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A one-dimensional tight-binding model with correlated binary-alloy disorder is studied both nu-

mericaBy and analytically. The dependence of the localization length on the correlation parameter
is determined for various energies and impurity correlations. The results are compared with the
predictions of the quasiuniversality idea recently developed by the authors.

I. INTR&DUCTION

Although the problem of disorder and localization has
been studied extensively' over the last 20 years, most
of the theoretical work has been confined to simple tight-
binding models, where the diagonal matrix elements s„of
the Hamiltonian are independent random variables. The
question of statistically correlated diagram matrix ele-
ments has been examined mainly in connection with ex-
tensions of the coherent-potential approximation ' and
the problem of magnetic ordering.

Recently, we have demonstrated6 that, when no other
relevant length is comparable to or smaller than the po-
tential correlation length L, certain aspects of the prob-
lem reduce to those of a white-noise model and, as a re-
sult, a certain quasiuniversality (QU) energies. The latter
allows a determination of the dependencies on L, io, m'
from dimensional considerations; io is the variance of
any diagonal matrix element s„and m' is the effective
mass of the unperturbed Hamiltonian, which in terms of
the tight-binding parameters is given by m'=A' /2Va .
The quantity V is the nearest-neighbor matrix element
(which we take as constant) and a is the lattice spacing.

The reduction to the white-noise problem and the
quasiuniversality which emerges from it is very impor-
tant, because it allows —within its limits of validity —a
simple and general treatment of the disordered band, in a
similar way that the effective mass simplifies the treat-
ment of a periodic band. For this reason it is very impor-
tant to Snd out the domain of approximate validity of the
QU. We have already shown that for a single-band
tight-binding model with no of-diagonal disorder (i.e., V
constant) and no correlation among the different diagonal
matrix elements, the QU is reasonably valid up to disor-
der w about equal to 20% of the bandwidth and for ener-
gies (measured from the nearest band edge) up to about
20'%%u«f

I &tt —~vH I, where Ett is the band edge and

EvH is the energy of the nearest van Hove singularity.
The presence of o5'-diagonal disorder violates the QU;
however, the violation tends to be small in most cases. In
the present paper we would like to cheek the validity of

the QU in the presence of correlations between the atom-
ic potentials, i.e., under which circumstances and to what
extent the potential correlation length I. can simply re-
place the lattice spacing a in our uncorrelated results.
Furthermore, 6nding the e8ects of potential correlations
on transport and localization properties is a very interest-
ing problem in its own right, since these e8'ects are far
from obvious; indeed the traditional weak-scattering,
long-wavelength approach to the transport problem im-
plies that transport quantities such as the mean free path
i must be proportional to the —d power of the correla-
tion length L, where d is the dimensionality. The argu-
ment is as follows: l ' is proportional to the concentra-
tion of scattering centers times the cross section of each
one. The scattering cross section increases with I. as
L (in the weak-disorder, long-wavelength limit), while
the concentration decreases as I. ". Thus l -L . On
the other hand, one may argue that increasing the corre-
lation length efFectively reduces the disorder (this is
definitely true for very large I., since then the potential
fluctuations tend to disappear). Hence, on the basis of
that argument one would expect l to be an increasing and
not a decreasing function of L. %e shall see that both be-
haviors as we11 as intermediate ones appear depending on
the energy, the amount and type of disorder, and on
whether the scattering potential is attractive or repulsive.

In Sec. II we present our model, a single-orbital-per
site, tight-binding, one-dimensional model with a corre-
lated binary-alloy diagonal randomness and no o6'-
diagonal disorder. The model has the important advan-
tage of allowing explicit numerical calculations (present-
ed in Sec. III) as well as some analytical results. Further-
more, it is very rich, incorporating many physically
dHkrent circumstances. On the other hand, the one
dimensionality and the binary character of the disorder
strongly exaggerate certain efkcts of the correlation and
constitute an extremely unfavorable combination for the
validity of the QU. In Sec. IV we provide —through
some analytical calculations —interpretation of and com-
ments on our numerical results. Finally, in Sec. V we
present our main conclusions.
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D. THE MODEL AND THE PREDICTIONS OF THE QU

Our Hamiltonian H is given by

to the QU argument. The proper definition of L for the
continuum is

for n =m,
(m ~H

~

n)= ' V for n =m+1,
0 otherwise

(2.1)

L =,I d x&[V(x)—& V&]/[V(0) —
& V)]) .

(2.8)

where
~

n ),
~
m ) are atomiclike orbitals centered at the

n and m sites, respectively, of an infinite one-dimensional
lattice of spacing a. The off-diagonal matrix element V is
considered constant and is taken as our unity of energy.
The quantities ( s„] are correlated random variables with
a binary-alloy probability distribution which is character-
ized by three parameters e., x, and p. The first two deter-
mine the probability distribution of any single variable,

(2.2a)

and the third, p, specifies the correlation as follows:

(2.2b}

In the present one-dimensional discrete case, the
definition becomes

y ((s„—(e„))(e —(e„))), p (x
MP

(2.9a)

(2.10}

(2.9b)

Note that ( —1)" factor for the case of /18 correlations.
Using Eqs. (2.6) and (2.7) we find that

where pBA is the probability that two given consecutive
sites have site energies —e/2 and s/2, respectively. We
call a site /I (8) if its s„has the value s/2 ( —s/2). If
p =x the random variables Is„l are uncorrelated. If
p ~x the correlation is towards segregation, and at p =0
we have complete phase separation. Since the transfor-
mation E~—E and x ~1—x leaves all physical quanti-
ties invariant, we can, without loss of generality, assume
that x (0.5, which means that A is the minority constit-
uent. %e can easily show that

(2.3}

(2.4)

One can set up a difkrence equation which allows the
determination of the probability p„ /& that the n site is a
(a=/I or 8) under the condition that the zero site is P
(P=/( or 8). For example,

Pn A/B Pn —1 A/BPA/A +Pn —1BIBP (2.5)

where p„/A ——1 —pB/A is the probability that a given site
is A under the condition that a given neighbor is A.
From Eq. (2.5) we obtain

'n —1

x —p
pn a/a =x —(x p)—

X

Similarly, we obtain

T

(1—x)(x —p) x —p
Pn A/A X+

X X

'n —1

(2.7)

Note that, for x ~0.5, p cannot reach unity, but it is less
than x/(1 —x}. The correlations decay exponentially
with a characteristic length equal to a/ln(x/

~

x —p ~

).
However, this is not the correlation length L appropriate

Substituting in (2.9a) and (2.9b) we obtain a very simple
result

L/a= '

Zx —p p&x
p

p Qx
2x —p

(2.1 la)

(2.11b)

Thus L/a is always greater than or equal to I. The
equality is obtained in the absence of correlations, i.e.,
when p =X.

The QU argument is based on the assumption (valid in
the long-wavelength, weak-scattering limit) that there are
only two relevant physical quantities: the quantity
y =m I. , where m is the variance of the randomly fiuc-
tuating potential and L is the correlation length within
which the potential varies very little, and the efFective
mass m '. From these quantities one uniquely defines (for
1&4) units of length Lcd and energy Eod as follows:

~4/(4 —d) i ]/(4 —d) 2/(4 —d)
Lod = Fl /|/ m

m d/(& —d)/ 2/(4 —d)/g2d/(4 —d)~ —m

(2.12)

(2.13)

The mean free path I, the localization length A, , or any
other relevant length can then be expressed as

I/L~ =fd(E/Eod» (2.14)

For E small, i.e., close to the band edge (which implies
the long-wavelength limit) the function fd(x) behaves as
x (3—d)/2

fd(x)-x' ' for 1&&x &&))1 /2m'L Eod .

Combining Eqs. (2.12)—(2.15}we obtain

(2.15)

(2.16)

which is the same as the result obtained through Born's
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approximation for scattering.
In Sec. III we check numerically the range of validity

of Eq. (2.16) for d =1. We must point out that the d = 1

case is very unfavorable for the validity of Kq. (2.16) be-
cause, as we shall see, the small parameter io is multiphed
by the unperturbed Green's function G„which in the
d = 1 case diverges near the band edge as E

III. NUMERICAL RESULTS

We have calculated numerically the diagonal matrix
element 6 of the Green's function, where6—= &m

~
(E+is a—)

'
~

m & ~ s 0+. From 6 one
obtains the density of states (DOS) per site n (E) as

n(E}=——ImG .1

To evaluate 6 numerically we have employed the so-
called renormalized perturbation expansion 3 which
reduces in one-dimension (1D) to an iterative procedure.
We have taken finite linear segments of length N up to
5000. We have generated in the computer M diS'erent
sets of the random variables Ie„I, n =I, . . . , N, taken
from the ensemble defined by Eq. (2.2)„' M was usually
chosen equal to 200, but higher values were also used.
We have generated the random variables [e„j the foHow-
ing way. Once an c„ is generated at the site n with the
probability distribution given by Eq. (2.2a), the variable
c„+& on the site n +1 has a sign opposite that at n with
probability p and (1—x)p/x for e„=—e/2 and e/2, re-
spectively. This procedure ensures that the appropriate
concentration x and correlation wiH be achieved. For
each set I e„ I we have calculated 6 at the central site; we
have taken s to be 8

~
V

~
/N, i.e., twice the average level

spacing. In Figs. 1 and 2 we present some of our results
for ( n (E) ) where ( ) denotes an average over the M
members of the ensemble.

In Fig. 1 we plot the averaged n (E}versus E [in units
of

~

V
~

for the 50-50 AB alloy (x =0.50}]. The middle
panel corresponds to the uncorrelated case (p =x), the
top panel gives a strongly. . . ABAB. . . correlated case
(p =0.95, L =19), and the bottom panel a strongly
"phase-separated" case . . . A ABB. . . (p =0.05,
I. =19).

%e see 5rst that the averaged DOS exhibits the charac-
teristic complicated structure of random binary alloys in
(1D}. This structure is not an artifact of the numerical
approximation, but it reNects the fact that even the aver-
aged DOS of a random one-dimensional alloy is an ill-
defined function of energy. (The integral over E of the
averaged DOS is a continuous but not di8erentiatable-
function. ) Apart from these fluctuations the middle panel
resembles that of a slightly broadened periodic case. The
outward shift of each band edge is given by
1.2)0 /

~

V
~

'~, )o =4e x (1—x)= —,'„ in addition, bare-
ly visible tails develop.

In the upper panel two subbands tend to be formed,
separated by a gap at the center which is fully formed
only in the limit p =1, where a perfect ABAB. . . order-
ing is established. For p ~1 there are tails of the two
subbands towards the gap; in addition, there are "defect"

states (always appearing as pairs at XEo within the pseu-
dogap ) associated with the improper joining of two nor-
mal segments, e.g, ABABBABA. . . .

In the bottom panel, where there is strong phase sepa-
ration, the DOS can be analyzed as the superposition of
two bands: the A band extending from —1.75

~

V
~

to
2.25

(
V

(
and centered at e„=0.25

(
V ~, and the B band

extending from —2.25
(

V
)

to 1.75
(

V
)
. Note that the

lower band at E = —1.75
~

V
~

of the upper (i.e., the A )

subband is smoother than the upper band edge at
E =2.25

~
V

~
of the same band. This is due to the fact

that states at E=2.25
~

V
~

are strongly localized since
the B subband at this energy is impenetrable, while states
of the A subband at E = —1.75 can mix with states of

2.0
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FIG. 1. Density of states per site (in units of
i

V
i

') aver-
aged over M =200 configurations vs energy (in units of

i
V

i )

for a random correlated binary alloy; x, the concentration of the
A component, is 0.50 aud its site energy s„=0.25

i
V

i
(the 8-

site energy is ss = —0.25
i

V
i ). The quantity p is the probabili-

ty of a site being A under the condition that a neighboring site
is 8.
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the 8 subband and thus become more extended. Similar
observations can be made for the upper and the lower
band edges of the 8 subband.

In Fig. 2 we plot the averaged n (E}versus E for the
x =0.20 case. The middle panel corresponds to the un-

correlated case p =x. %'e see that this DOS developed
an asymmetry which is understandable if one thinks of
the A site as repulsive impurities in a host of 8 sites; this
repulsion tends to create a strong tail of locahzed states
at the upper band edge as observed. The lower band is
less affected by the repulsive impurity potentials. The
upper panel is very similar to the middle one because, as
a result of low A concentration, the AB correlation can-
not be increased substantially [remember that the max-
imum value of p is x/(1 —x), i.e., equal 0.25 for
x =0.20]. In the bottom panel, corresponding to strong

A-8 segregation (correlation length L =19), there are
two interesting features. First, the upper tail in the mid-
dle panel has split o8' to create an upper part of an A

pseudo gap, as expected. Second, an additional structure
appears at E = —1.75

I
V I, where the lower band edge of

an A band would be, again as expected.
In Figs. 3 and 4 we present the main results of the

present study, i.e., the dependence of the localization
length A, on the correlation length L, which is given by
(2x —p)/p for p &x and by p/(2x —p) for p )x. Again
we generated numerically M sets of random variables

Ie„) (n =1, . . . , E) according to the probability distri-
bution (2.2). For each set we calculated numerically the
transmission amplitude t~ (the transmission coefficient is

I tz I
). The localization length A, is then given by

p =0.24

1 1 (3.2)

II
0.8

& 0A
e
~ L2 kate ii ill("Ilgwu PII Pr'
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FIG. 2. Density of states per site (in umts of
I

V I
') aver-

aged over M =200 configurations vs energy (in units of
I

V
I )

for a random correlation binary alloy; x, the A component con-
centration, is 0.20 and its site energy e „=0.25

I
V

I (the 8-site
energy is es = —0.25

I
V

I
). The quantity p is the probability of

a site being A under the condition that a neighboring site is 8.

where the average was performed over the M members of
the ensemble. The result is independent of N as long as
N is much larger than the correlation length L. Howev-
er, the standard deviation of ln

I t~ I
over its average

value behaves as (k/N)'~ for N ~&A, and is constant for
N «A, . Thus from the numerical point of view more ac-
curate results are obtained if N &~ A, .

In Fig. 3 we plot the localization length A, versus the
inverse correlation length I /L for the case x =0.5 for six
diN'erent values of the energy E. In the x =0.5 case
A,(E)=A,( E); thus w—e restricted ourselves to the non-
positive energies only. The following features of our re-
sults must be pointed out.

(1) For E = —2 (which corresponds to relatively long
wavelength) the behavior is not in agreement with the
QU result A, =A /Lo; actually the slope dA, /d(1/L) at
L = 1 is about 0.4}(.c instead of Ac.

(2) For E & —1.75 (i.e., below the lower A band edge}
and for the phase-separation case p &x (left-hand side of
each panel), the localization length decreases monotoni-
cally with increasing L. This is not surprising since for
these energies the A A A. . . long cluster is impenetrable.

(3) For —1.75 &E & 1.75 in the long-correlation-
length limit (p ~0;,extreme left-hand side of each panel)
the localization length A, increases proportionally with L.
This is not surprising since the only scattering comes at
the interfaces of the A and 8 clusters. The concentration
of these interfaces is proportional to 1/L.

(4) The slope dk, /d (1/L) at p =x is negative for the
range of energies from E= —1.3 to 1.3. [Note that
d (1/L)/dp =2/x for p =x and —2/x for p =x+).
We remind the reader that the QU predicts a slope equal
to A,o, where Ao is the second-order perturbation result for
the localization length in the absence of correlations.

(5) For E around zero (from about —0.5 and 0.4) and
for the AB case (x &p} A, behaves as A, =A, /L 0to a good
approximation.

(6}F««
I
E

I & (2+s2}' and for p~ 1 the locahza-
tion length increases proportionally with I.. This is not
surprising since the scattering centers in this case are the
points where two long ANAL. . . segments are joined im-
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FIG. 3. Localization length A, (in units of the lattice spacing) vs inverse correlation length 1/L for six different values of the energy
and for x =0.5. In each panel the left-hand half corresponds to p &x [in which case 1. =(2x —p}/p] and the right-hand half to x &p
[in which case L =p/(2x —p)). The site energies are e„=—es =0.25

~

V
~

.
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FIG. 4. Localization length A, vs inverse correlation length 1/I. for six different values of the energy and for x =0.5. In each panel

the left-hand side corresponds to p gx segregated ordering and the the right-hand half to x gp alternating ordering. The site ener-

gies are 8„=—s~ =0.25
l

I' I.

properly. The concentration of such improper joinings is
obviously proportional to 1/L.

(7) For
~

I
~

& e and for @~1 the localization length
decreases monotonically, which is to be expected since
the region ( —e, e) defines the gap of a perfect

In Fig. 4 we plot the localization length k versus the in-
verse correlation length 1/L both for the phase-
separation case (p &x, left-hand side of each panel) and
the AHAB case (x &p, right-hand side of each panel). In
this case p cannot exceed 0.2/0. 8=0.2S and thus the al-
ternating ordering case has a maximum correlation
length equal to 1.666.

The behavior of A, versus 1/L for the segregated case
(p &x ) is similar to that shown in Fig. 3. It is
worthwhile to point out that dA, /d(1/L) for p =x
remains negative for all values of E larger than about
—1.3, although the E ~ 1.5 the slope is very small. This
was not quite expected since, when the Born approxima-
tion is valid, the behavior just inside the lower and upper
band edges must be similar.

For the alternating ordering case (x &p) the behavior

is again similar to that shown in Fig. 3. Here, however,
1/L cannot be less than 0.6.

IU. DISCUSSION AND COMMENTS

Then one can easily show using the relation

~ f) =
~
P)+GT

~ P) that the transition I and the
reAection r amplitudes are given by

F= 1+GTI, (4.1)

r =Grb, (4.2)

~here 6 is the diagonal matrix element of the Green's

In this section we attempt to interpret the basic
features shown in Figs. 3 and 4, i.e., the sign and possibly
the magnitude of the slope dA, /d(1/L) at =x and the
behavior as@~Q or @~1.

Let T be the t matrix corresponding to the random
part of our Hamiltonian,

H, =g(e„—(e„))in)(n
i

.
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function for the unperturbed Hamiltonian,

(4.3a)

T/ and Tb are the forward and backward matrix ele-

ments of T,

y ik(n —m)( (4.4)

(4.5)

E —(c, &=2Vcosk . (4.6)

To second order in perturbation theory we can write
T =Hi+H, GH, , from which we obtain

Combining Eq. (4.6) with Eq. (2.10), we obtain

(
I Tb I

& =Nw
2

+0(w },
1+y —2y cos(2k)

where

(4.7)

(4.8)

y =(x —p)/x . (4.9}

Combining Eq. (4.2) and (4.8) with Eq. (3.2), which for
N gg A, can be rewritten as

(4.10)

we obtain

1+y —2y cos(2k) +0 w
A&0 y2

(4.11)

where i(,0, the second-order perturbation result for the lo-
calization length in the absence of correlations, is given
by

X0=2/I G
I

'w +0(w') . (4.12)

The slope d (A, /Ao)/dp at p =x is obtained from (4.11),

=—cos(2k)+0(w)1 dA, 2
A,o Gp x

(4.13)

or, equivalently,

1 dk =cos(2k)+0 (w),
p =x

(4.14)

which in the limit of long wavelength k~O coincides
with the QU and the Born approximation, as it should.

Note that the slope given by Eq. (4.14} changes sign
k=~/4, i.e., when I& &e&

I 1*4I VI. This
value is in fair agreement with the observed energy
IE —&e&

I
=1.3

I
V

I
«r which the slope vanishes (see

Fig. 3), and provides an interpretation of our results for
smaller values of L. In particular, for k =m/2, i.e., near

the center of the band, Eq. (4.14) predicts a slope of —1

for p =x and hence a slope of + 1 for p =x +, which is
in very good agreement with the results shown in Fig. 3.
The physical reason for obtaining the QU result at the
band center for ABAB correlations is that the oscilla-
tions of the potential within the correlation length are
matched by the osciBations in the wave function so that
an ABAB potential at the center of the band is like an
A A A A potential at the band edge.

It is worth pointing out that the perturbation-theory
result of Eq. (4.14) works much better for the center of
the band than for the band edge. The reason is that
the perturbation expansion parameter is H&G, which
has a diagonal matrix element equal to e„G= ie—„/
2

I
V

I
sink; thus as k~O, m (i.e., at the band edges) the

expansion parameter e„G becomes large and the pertur-
bation theory breaks down, while for k =n/2 the expan-
sion parameter e„G= —is„/2 I

V I, which is small. The
conclusion is that in the present correlated one-
dimensional case the optimum conditions for the validity
of the QU argument near the band center and for AB AB
correlations, awhile the divergence of 6 at the band edges
severely restricts the range of applicability of the QU. It
is worth pointing out that for the uncorrelaied ease the
QU argument is valid in regions where perturbation ex-
pansion clearly fails, such as, e.g., in the tail regions
where the previous work has demonstrated the useful-
ness of QU. However, as the correlation length increases
the range of validity of QU shrinks.

Equation (4.14) combined with the fact that the unper-
turbed band edge E = —2 for the x =0.5 case is about
0.19 inside the perturbed band edge gives 0.64 for
d (A, /Q)/dl. while the numerical value is about 0.4. This
discrepancy is not surprising since perturbation theory is
not expected to work so well near the band edge. It must
be pointed out that the earlier failure of perturbation
theory near the band edges is associated with the diver-
gence of G. This divergence is peculiar to one-
dimensional and two-dimensional systems in (2D the
divergence is very weak) and it does not appear usually in
three-dimensional systems, where perturbation theory is
expected to work much better.

We note also that Eq. (4.11) gives as p ~0 or as p ~1
(forx =0.5) that Iy I

1 so that

1 —cos(2k)
as p~O,

1+cos(2k) (4.15)
0 as p~1 .

2(1—p)

(4.16)

The above expressions give the correct p dependence (as
long as the energy is inside both subbands in the p~0
case or in either subband in the p ~1 case} and reason-
able quantitative agreement with the numerical data for k
well inside the subbands. For example, for E = —1.2 and
p=0.05, Eq. (4.15) gives A/AD=12. 8 [Eq. (4.11) gives
i(./A, 0=12.2], while numerically A. /A, 0=12.4. Similarly,
for E = —1.2 and p =0.95 we obtain A, /ko ——7.2, 6.9, and
7.76 from Eq. (4.16), Eq. (4.11), and numerical data, re-
spectively. For E =2.0 and p =0.05 we obtain
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A./10=16.4 and 15.6 from Eqs. (4.16) and (4.11), respec-

tively, versus 6.2 from the numerical data. This

discrepancy is again due to the failure of perturbation
theory near the band edge.

For p ~0 or 1 one can obtain asymptotically exact re-
sults by observing that for a propagating wave the dom-
inant scattering mechanism comes from the improper
joining of two very long ordered segments. Thus the
problem is reduced to that of dilute impurities for which
Eq. (3.2),

features near the band edge even for relatively weak dis-

order.
In the dilute limit (x ~0) one can avoid perturbation

theory and analyze the problem in terms of scattering of
A clusters embedded to the 8 matrix. If

I r„ I
is the

reflection coeScient from an isolated cluster containing n

consecutive 3 sites and C„ is the number of such clusters
per unit length, then from Eq. (4.10) we have

Qo

g c„ Ir„I (4.22)
n=1

N,
InIr

I
(4.17) where C„ is given by

where N, /N is the concentration (per unit length) of the
scattering centers and t is the transmission amplitude
from one scattering center. %e examine in more detail
the p ~0 case for which

I
r

I
refers to the transmission

coeScient for a steplike potential resulting from the join-
ing of two semi-in6nite A and 8 segments. The transmis-
sion coeScient

I
r

I
for this case is given by

ik2 —ik2 ikl —ik2

I;I z I
« —e }« —e } I (418)

2
I

2

where

E —e, z
——2V cosk, ,

E —e&
——2Vcosk2 .

(4.19a)

(4.19b)

Equation (4.18}is valid when both k, and kz are real, i.e.,
when E is within both the 3 and the 8 bands. IfEis out-
side the one band and inside the other, then within the
impenetrable segments the eigenfunction decays with a
characteristic length given by [cosh '[(E —s )/2Vj)
while in the penetrable ones it does not decay. Thus the
localization length is given by

—=x cosh '[(E —e )/2V],1
(4.20)

where a = A or 8 refers to the impenetrable species.
The concentration N, /N of the improper joinings is

given by 2(1—x)p, so that

2(1—x}p ln
I

r
I

1 (4.21a}

=2(1—x)(2x —p)ln I
t

I
—,1

I. (4.21b)

for p~0 and E inside both bands. Equation (4.21) is in
good agreement with the numerical data. For example,
for E = —1.6, c.=0.25, x =0.5, and p =0.05 we obtain
A, =255, versus 253+3 from the numerical data. Similar-
ly, for E = —1.7, a=0.25, x =0.2, and p =0.02 we ob-
tain 167, versus 164+4 from the numerical data. In a
similar way, one may analyze the p~1 case. Thus the
behavior exhibited is quantitatively accountable. As we
have pointed out already the behavior for short correla-
tion lengths (comparable to the interatomic distance) is
qualitatively explainable by perturbation theory although
the latter is inadequate for predicting the quantitative

C„=xp ~(1 —p)" (4.23)

where p=p(1 —x)/x is ps&„. In the limit x~0, Eq.
(4.22) gives, for d (A, /A, o )/dp at p =x,

2
f2 —2, x~0
r,

1dk 1

dp x
(4.24a)

1 dA, 1

A, d(l/L) „2 —2, x —+0. (4.24b)

It follows from Eq. (4.2) that rz/ri —T&2/T», which
can be written by using (4.5) and results from Ref. 3 as

f ( 1+e2ik+ 2rGe 2ik)

r&

where

(4.25)

w —~a

1 —(e„—es)G
'

( 1 r 2G2e2ik) —1

(4.26)

(4.27)

In obtaining Eqs. (4.26) and (4.27) we have used the rela-
tion (l

I
G

I
m ) =Ge'" ~' ~. For e~O, Eqs. (4.26)

and (4.27} give

—=1+e""+0(e),
r)

(4.28)

which, combined with (4.24), recaptures the perturbation
result of Eqs. (4.13) and (4.14).

In Fig. 5 we plot
I "2«& I

versus E —Es as obtained
from Eqs. (4.25) —(4.27) for e„—Es —0.5

I
V I, together

with the perturbation result of 2+2cos(2k). Note that
the symmetry around E —c.z ——0 for the perturbation re-
sult is broken and that

I
r2/r,

I
is less than 2 near the

upper band edge. Thus the slope dk/dp is negative
there, in agreement with the results shown in Fig. 4(b).
Actually,

I rz/r, I
is larger than 2 only in a rather nar-

rower region —1.90~E+0.25 & —0.95 in which dA, /dp
is expected to be positive. This agrees with the data of
Fig. 4(a). The values of the slope (d A, /i(.0) /dp at
E = —2. 10 and —1.70 obtained from the limiting equa-
tion (4.24a) are 2.25 and 4.25, respectively. The corre-
sponding numerical values (for x =0.20) are 4.6 and 5.5.

The observed symmetry between the upper and lower
band edges can be understood as foHows: the A impuri-
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secutive A sites embedded in an in6nite 8 medium.

ties in a 8 host represent a repulsive scattering potential,
but a repulsive potential at the upper band edge is
equivalent to an attractive potential at the lower band
edge. Thus the asymmetry tails us that an attractive po-
tential is a more effective scatterer than an equal strength
repulsive potential (for positive efFective mass). That this
is so can be seen from either perturbation theory' or

from the fact that an attractive potential exhibits reso-
nances whereas a repulsive one does not.

V. CGNCI, USIGNS

%'e have studied a tight-binding model of a correlated
random one-dimensional binary alloy. Our purpose was
to check the range of validity of the quasiuniversality
(QU) approach and to examine the effects of the correla-
tion. It must be pointed out that long correlation lengths
allow us to map the problem to that of wave propagation
in the continuum. The latter is directly related to the in-
teresting question of light localization. '

We found that QU holds near the center of the band
for alternating ABAB correlation. It is also valid near
the band edge for the phase-separation correlation, but
only for very weak disorder. As the disorder increases
the perturbation expansion and the QU break down
prematurely due to the fact that the unperturbed Green's
function increase in size near the band edge in lD.

Increasing the correlation length may decrease or in-
crease localization depending on the type of correlation,
on the energy, on the disorder, on the concentration, and
on the size of the correlation length. For phase-
separation correlation and near the band edge, but above
the lower A band edge, an increase of the correlation
length initially decreases the localization length until a
minimum is reached beyond which the localization
length increases again. The search for the conditions for
making this minimum lower is very interesting because
the minimum is related to whether optical localization
appears in three&imensional systems. '
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