncated at
the second order so that the information about interparti-
cle interactions is manifested only through the direct pair
correlation function in the reference liquid state.

Structure factor of a reference supercooled liquid at its
glass temperature Ts can be identified with structure fac-
tor of the glass at T & Ts. On the other hand, structure
factor of metalhc glasses, such as amorphous iron and
nickel, can be successfully represented by dense random
packing models. As a result, the coefficients c; of the
corresponding icosahedral quasicrystal at T=Ts were
found to be32

o opC /go o
c) O o ~ o ~ o G' o

Ooo a(-)c) ooO
Q o Q

FuIndamontg Q."

(b) oo
00 00 Q

0 0
Oo oG' o' 'o o

0 o 0
0 0 g

c) =1.6g10

e2 =2.2& 10

c3 =4.9X 102,

cq= —5.9y, 10',

c~ =9.2& 10'

(3.10)

(c)
in units of the average quasicrystal density ( = tt i/U, ).

The interaction coefficient c, is particularly important
for diff'use scattering. Sufficiently large c~ destabilizes
matrix C. Therefore, even for elastically stable quasicrys-
tals, a large coefficient c5 could lead to some anomalously
small eigenvalues u (k) and, consequently, to anomalous-
ly large difFuse scattering. Similar anomalously large
scattering could be also observed in certain directions
around wave vectors QII which have a large Q com-
ponent, provided corresponding contribution to the
Debye-%aller factor,

Q oa oo O
0 oo C}

O, o o,0
Q Qo oQ Q

O O oo O O
Q 0 0 Q

O oo oo Q

ai(p II) 2

-'J«tc '(p')I"d'P =-'I X d p
=i lc.(p")P

(3.11)

is suSciently small. Note that for icosahedral quasicrys-
tals the Debye-WaBer factor Eq. (2.33}can be written as

FIG. 3. Same as in Fig. 2, except at Snite temperature
T

3 Tq
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0 .'Q '.o:. 'o: Q,'Q
Oc) O

0 D O 0 OO0
gO ~~ Og

Fulichuaeatal Q:

Q 00 00 Q

0O 0 o 0 0 O
O 0 . . 0 O

Q 0 0 Q

Pggdsaeagtlil Q;

g O O
0 0 o o 0 O

0 0

Q O o o O Q
a 0

0 0 o 0 0
Q o O 0

Q o c c o Q

Oo oO
0 g 0 Oo ~ O ~ &~ 0 g 0

tr[C —i(pll) ]II IIf.(Q) = exp ——,
' I I

Qi
I

'

)
Qi

)

2 tr[c '(P )1"

(3.12)

With the above values for the coeScients c;, we calcu-
lated contours of constant difFuse scattering using Eq.
(2.36) or its equivalent Eq. &1.15). In Fig. 2 we showed
contours in the planes perpendicular to the twofold,
threefold, and fivefold symmetry axes for quenched
phasons in the limit T=0. We assumed that the phason
quench temperature T~ is approximately equal to the
melting temperature of the stable crystal, T =T, and
that T =3Ts. s It was also assumed that m, (T )

=m &( Ts ) and that the ratios of the moduli rn;,
i=1,2, 3,4 are approximately the same at T=O and
T T 0

In Fig. 3 we also show the results for quenched
phasons, but now we take T=Ts. Finally, in Fig. 4 we
show analogous results for the case when both phonons
and phasons are thermalized at T= Ts.

IV. CONCI, USIONS

The efFect of phonon and phason disordering on
scattering from quasicrystals was examined in this paper.
An explicit formula was derived to relate the Debye-
Waller factor of a quasicrystal to its elastic moduli [Eq.
(2.33) and Eqs. (2.37) and (2A2)). Lowest order difFuse

scattering from quasicrystals has been also described ex-
plicitly in terms of the elastic moduli [Eqs. (2.32) and
(2.36) and Eqs. (2.37) and (2.42)).

The derived general formulas were applied to a specific
case of icosahedral quasicrystals. Representative con-
tours of constant difFuse scattering vrere calculated for
cases of quenched and thermalized phasons. Two main
observations could be made: shape of the contours is
much more complicated than ~hat mould be possible in
the case of ordinary crystals (or isotropic solids); unlike
ordinary simple crystals, shape of the contours varies
even among the collinear Bragg spots. These are signa-
tures of phason degrees of freedom. Moreover, for large
Qi both the Debye-Wailer factor and the diffuse scatter-
ing contours are dominated by Qi components. There-
fore these are the characteristic features which can exper-
imentally identify quasicrystals.

A careful experimental measurement of diffuse scatter-
ing in quasicrystals might be the best may to evaluate
their elastic moduli. Such measurements should be done
as a function of temperature (so that the quenched,
temperatur'e-independent contribution can be isolated)
and as a function of quench rates (so that the
temperature-dependent contribution can be isolated).

FIG. 4. Same as in Fig. 3, except that phasons are assumed
thermalized.
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APPENDIX A' CONTINUUM ELASTIC THEORY
OF HUANG SCAx-Ia:RING

In this appendix, we review the continuum elastic
theory of Huang scattering from a fluctuating impurity
concentration 5c(x). Although the results are not new,
they illustrate the notation and calculational techniques
employed for quasicrystals in the body of this paper and
in Appendix 8.

As discussed in the Introduction, we consider an iso-
tropic elastic free energy with a linear coupling of the lo-
cal dilation ukk (x)=V u(x) to 5c(x),

Eeg =
2

X QIJ+ Qkk+2$ C Qkk (Al)

We assume for simplicity an isotropic crystal in a period-
ic box of volume V, and make the Fourier decomposition,

u(x) =—g e 'q'"u(q),
V

(A2)

where

u(())= I d'x e ' *u(x) . (A3)
V

Upon passing to Fourier variables for 5c(x) as well, the
free energy becomes

placement 6eld u(x),

f2)[u(x}]A exp( F—,z/kz T)
(~)= (A6)f$[u(x)] exp( F—,z/kz T)

where the square brackets denote the thermodynamic
average. We must then average over the quenched im-
purity Seld. When expressed in Fourier-transformed
variables, the quenched probability distribution of Eq.
(1.8) is

Pq [5c]~ exp — —g /

5c(q)
/

2

B q q

(A7)

ik ReIq ulR)

R

(A 10)

Denoting impurity averages by an overbar, we can aver-

age over both displacements and the impurity distribu-
tion (A7} as follows:

C X A Pq C

(A8)
C X Pq C

We now investigate Buctuations in the particle density
p(x},

p(x)= +5(x—R—u(R)),
R

where the sum runs over the sites t R[ of a regular lattice
with reciprocal lattice vectors I Q I. The Fourier
transformed density reads

p (q ) $ e )q [R +u ( R )]

R

F,(r —F0+ g [q u(q)]5c( —q),
V

q

(A4)
where we have set q =Q+ k. The quantity measured in
difFraction experiments is the structure factor S(q),

where I' can be written in terms of longitudina1 and
transverse projection operators in reciprocal space as

F() —— gq )u 5;.— +(2@+k,)

Xu (q)ii. ( —q) . (AS}

To calculate the thermodynamic average of a quantity
A using (A4) for a fixed impurity distribution 5c(x), we
must first carry out a functional integral over the dis-

S(q) = ( [ p(q) [
') /N

ik R( iq. [u(R)-u(0)] ) (A 1 1)
R

We shall be interested here in the behavior of S(q) for q
near a particular reciprocal-lattice vector Q, and will
therefore set q=Q inside the averages of Eq. (Al 1). We
can also replace the sum over R by an integral over x in
this limit,

The thermodynamic part of the average in (All) can
be simpli6ed as follows:

)'

exp iQ [u(x) —u(0)] — fd x'uii, (x')5c(x')kk

( e iQ. [u (x) —u (0)] )

exp Jd' '
xu(exe")5 (xe')

)

= exp ——,'g;g J ( [u;(x)—u;(0}][MJ(x)—u (0)])

Ql fd x'5c(x')(u&), (x ')[ul(x) —u&(0)] )0 (A12)
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where { )0 denotes an average with respect to the free energy Eo and we have used standard properties of Gaussian in-

tegrals. The two exponentiated thermal averages in (A12) are readily evaluated using Fourier variables and the free en-

ergy (A5):

{[u;(x)—u, (0)][u,(x)—u (0)]) = U; (x)

2ka T 1,—.-„1 pipiz(' —"'") —5v- z + 1 PiPJ

V p p, p 2iu+A, p

{uii, (x')[u~(x) —uj(0)])0—= V (x', x)

Eke T
y &( &px 1) ip—x'

2p+g $r p2

The required thermal average is thus
T

&e'')' "'") "' '}& = exp ——'Q Q U; (x)— Q fd «'5c(x')V, (x', x)
8

(A13)

(A14)

(A15)

To carry out the remaining quenched average in Eq. (Al 1) we need to evaluate

exp Q, fd'«'5c(x') V, (x',«)
8

(A16)

which, using Eq. (A7}, is readily found to be equal to

exp —— Q;QJ W„(x)
2 2@+

where

2k~ T

pP

Combining everything together, we have finally
T

~k T{e'~'+'+ "' '})= exp —Q, Q —g (1—e'P'") 5,"—
J y 2 /J

P

P;PJ ka T ka Tq 7 PiPJ'' + +
P 2P+ ~ b, (2lM+ il, ) P

(A17)

(A18)

(A19)

The small k behavior of the structure factor (All) is dominated by the large x behavior of the averages discussed
above. The term of (A19) proportional to e'p'", in particular, behaves like I/« for large «, and can be expanded down
from the exponential. Upon inserting Eq. (A19}into Eq. (Al 1) and expanding in this way, we obtain our Snal result:

S(q) ~ e "'" 5(k)+ 5,"— + +l~l') . Q;Q k T k;kj AT ks T y kik
(A20)k' lM

" k' 2}M+& 6(2P+A)' k'

where the Debye-%aller prefactor
T

y k~T
& ~.-(.-}~')= '"+' k, T+

3iM(2@+~) 3b, (2lM+ I,)'

1 Ix —g
pP

(A21)

Passing to limit of large volumes V and setting T =0 we
obtain the result (1.9) quoted in the Introduction.

APPENMX 8' 5TRUCTURE FACTOR FORMULA

In this Appendix we shall derive formulas (2.30)-(2.33}
and also Eq. (2.41) for the case of quenched phasons. As
a preliminary step, we must prove two simple formulas,

511(qll 0) ~I
u~(2m )3

(&2)

where U is volum. e of a domain in i subspace which
decorates every hyperlattice point, and N~t is the number
of intersections of these domains with the physical,

~~
sub-

space. The Srst formula can be proved by integrating
both sides of this equation over a reciprocal unit cell.
The second formula can be proved by setting qtI =0 in Eq.

+5(q Q} . gelq'R
g (2n) R

where R is a vector of a hyperlattice whose unit-cell
volume is U, while Q is a vector of the corresponding re-
ciprocal hyperlattice, and



37 Dlt"FLJSE SCA't t'ERING FROM QUASICRYSTALS

(81) and then integrating both sides over qi with the
weight

w(q )—= f, exp( —iq x. )d 3x (83)

This weight is the l Fourier transform of the function

f(R,k)= exp ——,'k. f [1—o (pll. RII)]

(812)

l
~( i) 1, x Eu

0 otherwise .
(84)

There are two immediate consequences of Eq. (82).
First„ the usual substitution for the square of the delta
function,

In deriving Eq. (82) it is necessary to recall that
Q=O=QII=0 Q =0, and to observe that

(85)

f(R,k) =fo(k)[1+f i(R,k)+ ],
where

(813)

follows from Eq. (88) with substitutions k, =kz ——k and

R] —R2 ——R.
In order to evaluate the remaining sum and integral in

Eq. (811),we first observe that the integral in Eq. (812) is
dominated by the contribution from the f]lrst term in the
integrand since the positive and the negative contribu-
tions from the cosine will tend to cancel each other.
Therefore we can expand the exponent to obtain

[5(q)] =N 5(q),
(2zr)3

used for periodic lattices, generalizes to

(86)

and

T

fo(k)= exp ——,'k fC '(p')d'p k
J

(814)

[5ll(qll ) ]z—NII 5ll(qll )
u (2m)

fi(R, k)=-,'k f cos(p" R')C '(p')d'pll (815)

in the case of quasilattices. Second, since u is arbitrary,
Eq. (82) implies that points IR j fill 1. space uniformly.

Using the standard results for Gaussian integrations
the average in Eq. (2.27) can be easily evaluated,

(pll.it];pll. RIf= exp ——,
' (kze —kie ) C '(pl')

ipll R] rpll RI

Sll(qll) Sg(qll)+ST�(qll)+ . . .

where

S((q")=u (2zr) g f e '"'"fu(k)
~

W(k)
~

(816)

X5ll(qll kll}d k (817)

Associated expansion of the structure factor Eq. (811) is

and can be seen to depend only on the difference R, —Rz.
This can be used to simplify the structure factor in Eq.
(2.26). We first make the substitution

R) —R2~R,
R2~R' . (89)

Then, by using (Bl), summation over R' can be immedi-
ately carried out to give the factor

(810)

S'I(qll)=u "(2~r)" 'g f e '"'Rf(R, k) ( ~(k)
)

'

kll }d~k (811)

However, since the two 5II's in Eq. (2.26) force
k~) =kf~=qII, and since Qll =0~Q=0, the only term sur-
viving in the above sum is the Q=O term. Therefore, the
integral over one of the k's can be performed, and after
applying Eq. (87) we are left with

SM(q )=u'(2ir)" 'g f e '"'"fo(k)fi(R, k} [
~(k}

(

'

X 5ll( qll kll )d ~k (818)

The zeroth-order contribution to the structure factor,
Eq. (817), can be easily evaluated by using Eq. (81). This
gives Eq. (2.31) and we see that fo(Q) is analogous to the
usual Debye-Wailer factor. fo(Q) is Gaussian in the
physical Qll as well as in the complementary Q com-
ponents of the difFraction vector. Of course, since there is
a one-to-one correspondence between Qll and Q, one
could view f0 as a function only of Qll. However, an im-
portant difference from the usual Debye-%aller factor is
that for a quasicrystal this would be a highly irregular
function of Qll.

In analogy to ordinary crystals, we expect that Si (q" )

describes difFuse, Huang scattering characterized by alge-
braic peaks overlapping the usual Bragg, 5-function
peaks. Indeed, this is the case, as can be seen by explicit-
ly evaluating Eq. (818}. The sum in this equation can be
evaluated by writing the cosine as the sum of two ex-
ponentials and, then, using once more Eq. (81). The re-
sulting 5 function and already present 5II function make
the integrals over k and p~I trivial so that we obtain Eq.
(2.32}.
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We shall conclude this section by sketching derivation
of the effective hydrodynamic matric C,sI(pll) appropriate
for the case of quenched phasons. The average of

dependence in the normalization of P,s. However, the
two steps can be made independent if a change of vari-
ables is made in the first integration,

exp[ikz. u(R2) —ik, .u(R, )] ull~u ll nil+ [CII II]
—i.Cll, i.ui (819)

now involves first averaging over P,it[nil] given in Eq.
(2.38) and then over P [u ] given in Eq. (2AO). The two
averaging steps are not independent because of the u~

I

Now, by completing the usual Gaussian averages one
finds the same results as in (88), except that C ' is re-
placed by

'(CII II)
—i+(Cll II)

—i.CII i.(Cii)-i.Ci II.(CIl II)
—i (CII II)

—i.CII i.(Cii}—i '

(Ci i)—i.Ci Il. (CII II)-i (Ci, j.
)
—1

q

(820)

where we suppressed the implicit pll dependence. By in-
verting the last equation it can be veri6ed that

Cll ~

CLi+Ci Il. (CII II)
—i.CII i

as claimed in Eq. (2AI}.

APPENMX C: CQORMNATE SVS'rEMS
FOR. ICOSAHEDRAL GROUP

The orientation of the icosahedral group with respect
to the coordinate axes in the physical and the comple-
mentary spaces can be speciSed by the projections (com-
ponents) of the six orthonormal vectors e„, p =1,
2, . . . , 6, which generate the six-dimensional hypercubic
lattice. z7 In the II, physical space, we specify these pro-
jections in the following way:

Our choice of the orientations of the icosahedral group
is guided by the fact that icosahedral group has
tetrahedral group as its subgroup. We choose the orien-
tations so that the two inequivalent representations of the
icosahedral group, spanned by II and J. subspaces are
identical when restricted to a tetrahedral subgroup.
Orientation of the tetrahedral subgroup is a standard one,
with the coordinate axes coinciding with the twofold
axes. This facilitates eiicient extension of the available
results from tetrahedral to icosahedral symmetry. Obvi-
ously, selection of a particular permutation of the basis is
irrelevant to the above point.

With the above orientation, a hyperlattice vector

R =aplpe~,

where a is the hyperlattice constant and n„r aientegers,
has projections

I =ri(w, 0, 1),
elI =~(~,0, —1),
ell=ri( l, r, O),

eel=i)(0

ei~ =ri(0

ejl=q(1, —~,0) .

Similarly, in the l, complementary space we specify

(C 1)

all an&e&l

a=an ep

Similarly, a reciprocal hyperlattice vector

has projections

{C5)

(C6)

(C7)

ei ——g(1,0, r), —

e2 ——ri(1,0,r),
e3=ri( —'r, 1,0),
e4 ——g(0, r, 1 ), —

eis=ri(0 & 1)

e6 ——g( r, —1,0) . —

(C2)

projections of the unit vectors will have magni-
tude 1/'i/2, so that

g = 1/&2~+4,

qil ~ i ell
P

and

(C9)

sll(g') =—0, (C10)

Integers I„can be used to index Brag g peaks of
icosahedral quasicrystals.

In order to obtain an icosahedral quasicrystal with
atoms at the vertices of the Ammann quasilattice, one
decorates hyperlattice vertices with "Hat" surfaces

where r = —,'(1+~5) is the golden mean.

{C3}
whose shape in l space is a rhombic triacontahedron with
edges +ae„, that is, the projection of the unit hypercube.
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Consequently,

u =(10+4~5)'~2a =4.35250a3 . (Cl 1)

In order to establish a correspondence with coordinate
systems of other authors, it is generally necessary to 6rst
make a correspondence between the labelings of the six
vectors e„, and then give transformations between the
coordinate frames. For example, if we denote vectors
and coordinates given in Ref. 25 by an overbar, the fol-
lowing transformation can be established:

—1 0 0 0 0 0
0 1 0 0 0 0

3 0 0 0 1 0 0 e3

e4 0 0 0 0 0 1
(C12}

0 0 1 0 0 0
0 0 0 0 1 0

e6
e6

xI

x(

0
0

() 1' xI
I 0
0 0

(C13)

—1 0 0 x

x'
3

0 1 0 x~
0 0 —1

(C14)

Obviously, the first transformation is not unique, but
once chosen it uniquely fixed the coordinate transforma-
tions. If the Srst transformation is changed by an ele-
ment of the icosahedral group, the coordinate transfor-
mations must be changed by the same element.
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