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We propose a density-functional method for calculating elastic moduli of crystalline solids. The
method is based on the second-order Ramakrishnan-Yussouff (RY) expansion of the variational
grand-canonical potential around a uniform liquid state. The densities of the strained and un-
strained crystal are represented as sums of narrow Gaussians. We express the crystal moduli in
terms of the liquid structure factor its first and second derivatives evaluated at the reciprocal-lattice
points of the crystal. We evaluate the elastic moduli for fcc hard-sphere and Lennard-Jones crystals
using the Percus-Yevick and computer-simulation liquid structure factors, respectively. An indirect
comparison with available experimental and theoretical values shows that although our calculated
moduli are accurate to an order of magnitude, higher-order terms in the RY expansion might be
significant. We find important contributions from density equilibration within the strained unit cell.

I. INTRODUCTION

The only zero-frequency elastic response which a fluid
can exhibit is the compressibility. The isothermal
compressibility is related via fluctuation-compressibility
theorem to the density fluctuations' in a fluid. For solids,
the fluctuation-compressibility relation can be general-
ized? to all zero-frequency elastic moduli except those
that represent response to a shear stress.

The lattice theory® of elastic constants first developed
by Born was restricted to perfect crystals at zero temper-
ature. Exact expressions for isothermal elastic moduli
that contain fluctuation effects omitted by Born and
which made important contribution at nonzero tempera-
ture were derived by Squire et al.* The expressions for
elastic moduli were evaluated via Monte Carlo tech-
niques. In this theory, the interparticle potential plays an
explicit role while the structure of the crystal plays an
implicit role.

Lipkin et al.’> and Ramakrishnan® have introduced
an approximate theory of elastic moduli based on
Ramakrishnan-Yussouff (RY) density-functional theory’
of solidification. In this theory the role of the structure
of the medium is explicit while leaving the role of inter-
particle potential implicit, buried in the two- (multi-) par-
ticle correlation function of a metastable fluid state
around which an expansion is developed. In particular,
the elastic constants of a solid have been expressed in
terms of the curvature at the main peak of the fluid struc-
ture factor by assuming that this contribution is dom-
inant. They also implicitly assumed affine density defor-
mation of the strained medium at all scales. This is gen-
erally not the case below the Cauchy length.®

The usual variational calculations of the grand-
canonical potential follow from the classical theorems of
Gibbs® and their quantum generalizations.!*~!'> The
main result, first established by Lee and Yang,!? states
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that the grand partition function of a system of interact-
ing particles is stationary with respect to variations of the
single-particle density. Ramakrishnan and Yussouff’
separated the variational grand-canonical potential into
an explicit entropy contribution and a contribution from
interparticle interactions. Then, they expanded the in-
teraction part into a functional Taylor series around a
uniform fluid state. In this way they could express the
grand-canonical potential of the solid in terms of the
direct correlation functions of the coexisting or metasta-
ble liquid.

This theory resembles a molecular-field theory in
which each particle sees an external (chemical) potential
and a response potential (molecular field) self-consistently
set up by the interparticle interaction. The extremum
equation, analogous to the self-consistency condition of a
molecular-field theory, is a nonlinear integral equation
for the solid density. RY found approximate periodic
(crystal) solutions of this equation by expanding the solid
density into a Fourier series, then projecting from the re-
sulting equation a set of nonlinear equations for the
Fourier amplitudes of the density. Solutions of these
nonlinear equations show’ how correlations in the fluid
self-consistently generate a nonuniform density of crystal-
line periodicity and symmetry.

Recently, several authors realized that sufficient accu-
racy can often be achieved by a much simpler expansion
of the solid density into narrow Gaussians. '®~2° Such an
expansion is justified by actual calculations of the Fourier
amplitudes and by the experimental fact that even at the
melting point of many crystals the atomic motions are
small and approximately harmonic. *!"??

Density-functional theories have been quite successful
in predicting solidification parameters for hard-
sphere!”!%22 (HS) and Lennard-Jones'>?? (LJ) fluids.
Such theories were also used to study submonolayer
phases of rare gases on graphite, !® the glass transition,?*

4441 ©1988 The American Physical Society



4442

and most recently the stability of icosahedral quasicrys-
tals.?’ Several authors have proposed that a similar ap-
proach can be used for “first-principles” calculations of
such quantities as defect energy,®?>?® liquid-solid inter-
face,?’ etc.

In order to calculate the elastic free energy of a
strained solid, and thus its elastic moduli, we evaluate its
grand-canonical potential and density using the same ap-
proximation as when evaluating the grand-canonical po-
tential of the unstrained solid. In this way we take ac-
count of the fact that the solid crystal density deforms
under a stress in a nonaffine way below the unit-cell scale.
This is manifested in a change of the concentration of in-
terstitials and vacancies as well as in a nonaffine change
(relaxation) of the Gaussian widths. In many experimen-
tal situations the vacancy concentration change can be
neglected because of the long diffusion times. However,
the relaxation of the widths plays a more fundamental
role as we will see in the case of the hard-sphere crystal.
Some results of this paper have been summarized in an
earlier publication.?®

We calculated elastic moduli for fcc hard-sphere and
Lennard-Jones crystals at the melting point and near the
triple point, respectively. For the HS calculation we used
Percus-Yevick liquid structure factor, while for the LJ
calculation we used a structure factor obtained by com-
puter simulations.?”’ Calculated elastic moduli are
correct to an order of magnitude. However, a more
stringent test of our results is not possible at present since
the measured or independently calculated elastic moduli
are determined at different points in the phase diagrams.
It appears that although third-order terms in RY expan-
sion are not significant for determination of the solid-
liquid phase boundary, they are for accuracy of elastic
moduli. 33! The theory which we developed here can be
easily extended to the case when third- or higher-order
terms are included.

We review the density-functional formalism in Sec. II.
Thermodynamics of elastically deformed media is sum-
marized in Sec. ITII. In Sec. IV we discuss the Gaussian
expansions for the strained and unstrained solids and we
derive expressions for the elastic energy and moduli. Re-
sults of the application of our theory to HS and LJ solids
are presented in Sec. V. The last section is devoted to
summary and discussion. In Appendix A we derive a
simple molecular-field theory of a classical fluid (and
solid) and we emphasize its distinction from the density-
functional theory of Ramakrishnan and Yussouff. In Ap-
pendix B we derive thermodynamic equations for a crys-
J

G [u(X);V,Tl=mintrpg[n (X)] |kg T Inpg[n(X)]+Hy — anN(X’)/L(X’)d3x
n(x)

Clearly, n (X) which minimizes Eq. (2.6) for a given u(X)
will be the equilibrium density which will automatically
satisfy Eq. (2.5). In fact, Eq. (2.6) can be written as

G [u(X); ¥V, T]=min |F[n(X);V,T]— fyn(i)y(i)d%c ,
n(x)
2.7)
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tal at finite strain. Explicit formulas for the elastic
modulus tensor, written in terms of reciprocal-lattice
sums over the derivatives of the liquid structure factor,
are derived in Appendix C.

II. DENSITY-FUNCTIONAL THEORY

In this section we give a short tutorial to the variation-
al formulation of the calculation of the thermodynamic
grand-canonical potential.

Generally, the thermodynamic grand-canonical poten-
tial G can be variationally determined as

G[w(X); V, T]=min trp [kBTlnp—f-HN
)

-/ nN(i')/.L(X')d3x], 2.1)

where, classically,
_a 1M 3 3
=3 Nl s [ an ), 4%

h is Planck’s constant and p; and X; are momenta and
coordinates of N particles at temperature T, restricted to
the volume V in the presence of the external (chemical)
potential u(X) and interacting via Hamiltonian Hy
(kT =B~! is the Boltzmann factor). The microscopic
single-particle density of the N-particle system is

(2.2)

N
ny(X)= 3, 8(X—X;) .

i=1

(2.3)

The variation in Eq. (2.1) is to be performed over the nor-
malized probability distribution (density matrix) p. The
distribution which minimizes Eq. (2.1) is the Boltzmann
distribution

exp

B[ J, iR —HNH
B[anNmpmde —-HN” '

PB= (2.4)

tr exp

The Boltzmann distribution is explicitly a functional of
the chemical potential. However, it can be also viewed as
an implicit functional of the equilibrium particle density
n (X),

n(X)=trpgny(X) . (2.5)

Therefore, one may restrict the variation in Eq. (2.1) to
p=pgln (X)], with n (X) as the variable,

(2.6)

[

in which case it can be recognized as a statement of
the familiar fact that the grand-canonical potential
G [u(X); ¥, T] is the Legendre transform of the Helmholtz

potential F[n (X);V,T],
F[n(X);V,Tl=trpg[n (X)1{kgT Inpg[n (X)]+Hy} .
(2.8)
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The chemical potential u(X) can be explicitly determined
as a functional of the density n (X) by

—_ OF[n(X);V,T]
u(X)= —~ .
én (X)

The Helmholtz potential for a system of noninteracting
particles is purely entropic

Foln(X);V,T1=ksT fV n(X){In[n ()A3]—1}dx ,
(2.10)

(2.9)

where Ar=(h%/2emkyT)'/? is the thermal wavelength
of a particle of mass m in a bath at temperature T.
Therefore, the Helmholtz potential for an interacting sys-
tem can be written in the form
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F[n(X)V,T1=Fy[n(X);V,T]+F;,[n (X);V,T] . (2.11)
The functional F;,[n (X);V,T] contains the full effect of
many-body interaction and will be expanded in the func-
tional Taylor series around a liquid state with density
n,(X) and corresponding chemical potential y;(X).

The expansion of F;,, can be carried out by using the
following relation:

8F;, [n;(X)]

. =,U1(i’)—kBTln[n1()—(’)}\;~] N
on (X)

(2.12)

and the definition of the m-point (m > 2) direct correla-
tion function of the liquid

8"F; [n)(X)
kBTCI(M)(ih---,)_(m)=~ mt[ 1 ]
on(x)) -+ 6n(X%,,)
8"F[n)(X)] . L o
=-— = ——+(=1)"(m —=2)lny(X;) ~"8(X, —X,) - * - 8(X, —X,,) . (2.13)
on (X)) - 6n(X,,)
Combining this expansion with Eq. (2.7), we can write
G X}V, T]1—G[u,(X); V, T]=minA W [n (X),u(X); V, T] , (2.14)
n(x)
where the variational potential AW is
BAW[n R uR5V,T1= [ |n(Rln" %) _ An (X)—Bn (R)Au(K) |dx
n(x
—~1 fV fV C2(x,, %) An (X))AR(X,)d % 1d x, + -+ -, 2.15)
f
and An(X)=n(X)—n)(X), Ap(X)=p(X)—u,(X). Clearly, and
the left-hand side of Eq. (2.14) gives the pressure — VP, =G (u,,V,T)=G,(p,, V, )= — VP, . (2.20)

difference AP =P —P;:

—VAP =G [u(X);V,T]—G,[u, (X V,T] . (2.16)

In the absence of an external potential, the case with
which we are concerned, u(X) and y,(X) are constants
and the liquid state has a uniform density #n,. In this case
the grand-canonical potential can be expressed as

G(u, V,T)=mhiln[F(N, V,T)—uN] . (2.17)
Its Legendre transform F (N, V, T) is obtained from
F(N,V,T)= min F[n(X),V,T], (2.18)
n ’,=(1\);/)V

where the minimization is over densities whose average is
fixed to n =N /V. At the coexistence between the refer-
ence liquid and a solid it is required that

Ho=p; , 2.19)

Once the usual thermodynamic grand-canonical poten-
tial G (u, V, T), or the Helmholtz potential F(N, V,T) are
known, we can obtain various quantities of interest from
the standard thermodynamic relations*?

dG=—-8SdT —PdV —-Ndyu, (2.21)

or

dF =—SdT —PdV +pudN , (2.22)

and from the observation that F, for example, is an exten-
sive quantity,

F=Nf(n,T) . (2.23)

In the next section we shall generalize these equations to

describe the thermodynamics of elastic deformations.
Equations (2.14) and (2.15) are the central equations of

RY theory of solidification. They are reminiscent of
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molecular-field equations but should not be confused with
these. Approximations introduced into RY theory by
truncating the expansion of the variational potential can,
in principle, be as good as one desires, providing the ex-
pansion is convergent. The usual molecular-field theory
approximates the probability distribution and cannot be
improved without invoking multiparticle densities. The
molecular-field approximation could be viewed as a trun-
cation of the RY expansion at the second order, com-
bined with the identification of the pair correlation func-
tion and the interparticle pair potential. This is the
essential and important difference between the
molecular-field and RY theories. A derivation of a
molecular-field theory is given in Appendix A.

The correlation functions C/™ will, in general, depend
on the thermodynamic state of the liquid. In particular,
the direct pair correlation function is a function only of
| X,—X,| for a spatially homogeneous and isotropic
liquid state

CHEL,K)=C | K =%, ) . (2.24)

The function C;( |X|) can also be viewed in a slightly
different way: Instead of simply minimizing over possible
density functions, we can regard Eq. (2.15) as the starting
point for a kind of coarse-grained statistical mechanics,
in the spirit of the Landau-Ginzburg-Wilson theories of
critical phenomena.3* The Boltzmann weight associated
with a density configuration n (X) is exp( —SAW), and the
true partition function is obtained by carrying out a func-
tional integral over the possible densities n(X). Upon
truncating Eq. (2.15) at second order in An(X), and
Fourier transforming, we can easily show using this ap-
proach that C,( | X| ) is related to the structure function,

S;1q)=(An@|D=[1-C(|g]]", @25
where
C(lgh=n [ C|%])e ¥ d . (2.26)

The structure function at zero q is related to the iso-
thermal compressibility «; of the liquid by the
fluctuation-compressibility theorem,

S;(0)=nkrkgT . (2.27)
Higher-order nonlinearities will give corrections to the
result in Eq. (2.25). Provided these effects are small, we
can extract C; from an experimentally measured liquid
structure function. We can then return to the expression
(2.15) and search for crystalline states with a lower ther-
modynamic potential. Minimizing AW/[n (X),u;V,T]
over possible densities n (X) is equivalent to neglecting
fluctuations about the preferred state in the statistical
mechanical treatment sketched above.

If Eq. (2.15) is regarded as arising from a coarse-
graining procedure, there will also be a background,
singular contribution to the thermodynamic potential.
Although this potential plays no role in determining the
relative stability of liquid and crystalline states, it can
contribute weak temperature and chemical potential
dependence to thermodynamic derivatives. Because the
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translational correlation length (and, hence, coarse-
graining scale) in three-dimensional liquids rarely be-
comes large, corrections due to this effect will be quite
small.

III. THERMODYNAMICS OF
ELASTIC DEFORMATIONS

In this section we shall first discuss thermodynamics of
infinitesimal isothermal elastic deformations from a
density-functional point of view. In particular, we shall
analyze the effect of nonaffine density deformations below
the Cauchy scale, as well as the strain dependence of the
vacancy concentration. Then, we shall briefly review the
usual thermodynamic relations establishing connection
between isothermal and isentropic elastic moduli as well
as connection between the moduli at constant chemical
potential and constant number of particles. A discussion
of thermodynamics at finite strain is left for Appendix B.

Consider the uniform change in density 7 (X) under a
general nonsingular affine coordinate transformation A

(3.1

For ordinary materials in the absence of external fields,
we can restrict our attention to symmetric linear (homo-
geneous) transformations (matrices) A, since any inho-
mogeneous, or antisymmetric parts in A correspond to
energy preserving translations or rotation reflections, re-
spectively. In this case J,=det A. More general A’s
will be required to describe low-energy deformations of
incommensurate and, in particular, icosahedral crystals
and will be discussed in Ref. 34. The Jacobian J , occurs
in the denominator in Eq. (3.1) to insure that the total
number of particles N remains unchanged by the trans-
formation. Indeed, we have

n(X)—n'(X)=n(A~1X)/J, .

N'= [ n@dx= [ n&)dx'=N, (3.2)

1,

where X'= A7"X, and V' and V indicate integrations
over transformed and untransformed volumes, respec-
tively.

Given a particular equilibrium density 7 (X) of a solid,
we now ask how the thermodynamic potential changes
under a small deformation of the solid characterized by a
symmetric constant strain matrix €. If a piece of the ma-
terial were uniformly strained, the strained density would
be given by Eq. (3.1) with*

A=1+¢€. (3.3)

However, we imagine a static experiment in which a
strain € is imposed on the surface of a sample so that, ini-
tially, the density at the strained surface of the sample is

n(X)=n(A~VX)/J,, (3.4)

while the density in the interior of the sample is allowed
to relax to find the minimum of an appropriate thermo-
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dynamic potential. In such an experiment the particle
number is conserved.

Two cases of density equilibration in a strained solid
can be imagined. In the first case we imagine the density
at the sample surfaces to be clamped to the reservoir,
satisfying Eq. (3.4) at all times. In this case the equilibri-
um strained density n(X) will satisfy Eq. (3.4) also at all
scales above certain scale. For ordinary crystals this
(Cauchy) scale is assumed to coincide with the unit cell
scale. The unit cell of the strained crystal is the strained
unit cell of the original, unstrained crystal. That is,

a,=A-a=(l+¢€)a, (3.5)

where a and a, are 3X3 matrices whose columns are
primitive lattice vectors of the original and the strained
crystal, respectively. Clearly, the equilibrium density
within the strained unit cell will not generally satisfy Eq.
(3.4) and must be determined by actual minimization of a
thermodynamic potential.

In the second case, we imagine that after the surface is
strained the density initially distorts as above. Then, be-
cause of vacancy migration (annihilation or creation), the
strained density relaxes at all scales, including the sur-
face. After a sufficiently long time, motion of the vacan-
cies, which can leave or enter the crystal, will lead to the
strained unit cell defined by a microscopic strain §,

a,=A,-a=(1+§)a, (3.6)

which is generally different from the macroscopic, fixed
strain €. In the limit of large volume and after allowing
the strained crystal to relax for infinite time, the micro-
scopic strain should only depend on the volume change,
thatisonJ ,,

Ay VeV
| 20

In other words, after a sufficiently long time, the strained
crystal will recrystallize with a lattice determined by the
density change imposed by the strain and determined by
a minimization of the Helmholtz free energy as in Eq.
(2.18), where the average density is fixed to n, =N /V,

F(N,V,T)= min F[n/(%),V.,T]. (3.8)
n (X)
ne=N/V,

=J,—1. 3.7

At intermediate times, the relationship between § and
€ depends on the precise mechanism by which the vacan-
cies migrate. It is experimentally observed that micro-
scopic and macroscopic strains are generally different, ¢
but a systematic investigation seems to be lacking at the
present. It is conceivable that there exists a well-defined
regime in which A, is simply proportional to A,

A, =xA, (3.9)

where « is a scalar function of e.

The last relationship, Eq. (3.9), has been implicitly as-
sumed in a recent calculation of elastic constants of the
hard-sphere solid, albeit the same calculation has not ac-
counted for the full relaxation within the strained unit
cell.>” In the present work, after deriving the general for-
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mulas, we shall assume validity of Eq. (3.5), that is,
A ,, = A or, equivalently

=€, (3.10)

as required in the first case discussed above. Some results
derived using Eq. (3.9) will be presented elsewhere. !

Strictly speaking, an experiment on a sufficiently large
sample, which is equilibrated for a sufficiently long time,
will be, as discussed above, characterized by the usual
thermodynamic functions which depend only on the
volume V', of the strained sample,

V.=VJ,=Vdet(l1+e€) , 3.11)

but are otherwise independent of the macroscopically im-
posed strain €. In this case Eqgs. (2.21) and (2.22) suffice.
However, in the cases of two experiments envisioned
above, Egs. (3.9) and (3.10), or when the microscopic
strain is a more general function of the macroscopic
strain, it is necessary to define a strain-dependent
Helmholtz potential

FAN,V,T)=  min
n(X)
ne=N/V,a=A, 2

Fln(X)V,T1, 3.12)

where the minimization is over periodic densities charac-
terized by the Bravais lattice given in Eq. (3.6) and con-
strained as in Eq. (3.10) [or, more generally, in Eq. (3.9)],
while the average strained density is fixed to

nsEE—VL [, n@dx=n/v,. (3.13)

€
A reference crystal of volume ¥V is assumed to be only un-
der hydrostatic pressure. The strain-dependent grand-
canonical potential is the Legendre transform

G (u,V, T)=m}3n[F€(N, V,T)—uN7 . (3.14)

It is important to emphasize that, in general, both V
and € are independent variables. That is, a change in the
strain € which produces a volume change

V.V +AV, (3.15)

while the reference volume is kept fixed, is generally not
equivalent to the appropriate volume-conserving change
in the strain, accompanied by the reference volume
change
Vv +-av, . (3.16)
J4
The reason is that the two changes generally assume
different ‘“boundary” conditions for n(x): The change in
Eq. (3.16) can be viewed as if a , were an unrestricted vari-
ational parameter. Since this difference is not considered
in the standard approaches,’>® we shall make appropri-
ate generalizations in Appendix B where we shall also ex-
plicitly calculate the difference in the Helmholtz poten-
tials caused by the two types of volume changes described
above. Here, we shall only quote the results needed for
the elastic moduli of a solid under hydrostatic pressure.
As shown in Appendix B, the requisite generalization
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of Eq. (2.22), at €=0, is
dF€=0—_— —-S dT —P dV+ﬂ dN + VUU d€,~j

=—SdT+pdN +V*0,;d(V'%,), (3.17)

where o;; is the symmetric Cauchy stress tensor and the
last term represents the work done by the stress in de-
forming the crystal. Summations over repeated indices
are implied. It follows immediately that the ij com-

ponent of the stress tensor is given by

1 aFe:()
o= , (3.18)
YV Qe
while hydrostatic pressure P is defined as usual by
aFE=0
=~ (3.19)

The second equality in Eq. (3.17) follows from the fact
that the solid is isotropically compressed at € =0, that is,

0,~j=——P55[j (3-20)

and the hydrostatic pressure equals the stress pressure P,
(see Appendix B).

The elastic modulus tensor C;;; at €=0 is defined via
Hooke’s law as*?

from which it follows that at constant temperature and
number of particles (see Appendix B)

1 82Fe=0

cl =—
ikl V aé'ijaé'kl

+P[8;;8, — 38,8, +8,8;)] . (3.22)
The last expression can be also derived from the expan-
sion of an elastic free energy defined by

E,=(Fo~F)+P(V,~ V)=~ ¢,Cluey +0(€) . (3.23)

Note that the second term on the left-hand side of this
equation can be interpreted as subtraction of the work
against the external pressure P.

The potential F (N, V,T), defined in Eq. (3.12), can be
evaluated in a similar way as for unstrained medium,
namely, by expanding the interaction part of the
Helmholtz potential F, around a liquid state. Either the
unstrained, or the strained liquid, could be used as a
reference. We used the former expansion [see Eq. (B25)
in Appendix B] which, together with Egs. (2.14) and
(2.15), gives for the elastic energy of Eq. (3.23)

E =P —P)V +AW[nX),p;V, T, - (3.24)

AW, defined with respect to a liquid whose density and
chemical potential are n; and y,;, is given by Eq. (2.15),
and

AW['IE(X'),;;,;V‘,T]qu min AW[n (X),us; Ve, T] .

nc(?)
n=N/V.,a =A, -a

(3.25)
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The minimization is over periodic densities n(X) whose
Bravais lattice is a, and average density is fixed to
nge=ng/J 4. Precisely because of this last constraint the
explicit u; dependence in Egs. (3.24) and (3.25) can be
made superficial. Clearly, u, can be arbitrarily chosen, if
Eq. (3.24) is rewritten as

E.=(P—P)(V —V)+AW[n (X)u; Ve Tl

—AW[n(X),u;V,Tly » (3.26)
where the subscript eq emphasizes evaluation at the equi-
librium. A convenient choice is u, =p;.

There are two obvious checks on Egs. (3.23) and (3.24).
First, it can be trivially verified (cf. Appendix B) that the
zero- and first-order terms in the expansion of E, indeed
vanish. Second, the formulas can be used to evaluate the
elastic response of the reference liquid; one should obtain
no shear moduli, and the isothermal compressibility must
be consistent with Eqgs. (2.25)-(2.27). Indeed, substitut-
ing P=P;, u,=pu,, and n (X)=n,;/J , into Eq. (3.23) and
using Eq. (2.15), we obtain

Ee V. n 3
kBT— 2 (tre) [l—C,(O)]n,+O(e )
2
vjary 1 3
=2 |V | G1es +0(€), (3.27)

which identifies k- as in Eq. (2.27).

Since the crystal starts in undeformed state, the stress
tensor is o;;=—P3§;;, where P is the equilibrium pres-
sure. Because we also have G = — PV for an undeformed
crystal,’? the potentials for a crystal perturbed by
infinitesimal strains obey

aFezO

3e (3.28)

Geodjj=— -
ij
This equation is a simple consequence of Eq. (3.14) and
the fact that F (N, ¥V, T) is an extensive quantity.
Equations (3.23) and (3.24) give a prescription for cal-
culating isothermal elastic moduli. These are the
relevant quantities for comparing with experiments
measuring macroscopic elastic constants. It is, however,
constant entropy, or isentropic elastic moduli which are
relevant for experiments which probe sound propagation
velocities, because entropy fluctuations do not have time
to relax during one period of a sound wave. Standard
thermodynamic manipulations allow us to relate iso-
thermal elastic moduli to isentropic ones. It can be
shown that isentropic elastic moduli C* are related to the
isothermal C7 defined in Eq. (3.22) by
ap |’

T
—3—7: 8ij 8t »

Cgkz = Cijr';cl + - (3.29)

where the specific heat ¢, and the derivative 8P /9T are
at a constant volume and number of particles. Similar re-
lationships can be derived relating elastic moduli at con-
stant number of particles to the moduli at constant chem-
ical potential.

The above discussion of elastic thermodynamics was
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presented in the context of ordinary crystals. The
modifications required for incommensurate crystals and
quasicrystals will be presented elsewhere. **

IV. ELASTIC CONSTANTS FROM
DENSITY FUNCTIONALS

A. Variational calculation for undeformed crystal

To search for crystalline minima of Eq. (2.14) with a
lower free energy than the liquid state, the standard pro-
cedure is to expand the density into a trial set of
reciprocal-lattice vectors Q,
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n(X)= 3 n(Qle'*, (4.1)
Q
where the Fourier coefficients n (6 ) are regarded as varia-
tional parameters. The resulting calculations are
cumbersome, however, especially if many different
reciprocal-lattice vectors play an important role. Excel-
lent results can be obtained by using a more restricted,
but physically motivated Ansatz which approximates the
density by a sum of Gaussians located at the ideal atomic
positions. =2 For example, for a one-component crys-
tal, with atoms at vertices R of a Bravais lattice generat-

ed by a,

n

~ A S el —G-R)-@a) - GZ-K)],
¢ R

n(X)=ng(X;nz,a,a)= (4.2)

where the average density n,, the lattice-constant matrix a, and the dimensionless, symmetric Gaussian-width matrix a
are variational parameters, while N, is the number of sites per unit cell (N,=1 when a is primitive). The square roots
are assumed positive. Although this gives a total of 16 parameters, since only the relative orientation of a and a is
relevant, the number of independent parameters is, actually, 13. This number can still be reduced if one is restricted to
lattices with certain high symmetry.

The average density n; is restricted to n; if the liquid is incompressible, but is needed more generally to allow for a
difference in the solid and liquid densities. Similarly, in order to allow for the presence of equilibrium vacancies (or in-
terstitials) the average number of particles per unit cell should be generally allowed to differ from one, that is,

n,# - =N.deta=! 4.3)
v(‘
where v, is volume of the primitive unit cell.

In this paper we only consider the case of single-component, primitive crystals. A more general case will be investi-
gated elsewhere. * R

The interaction term in Eq. (2.15) can be written down immediately in terms of C;(q) and the n(Q)’s. The nonlinear
entropy term is more complicated. However, given the Ansatz equation (4.2), it is easy to show that the Fourier
coefficients of the density are

n(Q)= vi fu n(X)e Q% 3% =n_ exp( —1Q-a-a3-Q), (4.4)
¢ c
and the entropy term can be approximately evaluated in the limit of large or small @. Upon using the small a (narrow

Gaussian) approximation discussed, for example, in Ref. 20, the variational thermodynamic potential Eq. (2.15) in the
crystalline state takes the form

AW [n(X),u,;V,T]

Tny =velbbmsn= I | ok ~2 | ~(e-D—pedu
—1C(0)1—-28)—1E2 3 C(|b-M|)hyla), @4.5)
Mez?

where §=n, /n,,

hy(a)=exp(—2m*M-a-M)=exp(—1Q-a-a-a-Q) , (4.6)
and for future convenience we defined the reciprocal-lattice matrix b,

b=27a !, (4.7)
which generates the reciprocal-lattice vectors Q,

Q=b-M, (4.8)

where MEZ? is a vector with integer components. It becomes obvious that w; depends on b (or a) only implicitly,
through the reciprocal-lattice vectors in C;( | Q | ). The equation of state, Eq. (2.16), takes the form
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—AP =kpTnminwg(§,b,a;Ap) .
&b,a
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(4.9)

The approximation of narrow Gaussians should be especially good if there is a sizable first-order transition separating

the liquid and crystal states.

It is straightforward to numerically minimize (4.5) with respect to the parameters £, b, and a, at least in the case of

cubic symmetry. Explicitly, the equilibrium conditions are

awG

0= —a—g—‘ = —ln(Nc‘ﬂ'}/zdetal/z)‘-%‘B A[J.""'C[(o)'f'lﬂg—g Z C[( l 6 | )hM(a)
Q
=—In(N,7**deta'?)—§ —BAp+C/(0)+InE—£ F Cy( | b-M | ipyla), (4.10)
M
awG 1 . — !—E S_E.a 2 . — b.ﬁ ﬁ
O=——=——E 3 C(|Q|)==—hyla)=—1 T C(|bM|)—=—hyla), 4.11)
b 47 3o Q]| v |b-M|
and
d - - R
2% _ —léa~'+18 3 C(|Q|)[Ea(QQ)alhyla)=—1éa'+77E T Ci(|b-M|)MMhyla).
da ) M (%0)
4.12)
[
We assumed for convenience that b, rather than a, is the b.=A;"b=(14+&"1b, (4.17)

independent variable, and we denoted by a dot above a
function the derivative with respect to |Q|. Clearly,
Eqgs. (4.10)-(4.12) cannot generally be solved analytically,
although the last equation can be obviously used to elimi-
nate §. Therefore, the minimization in Eq. (4.5) is usually
performed numerically.

As we have already emphasized, the results of the
minimization for HS and LJ systems at the freezing point
are in good agreement with computer simulations.

B. Variational calculation for strained crystal

If a crystal were uniformly strained at all scales, its
density would be given by Eq. (3.4). Therefore, if the un-
strained density would be represented by Gaussians, Eq.
(4.2), so would the strained density,

n(X')=ng(A~'%n;,a,a)/J

=ng(X;n,/J 4, A-a,a) . (4.13)

However, because the nonaffine density deformations on
scales below the unit-cell scale, and because of the vacan-
cy migration, these equations have to be modified.
Nonetheless, for small strains we can still assume an ex-
pansion of the strained density into Gaussians,

n(X)=ng(X;n,,a,a,.), 4.14)
where the average density of the strained solid,
n
ns€= 7:— N (415)

is fixed by conservation of the total number of particles;
the strained lattice
a=A,-a=(14§)a, (4.16)

or its reciprocal lattice (observed in diffraction experi-
ments)

is given by the microscopic strain { which may differ
from € because of the vacancy annihilation; the strained
Gaussian width,

a.=a+Aa,, (4.18)

generally differs from a because of the nonaffine charac-
ter of deformations below the unit-cell scale.

The microscopic strain £ and the Gaussian-width re-
laxation Aa, are to be determined by minimization of the
elastic free energy, Egs. (3.23) and (3.24). In analogy with
Eq. (4.5), we can determine explicitly AW[n (X),u,;
V.. T):

AW[n (X;ps; Ve, T)
kB Tnl VE

=wg(€E/J 1, AV ba+AasAu) .

(4.19)

With this expression, the elastic energy, Eq. (3.24), be-
comes

EE

PRTRZE

min wg(£/J 4, A, 'b,a+Aa;Au)
A Aas

m*

—wg(&,b,a;Au) |, (4.20)

where £, b, and a are the solutions of Egs. (4.10)-(4.12)
while the dependence of A ,, upon A is fixed by a rela-
tionship such as Eq. (3.9) or (3.10).

It is again straightforward to verify that the zero-order
and first-order terms in € vanish in Eq. (4.20); it is only
necessary to apply Eqgs. (4.10)-(4.12) and to notice that
€=0implies A ,, =1 and Aa_=0.

Since we are interested in the expansion of Eq. (4.20) to
order €2, it is not necessary to perform indicated minimi-
zation in Eq. (4.20) for arbitrary A. Instead, it suffices to
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expand the n§ht-hand side to second order in €, Aa, and
AA;'=A;'—1~—¢; and then to minimize the result-
ing quadratlc form.*’ This is equivalent to the assertion
that da/d€ and 9 /de€ are finite at €=0; that is, Aa and
£ are both of order € or higher.

Consequently, the elastic energy E, can be formally
written as

€
le.C:e=minl :C: , 4.21
1e:C:e gxgz(egAa) A;a @.21)
where the tensorial blocks of @, in units kg Tn;, are
€ sz
Clu= 8,,8,(,5 Tk (4.22)
Wa asz
& =04, =18 , 4.23
@ukl @ilu zaug agabkp pr agablp ( )
c dwg
ijkl — @klu u§ agaakl ) (4.24)
1 dwg wg
& — 6 — 6
Chju= 3b;, 3by, Pinbat 3b; ab PP

dwg ’wg

76 , 425
* b0, %t b, ab, b'l’""?] 423

and
2
Cfiu=Ct, =5 ab?:e))(;k, bt a: :Zk, l ’
(4.26)
ao __OWe . 4.27)
ijkl =3 80ty
The employed notation is
y€:C:e=1€,;Cp €y - (4.28)

All the second derivatives are evaluated at the initial, un-
strained configuration. Since the initial configuration is
assumed to be a local minimum, it follows that the quad-
ratic forms in (4.21) are positive definite.

Given a particular form for §, minimization in Eqg.
(4.21) can be performed. We shall assume here that Eq.
(3.10) is valid, that is, { =€ so that minimization over § is
completely eliminated. The elastic energy now becomes

jeCie= mm—[e C*:e+2Aa:C*:e+Aa:C*:Aa] ,

4.29)
where, with the help of Egs. (4.22)-(4.27)
C= (% 4 O 4 G+ C% (4.30)
Ce=CH*=0*4 0%, (4.31)
and
=%, (4.32)
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After minimizing Eq. (4.29) we finally obtain the elastic
modulus tensor

C=C*—C<:(Ca)~l.cae . (4.33)

The explicit formulas for tensors C*, C%, and C“* are
derived in Appendix C. Also, the formulas specialized to
the case of crystals with cubic symmetry, necessary since
both HS and LJ liquids freeze into fcc structures, are
given in Appendix C.

V. RESULTS

Let us first consider a system of particles interacting
via a hard-sphere potential. The thermodynamic proper-
ties as well as the fluid-solid phase transition of such a
system have been extensively studied through computer
experiments. We have chosen to investigate the elastic
moduli at the phase coexistence for a variety of reasons.
First, the predictions of the density-functional theory of
freezing could be used as input to the calculation.
Second, an accurate structure factor of hard-sphere fluid
exists for densities in the range of phase coexistence. Fi-
nally, we could test whether the elastic constants of shear
vanish at the melting point as predicted by the lattice
theory of Born.

For the direct correlation function of the fluid we use
the exact solution*! of the Percus-Yevick integral equa-
tion. This is a good solution in the density range of in-
terest and has been successfully used in recent theories of
freezing!”'® in which the freezing parameters are found
assuming a simple fcc structure. More recently, it has
been verified that fcc structure is both locally stable and
more stable than a large class of crystal structures.’ We
reevaluated the freezing parameters and found agreement
with previous calculations. We also found the freezing
parameters when vacancies are not allowed and the aver-
age density is fixed to one per unit cell. In both cases the
elastic moduli have been evaluated and are presented in
Table 1.

The elastic moduli satisfy all the constraints necessary
for a stable crystal structure, namely C,;+2C,,,
C,; —C,,, and Cyy are all positive (we use here the Voigt
notation). The elastic constant for shear does not vanish
at the melting point. The Cauchy relation C,, =C,, that
must be obeyed by central force harmonic crystals fails.
In fact, we find an unexpected result that the Poisson ra-
tio for the hard-sphere fcc crystal at melting is negative.*?
In order to test robustness of this result we used a correc-
tion to Percus-Yevick structure factor due to Henderson
and Grundke.** Our preliminary results indicate that al-
though the freezing parameters, as well as elastic moduli
change for a few percent, the Poisson ratio remains nega-
tive.

Using a cell-cluster free-energy series, Stillinger and
Salsburg* have developed a theory for the elastic con-
stants of a hard-sphere system in the high-density limit.
These authors find that the elastic constants can be
asymptotically expressed in terms of a small parameter
6=(ncp/n,—1), where the solid density », is fixed to one
per unit cell and n¢p is the close-packing density of the
lattice. Specifically, for the fcc solid they find
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TABLE 1. Elastic moduli for fcc HS solid at the melting. The solid density n, is in units o3, where
o is the HS diameter, while the solid pressure P, and the moduli C;; (Voigt notation) are in units k Tn,.
The first four rows correspond to the following freezing parameters: the liquid density n,=0.9460 3,
the cubic lattice parameter @ =1.5060, and the inverse of the Gaussian width with respect to the cubic
unit cell, a~'=1316. The first row corresponds to equilibration of the strained width, but without va-
cancy migration. Neither the width nor the vacancy density are equilibrated for results in rows two
and three. The vacancy density and only the scalar strained Gaussian width are equilibrated in the
fourth row. The fifth and sixth row are obtained by fixing the solid density to precisely one particle per
cell with or without equilibrating the strained widths, respectively. The freezing parameters are in this
case n;=0.9670 3, a =1.5150, and a~'=1146. The results in the seventh row are estimated from
figures in Ref. 45 at the instability where the bulk modulus becomes zero. The results in the last row
are obtained by substituting our melting density (n,=1.052) into the asymptotic formulas of Ref. 44.
The pressure in rows one through six is equal to the liquid pressure calculated in the Percus-Yevick ap-
proximation.

Source ng P, Ch+2Cy, Ch—Cp, Cu

Here 1.052 13.5 78.2 198 141

Here 1.052 13.5 946 228 251

Ref. 37 1.053 13.5 1143 226 252

Ref. 37 1.053 13.5 47.5 224 252

Here 1.151 14.6 344 197 122

Here 1.151 14.6 942 234 249

Ref. 45 1.095 10 0 35 36

Ref. 44 1.052 9 75 15 45
Cy =4.150672, (5.1)  simulations and density-functional calculations, is
- significantly lower (n,~1.052) seems to cast a serious
Cyy=2.42567", (5.2) doubt on reliability of the above results. An important
and omission from the calculation by Honda et al. is the ab-
sence of vacancies even at nonzero temperatures. Indeed,
Co=5.3650"2, (5.3) elimination of vacancies from our density-functional cal-

in units of kzTn,. Since these results are valid near
close-packed densities, neither quantitative nor qualita-
tive predictions obtained at the melting point, where
ncp/ng;~1.344, can be meaningfully compared with our
density-functional approach. For example, at the melt-
ing, the pressure correction which is of order 67!, is ap-
proximately equal to the leading term. Moreover, the ex-
pressions Eqgs. (5.1)-(5.3) are derived neglecting three-
and higher-cluster terms. In two dimensions, three-
cluster terms give a negative contribution to C,,, of the
same order of magnitude as the one- and two-cluster
terms. Such contribution could also be sufficiently nega-
tive in three dimensions to make C,,, and thus the Pois-
son ratio, negative.

More recently, Honda et al.** have developed a
molecular-field theory for calculating the free energy of
an fcc, hard-sphere crystal near the melting point. Ex-
tending their molecular-field theory, these authors com-
pute the elastic constants by evaluating the excess free
energy due to a strain. Numerically solving the self-
consistency equations they conclude that the crystal be-
comes unstable (bulk modulus equal zero) at n,=1.095
(in units of 0 ~%, o being the hard-sphere diameter), but
that the Poisson ratio (~C),) turns negative already at
somewhat higher density, n, =1.096. Therefore these re-
sults suggest that the Poisson ratio for the hard-sphere
crystal might indeed be negative. Unfortunately, the fact
that density at the melting, obtained from computer

culation results in a higher density at the melting,
ng=~1.151, and, at the same time, in the more negative
Poisson ratio (see Table I).

In the case of the Lennard-Jones fluid, we have used
the structure factor obtained via molecular-dynamics
simulations by Kimura and Yonezawa® at temperature
T =0.68¢€/kg, slightly below the triple point. At this
temperature the supercooled liquid, which is identified
with glass, has density 0.8070 3 and its pressure is
0.0024€0 3 [0 and € are, respectively, the bond length
and strength of the LJ potential parametrized by u(r)
=4e((o /P2 —(a/r)®)].

The results of density-functional calculations are very
sensitive to the value of the structure factor at the origin.
Unfortunately, this number cannot be reliably deter-
mined from simulations. For example, by using two
different approaches, Kimura and Yonezawa obtain
values S(0)=0.138 and 0.078. We decided to use what
we believe is a more realistic value S(0)=0.04, compati-
ble with compressibility of argon.*

Our variational calculation for the fcc solid, assuming
B =M, gives n,=1.0270 3, a =1.5990, and a~'=628,
at pressure P, =0.342¢0 ~3. For comparison, at the same
temperature, but at much lower pressure P, =0.002¢0 ~>,
experimentally observed values for argon are ng
=0.9680 "3, @ =1.6070 (using the standard argon pa-
rameters: €/kp=119 K, 0=3.40 A). Because of the
pressure difference, we cannot make a sensible compar-
ison between these values.
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TABLE II. The elastic moduli for the fcc LI solid at temperature T =0.68¢€/k, where € is the LJ
bond strength (for argon, a standard value is € /kg =119 K). The solid density n; is in units o ~3, where
o is the LJ bond length (for argon, 0 =3.40 A), while the solid pressure P; and the moduli C;; (Voigt
notation) are in units k5 Tn,. The first two rows were calculated using the supercooled liquid structure
factor from Ref. 29 extrapolated to the value 0.04 at the origin. The liquid density is given as
n,=0.8060 > and we also assumed that u,=p,, n,=1.0270 "3, @ =1.5990, and a~'=628. The first
row corresponds to equilibration of the strained width, but without vacancy migration. Neither the
width nor the vacancy density are equilibrated for results in row two. Rows four and five give calculat-

ed and measured (for argon) elastic moduli.

Source ng Ps C”+2C12 CH_’CIZ C“
Here 1.027 0.15 398 24 106
Here 1.027 0.15 440 26 119
Ref. 4 0.952 0 113 25 39
Ref. 47 0.968 0.00 215 51 22
The elastic constants which we calculate are summa- ACKNOWLEDGMENTS

rized in Table II. Clearly, these elastic constants satisfy
the stability criteria. In this table we also summarize the
results of Squire et al.,* who have calculated the iso-
thermal elastic constants for argon via Monte Carlo
simulations. Unfortunately, their simulations were done
at zero pressure and, therefore, we cannot make a mean-
ingful comparison. A similar difficulty is encountered if
we attempt a comparison with the available experimental
results for argon, also listed in Table II. An additional
difficulty in interpreting the results of the Monte Carlo
simulations stems from the fact that the simulations as-
sume absence of vacancies.

VI. SUMMARY

In the present paper we have formulated a density-
functional theory of elasticity. The theory was applied to
HS and LJ fcc crystals at the melting point and near the
triple point, respectively. Neglecting the vacancy relaxa-
tion in the strained crystal we then evaluated the elastic
moduli. A detailed comparison of our results with other
calculations or experiments is not possible at present be-
cause the available results are for different points in the
phase diagram. Nevertheless, it appears that the eigen-
moduli we determine are probably too large, although of
correct order of magnitude.

An interesting result of our investigation is the nega-
tive Poisson ratio (and C,,) for the HS fcc crystal at the
melting point. This result will not change by the in-
clusion of the vacancy effects, which will only reduce the
bulk modulus, leaving other eigenmoduli unchanged. It
is also conceivable that the three-point correlations con-
tribute significantly to the elastic moduli*! or that a more
accurate density functional is required. Further work is
necessary to explore potentially important contributions
from the three-point correlations neglected in the lowest-
order expansion. Our approach can be easily extended to
include such contributions.3! However, very little is
presently understood about three-point correlations in
liquids. In order to check the accuracy of our approach
it will also be necessary to extend our calculation for the
LJ crystal to the entire liquid-solid transition line.
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work has been supported by donors of the Petroleum
Research Fund administered by the American Chemical
Society and by National Science Foundation (NSF)
through the Harvard University Materials Research Lab-
oratory and Grants No. DMR-85-14638 and No. CHE-
85-11728.

APPENDIX A: MOLECULAR-FIELD THEORY

Let us consider a system of identical classical particles
confined to a volume V, at temperature 7T, interacting
through a pair potential U(X,¥), and in the presence of
an external potential —u(X). The molecular-field approx-
imation for the probability distribution is

N
IT explBump(X;)—p}/2mkyT]
=1
PMF=" N ,
tr [T explBume(X;)—p 2/2mky T)

i=1

(AD

where puyp is the effective, molecular field seen by the
particles. Substitution of this Ansatz into Eq. (2.5) leads
to the explicit form of the molecular field

Bump(X)=In[n (X)A}], (A2)

which in turn gives rise to

N
pmp=exp(—Vn,) [[ Ayn (X;)exp(—p?/2mkyT) , (A3)
i=1
where n, is the average density. Therefore, by combining
this equation and Eq. (2.1) we determine the molecular-
field variational grand-canonical potential
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BW ye[n (X),u(X); VT]—-f n(X){In[n (OA}]—1—Bu(x)}d’x +1 f f BU (X,,%,)n (X)n (%,)d *x ;d>x, .

If we now assume that for a given potential yu,(X) a
“liquid” density n,;(X) extremizes Wy, we can obtain
(2.15) with

n(X)

Baw = [ |n(X)in iy~ An (=B (X)dux) d’
nix

+1 fV fVBU(i'.,iz)An(i’,)An(i’z)d3x,d3x2 .

(AS)

It should be noted, however, that AW is ill defined for in-
teractions U similar to the hard-sphere interaction.

APPENDIX B: THERMODYNAMICS
AT FINITE STRAIN

Starting from an initially unstrained solid (that is, only
under hydrostatic pressure), characterized by a
Helmbholtz potential F (N, V,T), where N is the number of
particles, V is the volume, and T is temperature, we shall
strain it by transforming its boundary according to a
coordinate transformation

x;—>x;(A)=A;x;

X - (B1)

Generally, A is product of a symmetric matrix and a
rotation-reflection (orthogonal) matrix. Since we assume
that a rotation-reflection leaves the initial energy un-
changed we may assume that 4; is symmetric.*®

Besides the usual strain matrix ¢;

6U=Au-——5

u ’
i (B2)
one often uses the so-called Lagrangian strain matrix 7;;

771j="7ij=%(AkiAkj—51j) . (B3)

The last two relationships also imply the differential rela-
tionships,

de;j=3(8;8;+8;8;)dAy (B4)
and

d?],l '—’%( Akialj + AkjSh« + A1,~5kj =+ Aljak,‘ )dAkI s (BS)

where d 4;; differentials are explicitly symmetrized.* We
can easily evaluate the following useful derivatives:

ae,-j aAk, .
aAkl = af‘- =7(6ik8j1+8i18jk) (B6)
ij
and
9;;
= =4 A8+ Ap;by + Aydyj+ Ady;) . (B7)

0Ay

We want to investigate infinitesimal deformations of
the strained solid. If the strained solid is characterized by
the symmetric strain €; and the symmetric transforma-
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(A4)

[

tion matrix A4;;=95,;+€;, then we are interested in the
change in the Helmholtz potential due to an infinitesimal
change

Aj—A;+dA; ,

where dA;;=dAj;. This infinitesimal change corre-
sponds to the infinitesimal transformation

8y A +8, 45"

(B8)

duj;=dAy 3 (B9)
of the strained solid. That is,
x(A)—>x;(A+d A)=x;( A)+dx;( A)
=x;(A)+x;(A)du; . (B10)

Since the solid is strained, it is under a stress o; i A).
This is the symmetric Cauchy stress, as required by the
absence of a net torque on the sample:

°=fs,

where S, and V, are the surface and the volume of the
sample. Therefore, the work associated with the
infinitesimal deformation duy; is

f du,J Ok dS =V 0 ;duy

EijkX;j0 1dS;=V €0 y; (B11)

A"dA+dA-A"!
2

=V tr |o

=V .tr(e-A~ldyg-A~), (B12)

where the last equalities follow from Egs. (B9) and (B5).
Using the result Eq. (B12) we can now write the
differential of the generalized Helmholtz free energy

dF .=—SdT —PJ, dV +pdN+V tr(A~'0- A~ -dy)
=—SdT —PJ,dV +udN

+Vtr "'A—l;’A—l 2 .dA (B13)
where J , =V, ./V =det A. It follows immediately that
L5y A 48y At oy A= e (B14)
V. 04y
and
oyl A=ty a, Fe (B15)
Ve L

The last two equations can be related with the help of Eq.
(B7) to obtain

dF,
=LAy + Ap;8y)—— (B16)

d A 9y

ij
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A strain-induced pressure, which we will call the stress
pressure, can be defined as

P(A)=—}0,;(A)=—1tro(A), (B17)
and calculated from Eq. (B13):
1 oF, 1 oF
P(A)=—— A, A)——=— or.
e( ) 3Ve ik At a‘l]k, 3VE tr | A 81) A
(B18)

On the other hand, the usual hydrostatic pressure P,
defined in Eq. (B13), is

1 OF,
S J, v

P(A)= (B19)

These two pressures are generally not equal. This is con-
sistent with the fact that the two deformations given by

A—>A+dA, V=const, N=const, T =const (B20)
and
A—>A+dA—Altr(A7dA),

VV+Vtr(A~\d A), (B21)

N =const, T =const ,

which produce the identical shapes of the sample and
identical average densities, will generally produce
different changes in the Helmholtz potential. Indeed, the
corresponding changes are

A4 AL
dF =V i | ZA ;A 7 .dA (B22)
and
CA-l4 AL
dF, =V, tr | ZA ;A a-dA]
V(P —Ptr(A~"dA), (B23)

respectively. Clearly, the difference between Egs. (B23)
and (B22),

VP, —Pitr(A~'"d A), (B24)

is proportional to the difference between the stress pres-
sure and the hydrostatic pressure. Note that imposing
P (A)=P(A) would make €;; and V mutually depen-
dent variables and require that they be replaced by six in-
dependent variables V!> 4;;.

In order to explicitly verify that P,( A) and P( A) are
generally different, we shall first rewrite F . (N,V,T) Eq.
(3.12), in terms of the exact variational potential, Egs.
(2.14)-(2.16). Thus,

FN,V,T)=F(N,V,T)= AW [n (X),u; VTl
—AW[n(X),u;V, T

—P(V.—V), (B25)
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where we used the subscript eq to emphasize that the ex-
pressions are to be evaluated at the equilibrium strained
and unstrained densities, respectively. The right-hand
side of this equation is obtained by adding and subtract-
ing uN and P;(V.—V) from the left-hand side and by
identifying

Giu, Ve, T =Gy, V,T)=—P(V . —V) . (B26)
Using the definition (B15), we obtain

SAW [n (X),u; V., T]

1
0,1( A)=7;A‘k Ajl fV‘

6n (X)
an (X) 3
- d X —S’IP( A) )
M |eq
(B27)
where, following Eq. (B19),
AW [n (X),u;V,, T
[ QpmiVoTla . piayip, (B28)
av,
and we have used the formula
aJ 4
=J,A7"'. B29
an, J 44 (B29)
Combining this result with Eq. (B18) we finally obtain
1, AW [n (X)u;V,,T)
P A==~ 4] 5 o
an (X) 3
X d°x +P(A).
ankl eq

(B30)

Clearly, the first term in this equation is generally
nonzero since AW/[n (X),u;V,,T] is stationary at the
equilibrium n.(X) relative to variations with fixed e,
whereas the variation in (B30) is, in fact, induced by a
change in €. Therefore, the stress pressure and the hy-
drostatic pressure are generally different at nonzero
strain.
However, at zero strain, Eq. (B30) reduces to

if SAW [n(X),u; V,T]

Vv &n (X)
an€=o(i’)
a""kl eq

P€=0( A=l)=‘_

d3x +P .

(B31)

In this case the first term vanishes since at the equilibri-
um density n(X), AW is stationary relative to all varia-
tions 6n (X). Therefore, at e=0

P __,=P. (B32)

More generally, by setting €=0 in Eq. (B27) one verifies
that
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It is worth noting that if one is to make an approxima-
tion for AW, as in Eq. (2.15), at a finite strain, it would be
better to expand around the strained liquid. However, in
this case one would have to know the strain (volume)
dependence of liquid pressure and chemical potential in
addition to knowing the density dependence of the liquid
structure factor. A derivation of the required formulas,
which is straightforward but tedious, will not be present-
ed here since we are ultimately interested in the elastic
constants at zero strain, in which case either expansion,
as long as it is carried to at least second order in dn, gives
the identical result.

Next, we would like to evaluate the change
0,;(A)—0;;( A)+do; caused by the infinitesimal defor-
matlon du, ;- This deﬁnes the elastic modulus tensor
which is the proportionality constant in the Hooke’s law

doi( A)=Cyy( Aduy, . (B34)
Note that at a finite stress C;;;( A) does not have the full

Voigt symmetry.
Starting from Eq. (B15) we can evaluate

2
1 9°F,
da'kj= T/:AiaAijkpAiqm“skfaii( A)
+8kialj(A)+8kjali( A) dukl N (B35)
where we used Egs. (B5), (B9), and (B15), as well as
aJ 4 .
—a.—;:JA A; . (B36)

ij
Therefore, we can identify the elastic modulus tensor as

1 OF,
Ala Ajb Akp Alq a

Ciju( A)= 7~
j 25070

Skla (A)

+8,,0,( A)+8,0,(A) . (B37)

If we take an initially unstrained solid, we have to set
A =1 and Eq. (B13) reduces to
dF,._o=—S8dT —PV*3d (V' tr A)+pdN ,  (B38)

while the stress o;
(B33)],

defined in Eq. (B15), becomes [cf. Eq.

lj’

F._,
o=

1 =1
YoV oy VO

azFezo 1 aFE:O
=—Po=3% 5y

(B39)

Similarly, the elastic modulus Eq. (B37) reduces to

1

C.. &=
ijkl = Vo ,,aTIk/ (B40)

+P (88, —8u 8 —8;8) ,

which clearly has the complete Voigt symmetry. This ex-
pression can be further modified by using the identity
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82
ml_ = %( Aiaajb + Ajasib X Akp81q + Alpskq )
3? 1 d d
X — +— 61 +6,
My 4 | KBy By
d d
+5]k 811 a’?:k ’
(B41)
which, evaluated at A=1, gives
1 azFe 0 1 azFezo 1
v 94,34y =7 W — 3P (858, 4+8,8;) .
(B42)
Substituting this into Eq. (B40) finally leads to
1 9%F._

This last equation can be interpreted as arising from the
expansion

1

;[Fe—F +P(V —W]=3Cjui€ij€u +0(€) . (B44)
This is the main equation derived in this appendix and it
will be used in actual calculations of C;.

APPENDIX C: THE ELASTIC MODULUS TENSOR

In this appendix we shall derive explicit formulas for
the elastic modulus tensor. As shown in Sec. IV, the elas-
tic modulus tensor can be expressed in terms of the Hes-
sian matrix of wg(&,b,a;Au) defined in Eq. (4.5). In
terms of the reciprocal-lattice sums, this matrix can be
evaluated from Egs. (4.10)-(4.12) which read, in com-
ponent form,

dwg
0=———§—=—ln(N  m/2deta'’?)— 2 —BAp+C;(0)
+Ing—£ 3, (| Q| hyla), (€1
Q
o_awg_ s C(IQl)Q'Qkh(a)a
= _— l i 9
b, 4 3 (20 Q" .
(C2)
and
awG 1 -1
0= aa - § u

18| 3 G1Q1)QQhyla) |agay -
Q (%0)

(C3)
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Starting from the above equations it is straightforward Qwg ,kMkM f
to derive the components of the Hessian matrix: a§8b~- 2 Ci(|b-M]) hy(a)=0
i M (+0) [b-M|
Fwg 1 _ (C5)
=—— C(|b-M|)hyla)
e & ﬁgza a | ae where the last equality follows from Eq. (4.11);
-1 dw
_L | k2P (C4) O —_laj'+2m 3 C|bM|)NMM,)hyla)
£2 kgTn, 13 aga"‘ij M (+£0)
oo . =Llg! (C6)
where the last equality is a consequence of the definition 27
of wg, Eq. (4.5), and of the equilibrium condition Eq.
(4.10); where the last equality follows from Eq. (4.12);
J
2
a wG - —%52 é’l( Ib.ﬁ I ) (b'FMPMj )(fquqM,)
: M (b, M, M ;)b , M ,M,)
CULM) |5 pom,— 22T el |y (q)
|b-M| |b-M|
E(|b-M|) C,(lb-ﬁHl
=—1£ ——— — — (b, M,M; )by, M M))hp(a) , (€
S BT VIET™ - TENS Rt it

where the last equality follows from Eq. (4.11) and the fact that b is nonsingular; and

Qwg . b,M,M,
26 _ g C(|b-M | ) 2L (M M))hy(a), Cs8
3b,0a; 3 MEJ)’) 1 | |b-M | kMpnyla (C8)
dwg 1 452
——=1lay aﬂ +ajk ag ' )—27'¢ 2 C(|b- M| AM;M; M M;)hy(a) . (C9)
aaijaak, M(
#0)

Therefore, the components of the tensor € defined in Eqs. (4.22)-(4.27) can be written as

“ 7! 42AP
Clli =501 + W £, (C10)
@fﬁd = @ifij =0, (C11)
C5 =05 =— 168,01 , (C12)
QD QD
@5 I____§2 2 ! |—~Q2l - L LQJ hM(a)QinQkQI , (C13)
0 L 1Q] Q]
. » &(1Q))
Ciu=Cy=—18 3 |—=hu(@)2:0,0,0, |axay , (C14)
Q (20) |Q

@,ﬁ:l-——'g(a,k aJ, +a,l a]kl)-——- aa,-a,,jackad, . (C15)

3 C1Q]hy(@)Q,0,Q.04

Q (30)

We can specialize these equations to the case of cubic lattices. Using the cubic unit cell we have, by symmetry,

a;;=ad; (C16)

ij

and

a;=ad; (C17)

ij

where a and a are scalars. Equations (C10)-(C15) now reduce to
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—1
. K1 +2AP
Ciii =88y _’kﬁnl_‘“—'f , (C18)
@35,(,_—_@%.]—_-0 , (C19)
fﬁd=@zl€ij=€£8ij5kl s (C20)
¢&aQD  ¢aapn
Cilu=—136 3 [ ’ l»QZl _all 3‘ hp(@)Q;0;04Q; » (€21
g L 1Ql Q|
C( Q! )
@ukl—@kf“—"%é'zaz > I ‘ ——=—hy(a)Q;0,0:0Q; » (C22)
Q (£0) | |
?}%1——§“(5.k5ﬂ+5.151k)——§2 ‘3 | Q| ap(@)Q;Q;0, Qs - (C23)
Q($0
r
A typical expression which needs to be evaluated is of (N2 ifi=j=k=I,
the fOI)'IIII‘)l P t %Ikl_ —_1/3/2/\ ijki + ¢ J (C31)

f,-,-k1=2f(6)Q,~Q,-QkQ1 : (C24)

where f(Q) is invariant under the crystal’s symmetry. A
theorem can be proved*® which allows us to reduce such
sums to certain invariant sums, namely

Sijp= {Zf@)?”@ Thu (C25)
Q
where
Q=1 Qi Qi Qs (C26)

are orthonormalized, basic quartic invariant polynomials.
Here, “orthonormalized” means

7 f'j'kz? Tk =8 . (C27

For cubic symmetry, there are two mdependent quartlc
polynomials, for example, ]Q |*and Q% +Q%+0% An
orthonormalized pair we have used is

A Gy — L 4

PQ=7712| (C28)
and

PAQ=Asl50t +oi+D-31Q1Y . (€29
or in terms of the tensors 7;;/,

A 1

k= 35 (884 + 88 +8;8 ) (C30)

and

0 otherwise .

An advantage in using Eqg. (C24) is in that one explicitly
sees that the sum over Q need only be carried over the
fundamental region for cubic group, that is,

M M, -

S S S mMF@QQ

M =0 M,=0 M;=0

fijk[ = ? l‘:’ikl ’ (C32)

where M is defined in Eq. (4.8) and m (M) is the ap-
propriate orbit multiplicity and takes the values™ 1, 6, 8,
12, 24, and 48.

Finally, we would like to point out that Eq. (4.33) can
be evaluated after observing that each block of C has cu-
bic symmetry so that all blocks can be simultaneously di-
agonalized. In this way we obtain

C 1 +2C,=(C{] +2C%3)

—(CY4+2CE)*/(CY +2C% (C33)
Cn~Cu=<Ci‘1— ) —(Cff—CH I /(CH —CF)
(C34)
and
Cu=C5E5—(CHEP/CY), (C35)

where we used the Voigt notation. The last three equa-
tions verify that any additional equilibration of the
strained density will reduce the eigenmoduli.

We have carried out the sums in Egs. (C21)-(C23) with

help of a computer. The results are summarized in Sec.
V.
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