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Excimer formation as the relaxation of a nonlinear oscillator: Theory of Y'states
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The existence of F states in excimer-forming molecular crystals is addressed through a simple ex-

tension of an earlier model of the formation of excimers as occurring through the relaxation of a

nonlinear oscillator. These Y states, which do not appear in solution, and have been observed in

only some crystals, are intermediate states with partial excimeric character. Such states are shown

to arise naturally in our model as a simple consequence of additional interactions that exist in the

crystal, but not in solution, and to be associated with an abrupt (rather than gradual) transition as

the strength of those interactions is varied.

I. INTRODUCTION

Excimers in molecular crystals have come under active
investigation in recent times, particularly from experi-
mentalists. ' 's Of the outstanding problems that these
investigations present to the theorist, one is associated
with the nature of the so-called F states observed in some
excimer-forming crystals. They are postulated ' in or-
der to account for observed portions of spectra which are
neither as structured as monomeric spectra nor as broad
and Stokes-shifted as true excimer spectra. These and
other features such as the temperature dependence of the
spectra' and the magnitude of the lifetime have led to
the picture that F states are intermediate states with par-
tial excimeric character. Some of the recent experi-
ments ' have addressed specifically the existence of
barriers in excimer potentials that would correspond to
such intermediate states and to the measurement of the
barrier parameters. The question of whether the 7 states
are intermediate states in the process of the time evolu-
tion (formation) of excimers has also been addressed care-
fully. ' Despite this renewed experimental interest, the
exact nature of the F states is by no means understood.
We address this problem in the present paper.

The basis of our present investigation is a model for ex-
cimer formation which we analyzed in an earlier publica-
tion's (which we will refer to henceforth as I). The
feature we append to that model for our present purpose
is the existence of additional interactions which would be
absent in solution but present in crystals. Additional in-
teractions which may hinder complete relaxation and
therefore the formation of normal excimer states have al-
ready been suggested ' ' as a possible source of Y
states. The analysis in the present paper has been under-
taken with two purposes in mind: One is the
quantification, in the context of a simple and tractable
model, of the qualitative suggestions in the literature con-
cerning P states. The other is the careful examination of
the physics behind those suggestions. Such a careful ex-
amination is important because additional interactions
which hinder relaxation need not necessarily lead to the
formation of new intermediate partially relaxed states
(they could simply lead to a change in the location of the

excimer states in the frequency spectrum).
%'e refer the reader elsewhere' for details concerning

excimers and excimer-forming crystals but provide here a
reminder of what constitutes the signature of an excimer
and how the basic model we employ arises from observed
spectra. Lack of mirror symmetry between absorption
and emission spectra, the latter being considerably broad
and rather structureless, constitutes, along with a charac-
teristically long lifetime, the primary identifying observa-
tional feature of excimers. ' In solutions, where they
were first observed, their formation is understood as
occurring through the initial electronic excitation of a
molecule followed by its migration in the solution until it
meets an unexcited molecule with which it forms a com-
plex. ' While the initial excitation thus corresponds to
the structured absorption characteristic of the single mol-
ecule (monomer), the emission has the quite difFerent
features peculiar to the complex. A similar picture' '
may be developed for excimers in crystals by replacing
the migration process (which can occur in solution but
not in crystals) by a relaxation process along a relatively
Oat potential. The spectral features thus dictate that the
excimer potential in the electronically excited state be
highly nonlinear. The model analyzed in I, therefore,
looks upon the formation of an excimer as simply the re-
laxation of a crystal (for simplicity a chain of masses in-
teracting via nearest-neighbor harmonic springs) in
which one of the springs (the one connecting the
excimer-forming pair of molecules) is made suddenly
nonlinear and placed out of equilibrium by the process of
absorption of light. On the basis of several given non-
linearities of the potential, our earlier analysis showed'
explicitly how the formation of the excimer occurs in
time and how the nonlinear nature of the excimer in-
teraction manifests itself in observables such as the time-
dependent spectrum.

An example of a crystal in which Y states occur is o.'-

perylene. It has been observed that the F-state emission
and the fully relaxed excimer ("E-state" ) emission are
separated by an energy barrier of about 300 cm ', and it
has been suggested that in a-perylene, the full relaxation
to the E state is prevented by the constraints that the rest
of the lattice puts on the excimer pair. ' Recent time-
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resolved experiments' have clearly shown that in o.-

perylene, the Y'state is indeed a precursor state in the for-
mation of the F. state. This conclusion, which is in con-
tradiction to an earlier one, ' is based on the observation
that the rise time of the F. state coincides with the decay
time of the Y state at all temperatures for which both
states are observable. Time-resolved measurements on
gyrene have shown that a-perylene may not be the only
excimer-forming crystal to exhibit a precursor state. Evi-
dence of a precursor in pyrene has been found and that
state has been dubbed the "8state. "'

The present paper is set out as follows. In See. II we
extend the model studied in I to higher dimensions and
analyze the time dependence of excimer relaxation. In
Sec. III we show that the presence of additional interac-
tions in higher dimensions results in the formation of a
partially relaxed state (the y state). We also examine the
conditions under which the state occurs, show that the
formation of the state is associated with an abrupt transi-
tion, obtain effective potentials for excimer relaxation
which clarify the process of the formation of the Y state,
and investigate the dependence of the height of the bar-
rier separating the F state from the E state on the lattice
interaction. A discussion and concluding remarks consti-
tute Sec. IV.

II. TIME DEPENDENCE OF NONLINEAR
RELAXATION IN TVVO AND THREE MMKNSIONS

As in I we investigate the formation of an exeimer in a
crystal by analyzing the vibrations of a lattice of masses
(molecules) interacting via nearest-neighbor springs (har-
monic interaction potentials), one of the springs (the "ex-
cimer spring") being made suddenly nonlinear and placed
out of equilibrium by the absorbed light. The process of
interest is the relaxation of this excimer spring to equilib-
rium. The specific quantity we focus on is the separation
of the excimer-forming pair of molecules connected by
the nonlinear spring as a function of time. Whereas the
lattice studied in I was one dimensional for simplicity,

FIG. 1. The two-dimensional square lattice with "horizon-
tal" and "vertical" harmonic springs with spring constant ko
{see text), "diagonal" springs with spring constant k t making an
angle 8 with the horizontal axis, and the nonlinear excimer in-
teraction, represented by the explicitly drawn spring, which is
turned on by the process of light absorption.

M d x Idt = —ko(2x —x,—x +1)

+(~,o
—~, 1)

)& [ko(xo x
1 ) V'(x

1 xo )]

(2. l)

where x is the deviation from equilibrium of the mth
molecule of mass M in the chain {one-dimensional lat-
tice), ko is the spring constant of any spring in the lattice
before the absorption of light, and V is the nonlinear po-
tential of the exeimer-forming pair located at sites 0 and
1, to the two-dimensional form

here we are particularly interested in additional effects of
the extension of that model to higher dimensions. %e be-
gin with a two-dimensional lattice pictured in Fig. 1, %'e
generalize the one-dimensional evolution equation used in
I, viz. ,

M d x „Idt = —2(k11+2k, cos 8)x „+ko(x +1 „+x 1 „)
+k leos 8(x~ +1 n +1+xm —l, n —1+xm +1,n —1+xm —1n —1),2

+k, sin8cos8(y +, „+,+y, „1—y +1 „1—y 1 „1)
+Q„o(5 o5 1)[ko(xoo —x, o) —V'(x, o

—xoo)],
M d2y „Idt2= —2(ko+2k, sin 8)y „+ko(y +, „+y 1„)

(2.2)

+k 1 sin 8{ym + in+1+ym —,i, n —1+ym + in —1+ym —1,n, —1)

+k, sin8cos8(x +, „+,+x,„,—x +, „,—x,„,) . (2.3)

In (2.2) and (2.3), the double index (m, n) identifies the
mass as mth along the x axis and nth along the y axis, x
and y are the respective components of the deviation of
the mass from equilibrium, the excimer-forming pair is at

(0,0) and (0, l)„and ko is the (harmonic) spring constant of
any of the horizontal or vertical springs in the lattice be-
fore the absorption process. By a honzontal spring we
mean that which connects the mass at (m, n) to the ones
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FIG. 2. The formation of the excimer: the time dependence of the relaxation of the excimer coordinate g(t) shown for five
difterent values of u&/~0, (a) 0, (b) 0.025, (c) 0.05, (d) 0.075, and (e) 0.1. Time t is plotted in units of (1/2co0). Units of the excimer
coordinate g are scaled such that 0 represents the value at the minimum of the excimer potential and l the initial value at excitation.
The excimer potential is taken to be nonhnear and representative of excimer-forming crystals in (a) but linear in (b). The equilibrium
position to which relaxation occurs changes continuously in (1)but appears to undergo a transition in (a) from curve d to curve e.



3'7 EXCIMER FORMATION: THEORY OF Ã STATES 4393

at (m 21,n ) and by a uertical spring we mean that which
connects it to the ones at (m, n+1}. The diagonal spring
which connects the mass at (m, n} to the ones at
(m+1, n+1) has the spring constant k, . The angle the
diagonal spring makes with the x axis is 8. The "defect
term" analogous to the last term in (2.1) appears in (2.2)
but not in (2.3) because we assume here, for the sake of
simplicity, that the single spring made nonlinear by the
process of absorption lies in the x direction.

In order to avoid confusion, wc depart from the nota-
tion in I and use here the symbols g and g, rather than y,
to describe the respective components (x and y) of the
di8'crences between the deviations from equilibrium of
masses which are neighbors in the x direction:

0m, n
= Xm+&, n

—Xm, n ~

4m, n 3 m+i, n Vm, n

(2.4)

(2.5)

&&[kugou(r ) V (goo(t ))] ~ (2.6)

This is a nonlinear integral equation which, as described
in I, can be solved to arbitrary accuracy through numeri-
cal methods. The nonlinearity arises from the depen-
dence of V' on go u, i.e., from the excimer-restoring force
which is nonlinear in the excimer coordinate. The initial
condition term 7t)co(t) vanishes for the excitation condi-
tions which we have assumed. ' On dropping the sub-
scripts on g, and defining rue and u through cou=ku/M
and u = V/M, respectively, we can rewrite (2.6) as

g(t)= I dr'y(r —r')[~op(t') —u'(g(r'))]
0

(2.7)

Equation (2.7) is the starting point for the exploration
of excimer relaxation in any number of dimensions. The
kernel P(t) is a "propagator" which describes relaxation
or wave propagation in a lattice without the "defect" of
the excimer nonlinearity and equals (2/eau)J, (2coot) in a
one-dimensional inSnitc lattice. '~ Exact expressions for
the two-dimensional lattice of Fig. 1 as well as for the
corresponding three-dimensional lattice are given in the
Appendix. In order to simplify the labor involved in ob-
taimng exphcit solutions of (2.7) in the time domain, we
assume that 8 is small enough for the coupling along the
diagonal to nearest neighbors to be entirely through the
vibrations in the x direction and take the ratio of the di-
agonal spring constant to the horizontal {or vertical) one
to be smaa (k, /ko « 1). Equation (A2) then reduces to

P(s) ~(1/eau)[1 —(e~+4co~)'~ /(e~+4cou~)'~2], (2.8)

where QP) =k i /M and QP0= k0/M. %c note Bl passing
that on putting co, =0, (2.8}yields the one-dimensional re-
sult, i.e., the Laplace transform of (2/coo)J, (2cout), as
indeed it should. The effect of the diagonal springs may

The method described in I allows us to solve formally for
the g's and f's from (2.2) and (2.3). The result for the
quantity of interest, viz. , go 0(t), is

(0 o(t) =7)0 u(t)

be seen explicitly in (2.8).
The substitution of the inverse Laplace transform of

(2.8) in (2.7) allows one to solve for the time dependence
of the excimer-pair coordinate. Wc carry out the solu-
tion numerically and plot the results in Fig. 2(a). Several
candidates for an analytic representation of the nonlinear
potential V exist in the literature. In I we have analyzed
three' of them explicitly: the Morse potential, the Ryd-
berg potential, and the Beckel-Findley potential. It is
straightforward to include those of any other explicit
forms of the potential in our solution of (2.7). However,
the fact that a considerable part of the solution procedure
is numerical makes it much preferable to take an empiri-
cally given (or sketched) form for the potential. The form
we have chosen here incorporates all the physical charac-
teristics required by spectral observations (see Sec. I) and
can be viewed explicitly as curve (a) of Fig. 5.

Figure 2(a) shows the separation of the excimer pair as
a function of time for several relative strengths of the di-
agonal spring, speci6cally for several values of the ratio
co f /coQ When co, /eau is zero, i.e.~ when the system is one-
dimensional, the excimcr pair relaxes to the minimuID of
the interaction potential V. When co&/coo is not zero, the
excimer-pair separation at equilibrium is larger. The
reason for this behavior is obvious. %hen diagonal in-
teractions are included, the molecules to the right and to
the left of the excimer pair are connected via an infinite
number of indirect paths, as well as directly through the
excimer pair. The indirect interactions tend to oppose
the lattice distortion which accompanies the contraction
of the excimer pair, and their CH'ect increases with the
strength of the diagonal spring. This hindering efFect of
the lattice is not surprising and would be obtained even if
the potential of the electronically excited molecular pair
were harmonic with a mere shift in its equilibrium posi-
tion. This linear case, which provides the standard mod-
el' ' for absorption and emission in crystals with
mirror-symmetric spectra (i.e., those in which excimers
are not observed), is represented in Fig. 2(b). Comparison
of Figs. 2(a) and 2(b) shows that the hindering efFect of
the lattice is present in both cases. However, a careful in-
spection of Fig. 2(a) reveals a surprising feature not
present in Fig. 2(b): The separation at which the excimer
pair comes to equilibrium appears to undergo a sudden
transition as the value of co&/sou is varied (note the
difFerent appearance of curve e}. As we shaH see below,
this transition is intimately connected with the Y state.
A detailed examination of the transition, in particular of
its discontinuous nature, is carried out in the following
section through time-independent arguments.

III. ABRUPT TRANSITION AND THK EMERGENCE
QF THK FSTATE

In order to examine the transition suggested by Fig.
2(a), we plot the dependence of the excimer equilibrium
separation on u, /~0 in Fig. 3. The transition is found to
be indeed abrupt. On the left of the transition, i.e., when
~&/co0 is smaller than the transition value, the hindering
efFect of the lattice results merely in a (relatively) slight
increase in the equilibrium separation. However, at the
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FIG. 3. The equilibrium position g( cc ) of the excimer corre-
sponding to Fig. 2(a) plotted as a function of m&/~o. The transi-
tion occurs at co&/coo ——0.075 and is clearly seen to be abrupt.
The E state and the Y state are indicated. The dotted line
represents the system under investigation. The solid line corre-
sponds to a system in which the excimer potential is linear [as in
the case of Fig. 2(b)].

transition value of co, /coo, the increase is discontinuous.
The signi6cance of the discontinuity is that, at and
beyond the transition value of to, /co&, the hindering effect
of the lattice has the nontrivial consequence that the exci-
mer acquires an additional equilibrium separation. To
understand the source of this interesting phenomenon, we
return to (2.7) and take Laplace transforms to obtain

K(s)g(s)= —f dt e "U'(g(t)), (3.1)

x(e ) = [ I /P(s ) J —c00 . (3.2)

Although numerical work was necessary in the last sec-
tion to invert (3.1) and obtain g(t) for all t, analytic
means can be employed to draw from it exact conclusions
concerning g(ac ), the equilibrium value of the excimer
coordinate. On multiplying (3.1) by s, taking the limit
e,~0 and invoking an Abelian theorem concerning
asymptotic values, we get

x(0g'( m ) = I [1/$(0) ]—cooI g( ~ ) = —U'(g( e& ) ) . (3.3)

%'e note here that although the Laplace transform of
U'(g(t)) is by no means U'(g(e)), the limit of
&I I dt e "U'(g(t)) I as e~ 00 is indeed equal to
U '( g( a& ) }.

Equation (3.3) has a remarkably simple form and can
be solved at once to obtain the equilibrium value of the
excimer coordinate once the time integral of the propaga-
tor, viz. $(0), and the nonlinear "force" U' are known. It
also provides us immediate insight into the formation of
the I' state: The state arises only when (3.3) has more
than one solution for g(ao). The physical meaning of
(3.3) is quite transparent. At equilibrium, the excimer
pair is acted upon by two forces: the nonlinear excimer
pair force which tends to pull the pair together and is
represented by the right-hand side of (3.3), and an
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FIG. 4. The analysis of the transition based on an exact treat-
ment of (2.7) in the in6nite t limit, through a graphical solution
of (3.3). The dotted curve represents the nonlinear excimer
force and the four solid lines represent the effective restoring
force of the lattice for four respective values of col/~o. (a) 0, (b)
0.03, (c) 0.08, and (d) 0.125. The intersection of the solid lines
with the dotted curve gives g( 00 ), the equilibrium value of the
excimer coordinate. Only an E state occurs for (a) and (b).
Multiple solutions for (c) and (d) show that a Y state is also
formed. Units of the excimer coordinate are as in Fig. 3, and
those of the force are arbitrary.

effective restoring force exerted by the lattice which tends
to oppose the contraction of the excimer pair. The latter
is represented by the left-hand side of (3.3) and corre-
sponds to an effective spring constant [1/P(0)]—co&.

%hen, as in the one-dimensional chain, hindering in-
teractions arising from the (diagonal) k

&
springs are ab-

sent, $(0) equals 1/c00, and the effective spring constant
K(0) vanishes. The equilibrium state of the excimer pair
is then at the minimum of the nonlinear potential U, and
there is only a single excimer state, the E state. This situ-
ation also occurs for excimers in solution for which the
interactions with the rest of the "lattice" are negligible.
%hen, however, those interactions are present, two
effects can occur. One is a simple shift of the Z-state
equilibrium coordinate caused by the addition of the left-
hand side term in (3.3). The other, which only occurs
when the effective spring constant lc(0) exceeds a critical
value, is that multiple minima appear in the total poten-
tial U(g)+ ,Pc(0—)g . The additional minimum in the
elective potential represents the F state.

Following a standard method employed in the mean
field theory of phase transitions, ' we plot the right- and
left-hand sides of (3.3) separately in Fig. 4. The intersec-
tion yields the equilibrium separation g( oo ). The charac-
teristics of the nonlinear potential U(g) dictated by ob-
served excimer spectra (see Sec. I) are reflected in the
features of the force u'(g) shown in Fig. 4. The value of g
at which the U' curve crosses the g axes is the equilibrium
separation of the excimer pair in the absence of the k

&
in-

teractions. Around that region, the force has a linear re-
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storing nature. The g origin is at the equilibrium separa-
tion of the unexcited ko spring, where the excimer pair
finds itself on electronic excitation. The restoring force
of the lattice, represented by R(0)g, is shown for four
different values of c0, /coo, i.e., of R(0) .The corresponding
curves are simply straight lines of four diFerent slopes.
%hen the slope is zero, the intersection of the two curves
is at the minimum of U(g). When it is larger than zero,
one obtains either a single point of intersection, as in
curves (a) and (b), or three points of intersection, as in
curves (c) and (d). Curve (c) has been labelled by the
word "transition" in Fig. 4 because it is in the neighbor-
hood of (although beyond) the transition. A single point
of intersection corresponds to a mere shift of the location
of the E state. Multiple intersections signal the forma-
tion of the F state. Of the three points of intersection,
the middle one corresponds to a maximum of the total
effective potential, whereas the other two represent true
equilibrium states: The E state and the Y state.

In Fig. 5 we show the efFective potential u(g)+ —,'Pc(0)g
for the five respective values of co, /coo shown in Fig. 2.
Curve (a) corresponds to co, /coo ——0, and therefore to
R(0)=0, and thus describes the excimer potential we have

assumed for the calculations in this paper. As co, /cop be-
comes nonzero, the minimum of the efFective potential
shifts slightly through curves (b}, (c), and (e}. The single-
excimer state, the E state, merely moves on the g axis.
Curve (e) corresponds to values of co, /coo larger than the
critical value. The transition has occurred, and the addi-
tional minimum of the effective potential is visible: The
Y state has now appeared. The inset in Fig. 5 is an en-
largement of curve (e) made to exhibit the two minima
clearly. Both Figs. 4 and 5 show unambiguously that
when the I'state occurs, it does so at a location on the g
axis removed by aconite amount from the location of the
E state.

Finally, we investigate the height of the barrier which
separates the Y state from the E state. This quantity
determines the observed temperature dependence Of the
relative strengths of the I' and E-state emission and has
been examined in several recent experiments. ' The
dependence of the barrier height on co, /coo, as calculated
in the context of our model, is shown in Fig. 6. There is
no barrier for values of co, /coo less than the threshold
value since there is then no Y state. For higher values of
co, /coo, the barrier height increases as shown.
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FIG. 5. The total potential, which is the sum of the nonlinear excimer potential and the elective lattice potential to which the ex-
cimer is subjected in the infinite t limit, shown, in arbitrary units, as a function of the excimer displacement g, for five respective
values of m&/coo in Fig. 2. The F state is absent in cases (a)-(d) but appears in the form of the additional minimum in case (e). Note
that, when the additional minimum appears, it does so at a value of g removed by a finite amount from the location of the E state.
The inset shows a magni6ed view of curve (e),.
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FIG. 6. The height of the barrier separating the Y state from
the E state plotted as a function co&/~0. The barrier appears
only ~hen co&/coo exceeds the threshold value for the formation
of the F state and increases thereafter with an increase in co&/coo.

Units of the barrier height are arbitrary.

IV. DISCUSSION

The F state in excimer-forming crystals has always
been an intriguing object of study in the physics of molec-
ular solids. It has grown in importance as a result of
careful recent experimentation' based on time-resolved
techniques. However, theory has lagged considerably
behind experiment in this Seld. The idea that the Y state
probably arises from additional interactions of the exci-
mer with the rest of the lattice which tend to oppose
complete relaxation of the excimer has been around for
some time. ' ' However, a basic examination of the
characteristics of a system which would or would not
lead to F states is lacking in the literature. Our analysis
in the present paper attempts such an examination. The
model we employ is the simple one}s' wherein the for-
mation of an excimer is looked upon as the relaxation of
an oscillator turned nonlinear by the absorption of light.
The nonlinearity is required by the features of the ob-
served spectra. In keeping with the prevalent idea, we
explicitly include in our model interactions with the rest
of the lattice which tend to oppose complete relaxation of
the excimer. These are represented by the diagonal
springs in Fig. j. with spring constant k, and frequency
Ctl ).

The tool we employ for our analysis is the formalism
developed in our earlier work. ' The primary point of
departure is Eq. (2.7) which describes the evolution of the
excimer coordinate. Its time-dependent solutions
describing the relaxation of the excimer indicate the pos-
sibility of the formation of a partially relaxed state. This
possibility is suggested by a comparison of Fig. 2(a} to
2(b). The two difFer in that the potential under which the
excimer relaxes is nonlinear (as required by observed
spectra) in the former but linear in the latter. The par-
tially relaxed state which is merely suggested by Fig. 2 is
made obvious by the time-independent analysis given in

Sec. III. That analysis is based on (3.3), which is an exact
consequence of (2.7) and describes the dependence of the
equilibrium (relaxed) value of the excimer coordinate on
the characteristics of the system. The two sides of (3.3)
describe, respectively, the nonlinear force which attempts
to relax the excimer to the E state, and the linear force
(with the "renormalized" force constant [I/$(0)] —a}0}
exerted by the lattice which attempts to oppose that re-
laxation. The underlying picture, made quantitative
here, is thus precisely that prevalent in the hterature. '
The new insights we obtain into the formation of the Y
state are incorporated in Fig. 4 and in its result that can
be seen in Fig. 3. The graphical solution to (3.3) provided
by Fig. 4 shows clearly that the F state will not arise
every time a restoring force exerted by the rest of the lat-
tice opposes the relaxation of the excimer. Indeed, for
cases such as in curves (a} and (b) of Fig. 4 [or (a)-(d) of
Fig. 5] no Y state uull be formed despite such opposition.
It is only when the magnitude of the opposing force and
the nonlinearity parameters of the excimer potential com-
bine suitably to provide multiple solutions for the equilib-
rium value of the excimer coordinate that a partially re-
laxed state will be formed in addition to the E state. Oth-
erwise the effect of the lattice force will be simply to in-
troduce a minor change in the location of the E state.

The reasons for the identification we make between the
partially relaxed state which arises naturally from our
analysis and the observed F state in crystals such as a-
perylene are simple. Our analysis above has shown that
the former is separated discontinuously from the fully re-
laxed state, that it does not arise in the absence of the
hindering interactions, and that even when the latter are
present, it arises only when the strength of those interac-
tions exceeds a threshold value. These features appear to
be highly similar to those observed in experiments on the
Y state: The Y state is separated discontinuously from
the E state, it is observed only in solids, and some crys-
tais exhibit it while others do not.

The limitations of our model include the fact that it is
classical, it employs the simplest of lattices, and it does
not include damping. Many of these shortcomings are
planned to be removed in future work. However, the
reason for the extreme simplicity of our model lies in the
fact that our primary purpose in the present investigation
is to arrive, in the most direct and conceptually economi-
cal manner, at the essence of the F state.

Among future experiments that we believe are required
in this area are those that would characterize crystals
into a class which does and a class which does not exhibit
F states and those which would incorporate methods of
converting crystals from one class into the other. Such
methods might perhaps be similar (but employ quite
difFerent procedures) to pressure experiments which
have produced E-state excimers in crystals which do not
ordinarily exhibit them. %e hope that the work reported
here will stimulate further observational investigations.
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APPENMX

the x and y directions, respectively. After Laplace trans-
forming the two coupled equations, it is straightforward
to solve the resulting coupled algebraic equations for an
expression relating the quantity g"'» to the Laplace trans-
form of the nonlinear quantity kogo o(t) —V'(go p(t)).
Performing an inverse discrete Fourier transform, we ob-
tain the expression

In order to derive expression (2.6) for the two-
dimensional case, as expressed by the coupled diff'erential
equations (2.2) and (2.3), we proceed in the following
manner. %'e write the corresponding set of equations for
the relative variables g „and f „, as defined in (2.4)
and (2.5), respectively, and perform a discrete Fourier
transform over the site indices m and n: The discrete
Fourier transforms of g „and f „are given by g" » and
g"'», where k and q are the reciprocal lattice vectors in

+(1/M)P(a) kogoo(e) —f dt e "V'(g(t))
0

(A 1)

which, after an inverse Laplace transform, is simply (2.6).
Since we always start with initial conditions such that the
initial velocities and displacements are zero, the function
»loo(e) vanishes identically. The propagator p(s) is

given, for a two-dimensional system, by

$(e)=(2n) f f dk dq 4sin (k/2)[s2+co2+co, S(k,q)]

X {[ az+coz»+coSz(k, q)][ a+zcok+ coSz(k, q)]—co„C (k, q)I

S(k,q)=4 sin [(k+q)/2]sin [(k —q)/2],
C(k, q ) =4(sink )(sinq ),

(A2)

(A3)

(A4)

where QA. is given by

Q2k ——[e2+cok+co, (8k» )S(k,q)+co, (8) k )S(j,k)] (A6)

for all k, k, and q. The frequencies co, (8 k ), co, (8, „),and co„(8,k ) are the same as those in the two-dimensional ex-
pression, with the particular angle specified in parantheses, i.e., co, (8, k ) =coisin (8 „).The function D(s) is given by

D( )=sQ.QkQ —Q, co„(8 „)C (j,k) Q„co„(8„)C2(—k, q) —Q co„(8 )C (q,j)
+2co„(8 k)co„(8k )co„(8 )C(j,k)C(k, q)C. (qj ) . (A7)

and co, =coisin 8, co, =coicos 8, and co„=coisin8cos8. The frequencies co& and co are given by co =2coosin(j/2), where

j is k or q, respectively, and the frequency co, is given by (k, /2M )'
One may follow the same procedure outlined above to obtain the expression for $(s) in three dimensions. We have

calculated this expression for the case that the diagonal spring constants are all k &, and we have neglected interactions
which are of longer range, i.e., the connections between opposite corners of a cube. %e take j, k, and q to be the re-
ciprocal lattice vectors in the x, y, and z directions, respectively, and define the angles of the diagonal connections as
follows: 8 I, is the angle that the diagonal spring in the x-y plane makes with the x axis, 8k is the angle that the diago-
nal spring in the y-z plane makes with the y axis, and 8» 1 is the angle that the diagonal spring in the x-z plane makes
with the z axis. The expression for ((i(e) is then

ice)=(2»r) [D(s)] ' f dj f dk f dq 4sin (k/2)[QkQ» —co„(8k )], (A5)
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