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%'e study a one-dimensional system which is neither periodic, quasiperiodic, nor random. %'e

find that the structure factor of this system consists of a set of peaks whose heights scale with L, the

length of the chain, according to L+k'. We show that for k ~ 2, 0;(k}& a( 3 )=ln3/1n2, so that all of
the peaks vanish relative to the peak at the center of the Brillouin zone (which is associated with the

periodicity of the underlying lattice) as the system gro~s. %'e also prove a number of other proper-

ties of these exponents. %e discuss the energy spectrum of this system for both weak and strong po-

tentials. %'e show how the gaps in the two limits are related, and we argue that, despite the expecta-

tions of naive perturbation theory, gaps persist in the I.~ 00 limit.

I. INTRODUCTION

One-dimensional Schrodinger equations with quasi-
periodic potentials have been extensively studied in the
past several years. ' More recently, much attention has fo-
cused on potentials derived from the Fibonacci se-
quence. Aside from their purely theoretical interest, a
number of these latter studies were motivated in part by
the discovery of metallic alloys manifesting icosahedral
symmetry, i and the interpretation of these findings in
terms of the quasicrystalline state, as well as the experi-
mental realization of Fibonacci superlattices.

The rich and intriguing properties of these structures
suggests the utility of studying systems based on more
general sequences. In this paper, we will study the struc-
ture factor and electronic properties of a one™dimensional
system which is based on a sequence that is neither
periodic, quasiperiodic, nor random. The system we will
consider is called the Thue-Morse lattice. The associat-
ed sequence is a generalization of quasiperiodic se-
quences, in that, unlike the latter, the Thue-Morse se-
quence cannot be characterized by a Snite set of irration-
al numbers. In some sense, an in6nite number of irration-
al periods are present in this case. Like quasiperiodic sys-
tems, the Thue-Morse structure factor is composed of a
sequence of 5-function peaks. However, unlike normal
quasiperiodic systems, these peaks do not scale hke L,
where I. is the length of the system. In fact, they have a
very complicated scaling structure, with difFerent sets of
peaks scaling with different exponents. Similarly, the
electronic structure, which we have calculated in pertur-
bation theory (and which agrees surprisingly well with
nonperturbative numerical computations), is quite com-
plex and interesting.

The Thue-Morse chain of order X is a sequence of
length 2 composed of two symbols a and b. The chain
of order X + 1 is generated from the chain of order X by
making the following substitution for each symbol in the
order X chain:

a ~cr(a) =ab, b ~o(b) =ha .

Using (1), it is not difficult to see that

cr" +'(a)=a "(a)o "(a),

where o "(a) is the complement of tr"(a) obtained by in-

terchanging a and b in tr "(a)
Another interesting and useful relation follows from

the definition (1) of the chain. If we let a = 1 and b = —1,
then the symbol at the nth position of the Thue-Morse
chain (assuming the zeroth-order chain is just 1) is given

by

f(n)= exp in gc (4)

where ( . cjc1, chic, ) is the binary representation
of the integer n

The rest of this paper is organized as follows. In Sec.
II we will discuss the structure factor of the Thue-Morse
lattice. We will derive a formula for the intensity as a
function of both the wave vector k and the size of the sys-
tem. We wi11 show that the intensity at diferent wave
vectors scales with the size of the system in different
ways. The scaling is determined by an exponent a(k).
We will show that for almost all frequencies, a(k) exists
and is zero. Those frequencies for which a(k} is nonzero
can be grouped into classes, each member of a given class
having the same value of a. The largest value of a [aside
from the trivial case of a(k = —,')=2 which is associated
with the center of the Brillouin zone and just reflects the
periodicity of the underlying lattice] occurs for the class
of frequencies which includes k =—,', and we find

a( —,
'

) = ln3/ln2. In Sec. III w- turn to a discussion of the

electronic properties within the tight-binding formalism.
We first discuss the limit of weak potentials of the Thue-
Morse form and compute the energy spectrum of a finite
system using second-order perturbation theory. Next, we
study the model in the limit of very strong potentials. By
considering both the weak- and strong-potential limits,

If we take as the chain of order zero the sequence a, then

the chain of order 5, for example, is given by

tr (a }=abbabaabbaababbabaababbaabbabaab . (2)
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we are able to produce. a scenario for the behavior of the
energy gaps as a function of the potential strength. Fi-
nally, in Sec. III, we address the behavior of the electron-
ic spectrum in the thermodynamic limit for Sxed poten-
tial strength. %e suggest that for any small but 5nite po-
tential, there are nonzero energy gaps even in the limit of
an in6nite system. This suggestion is contrary to the pre-
dictions of naive second-order perturbation theory, but
we argue that such an approach is inapplicable in this
limit. All of our conclusions and results are consistent
with the results of Axel er al. who computed the band
structure numerically in a tight-binding model. Section
IV consists of a summary of our results and their implica-
tions, as well as a brief discussion of remaining questions.

I

II. STRUCTURE FACTOR

A. Derivation of the structure factor

Consider the chain defined by the function f(n) in Eq.
(4). The two possible values a and b associated with the
sites of the chain [in the representation of Eq. (4), a =1,
b = —1] can be considered to label two different kinds of
atoms or di6raction centers with different scattering fac-
tors.

It is straightforward to derive an expression for the in-
tensity of the Fourier transform of the Thue-Morse chain
defined above. Consider the chain a tv(a) of 2 elements
with a = 1 and b = —1. Then,

I~+ i(k) =
2N+ 1

n=0

2 —1
N

f(n)e'"'"" = g f(n)e' '" + g f(n)e' '"k (5)

For the purposes of deriving properties of I~(k), two
other forms of Eq. (8) will be useful. First, (8) can easily
be rewritten as

Iz(k)=2 g sin (nk„/2), 0&k„&1

and

2k„, 0&k„&-,'

"+' 2 —2k„, —,
' &k„&1, (10)

with k, =2k. Another useful form of (8) can be obtained
by defining y„=2"k (mod 1). In this case (9) and (10) can
be expressed as

Using the easily proven relation

f(2 +n ) = f(n), —

(5) becomes

I~+,(k)=I~(k)
~

1 —exp(2nik2 )
~

Equation (7) is a simple recursion relation for Iz(k)
which is easily solved to yield

S—1

I~(k)=2 g sin (m2"k) . (8)

k„+,——O. cz(n }C3(n}c4(n). . . , if c, (n) =0,
k„+,——O. C2(n)C3(n}C4(n). . . , if c,(n) =1, (14)

where cj(n) is the complement of cj(n) Thu. s (14) is ei-
ther a shift or shift combined with complement opera-
tion.

ln Fig. 1 we show a plot of IN(k), the structure factor
for the Thue-Morse chain defined in Eq. (4) with N =10
(i.e., with 1024 elements). Plots of IN(k) for larger values
of N are qualitatively similar but have more peaks. Note
that the peaks are larger and more concentrated around
the frequencies —,

' and —,'. The positions and intensities of
major peaks are apparently more complex than in the
periodic or quasiperiodic case. Furthermore, a compar-
ison of plots of IN(k} for different values of N suggests
that the sizes of different peaks scale differently with the
size of the system, unlike the case of periodic and quasi-
periodic systems. %e turn now to a discussion of the
scaling properties and relative heights of the peaks in the
spectrum In(k).

tp„+, ——2y„(mod 1), 0 &y„& 1, (12)

with yo ——k. The recursion relation (10} is a special case
of the well-studied Lac map, some general results of
which we shall use in the next subsection.

Equation (10) can also be understood in another way
which will be very useful. Let

O. ci(n)cg(n)c3(n). . . 0
.Il. i . i ~ i ~ . a, I. I 3. II II

be the binary representation of k„, where c,.(n) =0 or l.
Then Eq. (10) becomes FIG. 1. Structure factor of a Thue-Morse chain with X= 10.
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B. Scaling exponents of the structure factor

In the usual periodic and quasiperiodic systems, the in-
tensities of the peaks in the structure factor scale like I. ,
where I. is the size of the system. This result holds for
the entire structure factor, independent of k, so that the
relative intensities of the peaks in the spectrum are in-

dependent of I.. But this is not true in our case as is most
easily seen by referring to Eq. (8). The first factor in this
expression is just L, , where I.=2 is the length of the
system labeled by N. This is the scaling factor we naively
expect from our experience with periodic and quasi-
periodic systems. However, as we show below, the prod-
uct in Eq. (8) tends to zero for almost all wave vectors,
and it tends to zero at difFerent rates for difFerent k*s.
Therefore, in general, the exponents defIning the scaling
of Iz(k) with the size of the system are different for
different wave vectors. It is also the case that there are
wave vectors for which no well-de6ned scaling exponent
exists. An example will be given below.

Let us suppose then that, in general, Itt(k) scales with
the size of the system like

Itt(k)=L '

Since all k. =—,, each factor of sin in this expression is

the same. Now, consider any wave vector k' other than
Using Eq. (9) we will generate another sequence of

wave vectors k). Since sin(P} is a monotonically increas-
ing function of p for 0(p&m/2, the smaller k; is, the
smaller will be the ith factor in (19). Suppose that for
some i, k is larger than —', . We may write k =—', +5, with

0 & 5 & —,
'. Then, using (10), we have k,'+, ———,

' —25, which

is less than —', . But,

sin (nk, '/2) sin (nk +, /2)

= sin [n ( —,'+5)/2] sin [n.( —', —25)/2]

& sin [m( —', +5)/2] sin [m( —', —5)/2]

& —,', = sin [n( —', )/2] . (20)

That is, if a k is generated which is greater than —,, k,'+,
will be sufficiently small so that inequality (20) holds.
Thus if the limits exist,

Iz(k)=2 sin (ski/2)sin (irk'/2) . sin (irk&/2) .

(19)

where L =2, and az(k) is the effective scaling exponent
at wave vector k for a system of size 2 . From Eq. (11)
we see that and

lim Itt(k')/Itt( —,
'

) & 1,
N~ oo

N —1

a~(k ) =2 1 — g in[sin(my„) ]Nln2 „
(16)

a(k') & ct( —,
'

)

Q.E.D.

Let us consider the large-X limit of az(k) defined as

a(k)= lim az(k) .
N~ tN

We will now prove five important properties of a(k).

I. For almost every k in IO, tt J, a(k) =0

Proof. It is well known' that the map (12) has the
property that for almost every yo

——k, y„ is uniformly dis-
tributed in [0,1] in the limit n~oo. Therefore, for al-
most every k we can change the sum in Eq. (16) into an
integral in the limit N ~ ao. Thus

a(k)= lim 2 1 —— g in[sin(ny„)]X~ Dc Xln2 n=o

3. Ifk' and k" are two wave vectors such that 6=—k ' —k"
has a ftnite length bin-ary representation, then

n (k') =a(k"), if they exist

Proof. If b has a finite-length binary representation,
then there exists a p such that for all j&p, kj'=k," [i.e.,
after a finite number of iterations of Eq. (10), kJ' and kj"
will be equal forever]. This is apparent if we refer to Eq.
(14), which is just a binary version of Eq. (10). Since each
iteration shifts the sequence of binary digits on space to
the left, and since 0&k- (1, it is clear that if 5 has a
6nite-length binary representation, then eventually the di-
gits to the right of the decimal point will form the same
sequence for k' and k". But changing a finite number of
factors in Eq. (9), or, what is the same thing, changing a
finite number of terms in Eq. (16) will not change the
N~oo limit of aN, so that a(k')=a(k" }. Q.E.D.

Q.E.D.

1=2 — in[sin(mr) ]dr =0
1n2 o

2. a(s) = 1n3/ ln2 is the largest scaling exponent

Proof. It is easy to calculate a( —,
'

) once we realize that
k =

3 (i.e., k, =k2 —— . —k~ =—, ) is a fixed point of Eq.
(10}. Thus all the terms in the sum on the right-hand side
of Eq. (16} are the same. Since sin (m /3) = —,',
ct( —,

' }=ln3/ln2.
Now we prove that a( —,') is the largest scaling ex-

ponent. Equation (9) reads

4. For every rational wave vector k, a(k) exists

Proof. Using (14}, the binary form of the recursion re-
lation, it is clear that for any rational k, the sequence kJ
will reach a limit cycle after a finite number of iterations.
The length of the limit cycle is the same as the length of
the digital cycle of k in binary form. Thus a(k) exists
and can be calculated. Q.E.D.

5. There are values of k for which no well deftned-
scaling exponent exists

Example. Consider a wave vector (irrational) defined
by a binary string which consists of alternating sequences
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taken from the binary representation of two rational
numbers. For example,

k =0.100101 000000001010101010101010.. .

the first digit to the right of the decimal is the 6rst digit
of the binary representation of —,'. The next 2 digits are
from the binary representation of 0. The following 4 di-
gits come from the representation of —,', followed by 8 di-

gits from 0, 16 digits from —,', etc. It is easy to see that for
this sequence aN(k) does not approach any well-defined
limit in the sense of Eq. (17).

These results tell us a good deal about the structure of
Thue-Morse lattices. First, property 3 o8'ers a natural
way of classifying wave vectors according to their scaling
exponents. Furthermore, using property 4, it is easy to
see that a(k =0)= —00, so that the values of the scaling
exponents can range from —0c to a( —,

'
) = ln3/ ln2.

Moreover, it is not difficult to show that a(k) for rational
k is dense in the interval ( —00, ln3/ln2], so that for
every number in this interval, there is some wave vector
whose scaling exponent is equal to that number.

As stated in property 1, for most k's, the intensity is
unaffected by changes in the size of the system. u(k) y0
only for a subset of wave vectors. But even for these k's,
I~(k) does not increase as rapidly as the peaks in period-
ic or quasiperiodic systems do. In a real discrete physical
system, there will be a (trivial) peak in the structure fac-
tor corresponding to the periodicity of the underlying lat-
tice (k = —,). The intensity in this peak will increase like

L, and so relative to this peak all the nontrivial peaks as-
sociated with the Thue-Morse structure will diminish.

Nevertheless, the structure of Iz(k) is complex and in-

teresting. Neglecting the trivial peak, we see that for
very large systems, only those peaks related to k =—,

' by

property 3 will persist. It is interesting to examine the re-
gion around one of these peaks, say, the one at k = —,', to
see how the intensity in nearby frequencies behaves as N
increases. Because of property 3, for large enough N, we
will always be able to 6nd another peak arbitrarily close
to k = —,', much smaller in magnitude, but whose scaling
exponent is a(k = —,

' ). Thus in some sense each peak in a
Anite system foreshadows the existence of a group of
nearby peaks which become increasingly dense as N in-
creases and which scale with the same exponent.

In this section we turn our attention to the behavior of
nonrelativistic particles (electrons) in a potential with the
structure of the Thue-Morse chain. Speci6cally, we con-
sider a one-dimensional potential of the form

r

( )
f(n), 0(n (2
oo, otherwise,

where f (n) is defined in Eq. (4). The tight-binding ver-
sion of the Schrodinger equation which we will study is

g(n + I )+irt1(n —I)+[—A V~(n)+E —2]1((n)=0, (22)

where E is the energy eigenvalue, f is the wave function,
and A, is the strength of the potential in Eq. (21). Also as-
sociated with the solution of Eq. (22) are boundary condi-
tions, and 6xed-edge boundary conditions are implicit in
the form of the potential (21).

We will use (22) to compute the positions and sizes of
the gaps in the energy spectrum. In particular, we will

study (22) in both the weak- and strong-perturbation lim-

its. %'e will 6nd that certain qualitative features of the
spectrum are the same in both limits, and we will discuss
the reasons for the similarities. %'e will also discuss some
aspects of the delicate X~ oo limit.

A. Weak-perjurbatioa limit

Dett[E0(k) E)5kq+—AV~(k —q)I =0 . (24)

For small enough A, , one can, in principle, expand (24)
as a power series in A, and obtain good approximations
for E from the leading terms in the expansion. However,
if A, is small, but not too small, the typical size of the per-
turbation may be larger than the energy difference be-
tween k-vector eigenstates that can be connected by
nonzero values of Vn (k). Those states should then be re-

garded as degenerate or nearly degenerate, and the calcu-
lation, in general, involves the exact evaluation of the
determinants of a number of matrices, the size of each
matrix being proportional to the number of states which
are degenerate or nearly degenerate. In our case, the
spectrum of V(n) becomes increasingly dense as L, the
size of the system, increases. Thus the typical separation
between states that can be connected by nonzero V~(k) is

of order I. '=2 . A tractable weak-perturbation cal-
culation can, therefore, only be carried out if A, L
(Note that this is qualitatively different than the periodic
case in which Vn (k) is nonzero for only a few values of k,
regardless of N. )

If A, (L the shift in energy for each value of k is pri-
marily due to the mixing of the unperturbed states of
wave vectors k and —k, as is usual in second-order per-
turbation theory. In this case we have

E(k)=EO(k)+A,
i

V~(k)
i

Thus in this weak-perturbation limit, each peak in the
structure factor corresponds to a (small) gap in the band
structure.

Now (25) is formally similar to the result obtained for a
system subject to a periodic potential. But in our case,
the calculation leading to (25) can hardly be taken seri-
ously for large systems, since it requires A, ~L, ', rather
than X%1 as required for the periodic case. Neverthe-
less, this calculation, when combined with the results of a
strong-perturbation calculation, can give us a good deal

Consider Eq. (22). Its Fourier transform is

g [[Eo(k) E]5iq—+ A Vg(k —q)I Q(k) =0,
k

where Eo(k)=4sin (irk), 5 is a Kronecker delta func-

tion, and V and 1tt1 are the Fourier components of V and
i)'j, respectively. The eigenvalues are determined by the
secular equation
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of insight into the general energy spectrum of the Thue-

Morse chain. In fact, if we look at Fig. 1 and compare
the results computed using this Vz(k) in (25) with the nu-

merical calculation of Axel et a/. for the Thue-Morse
phonon spectrum, we see that the correspondence be-

tween peaks in the structure factor and energy gaps in

the excitation spectrum is very close. (See also the dis-

cussion in Sec. III B.} This suggests that Eq. (25) may be
qualitatively correct for a much larger range of A, than its
derivation implies. Indeed, as we shall now discuss, the
sizes and positions of the gaps in the large-A, limit are
closely correlated with the sizes and positions of the
peaks of V~(k).

B. Strong-perturbation limit

%'e turn now to a discussion of the energy spectrum for
very large A, . Using (22), the discretized, tight-binding
version of the Schrodinger equation, we can develop a

I

systematic expansion in powers of A.
' for the energy ei-

genvalues. Although the calculational details become
rather complicated after second order, we can gain con-
siderable insight into the robustness of certain features of
the band structure over a range of values of A..

In the limit of extremely large A, , the couplings between
regions of unit length (the distance over which the poten-
tial varies) in the chain become relatively unimportant,
and the energy spectrum is that of a collection of in-
dependent particles, each sitting in its own local poten-
tial. Hence, there are two energy eigenvalues given by
E=AV~, (n}+2=+A, e.ach of which is I. /2-fold degen-
erate, where I.=2 is the number of sites in the chain.

The first nontrivial correction to this result comes
when we consider the fact that the electron's wave func-
tion can extend over more than one unit interval in the
Thue-Morse potential. %e thus consider the 5rst iwo
terms in (22) as perturbations on the single-site states. In
general, the energy eigenvalues of (22) are just the solu-
tions of the determinental equation

Det

—A. V~(1)+E—2

1 A, V~(2)+—E—2 1

1

0 1

A, VN(2 —)+E—2

Keeping only the leading terms in A., we obtain the lowest-order result quoted above. To most easily see the e8'ects of
the next-order correction, we rearrange the matrix such that all the diagonal elements with VN(n) =+ I appear in the

upper left quadrant, while all the diagonal elements with VN(n) = —1 appear in the lower right quadrant. In addition

we keep the elements in ascending order of the arguments n of V~(n) The resu.lt is that (26) becomes

A 8
Det z ——0,8

(27)

where

e(i, )

q&(t )si2)

0(~ l&~2}

e(iz)

g(i &i )

e(i )

eVi} mUi j»

q(J
e(j )

and

e(i)= A, VN(i)+E —2—
1 if EI =El i+ 1

0 otherwise .



4380 ZHEMING CHENG, RQBERT SAVIT, AND R. MERLIN 37

8 is a matrix most of whose elements are zero. 8 contains at most one nonzero element per row, whose value is l. In

these expressions the index m is L, /2, which is just the degeneracy of the lowest-order result.
We now estimate the left-hand side of Eq. (27) and determine the energy eigenvalues to next order in A, . I.et us

consider the energy eigenvalues which in lowest order are = —A, . These correspond to the matrix elements contained in

submatrix A in (27). We want to compute possible splittings of this highly degenerate energy level. For values of
E=A, , the diagonal elements in submatrix C are all of order A,, and so the largest contribution to the determinant in (27)

will come from terms which multiply all these large diagonal elements. Thus for such values of E the leading contribu-

tions are given by solving
T

y(i „iz)
y(i„i2) A, +—E —2

or

Det

Det

+E, 2-
V(ii i2)

V(ii i2)

A, +E-2-

y(i „i )

y(i i i ) A+E——2

y(i „i )

q (i~ „i~ ) A, +E——2

(A, +E—2) =0

(28)

To evaluate (28), we need to determine the y's. Each
of the diagonal elements in (28) corresponds to a site of
the chain for which V~(n) =+1. From the construction
of the Thue-Morse series, it is not diScult to see that —,

' of
such sites are surrounded on both sides by sites at which
the potential has a value V~(n)= —1, while the remain-
ing —,'of the sites have one neighbor at which the poten-
tial has the value Vz(n}= —1. For pairs of neighboring
sites with the same potential, p(i& „i&)=1,otherwise it
is zero. Thus (28) reduces to

' I./6—A+8 —2 1
Det

1 g E 2 ( A+E 2) 0

I./6 is thus the number of singlet sites with Vz(n) =1 as
well as the number of nearest-neighbor pairs of sites with
the same potential.

It is easy to solve (29) for the first-order energy eigen-
values. A similar equation holds for those energy eigen-
values that are close to —A, . The result is that to erst or-
der each of the two highly degenerate energy levels is
split into three levels with energies

E =A, +2,1+2+1,—A, +2, —k+2+1,
each of which is L/6-fold degenerate. This lowest-order
splitting is clearly due to the mixing among mutuaHy de-
generate states. Mixing between states whose energies
are near X and whose energies are near —k will occur in
the next order in A,

There is a simple physical interpretation of this result.
To understand how degeneracies are lifted, let us focus
on particles sitting in a region of the chain in which the
potential, V~(n)= —1. Since, to this order, there is no
mixing between localized states subject to difFerent values

I

of Vz(n), the energies of those states which are confined
to a unit interval such that both their neighboring inter-
v»s have Vi„(n)=1, will be unaffected by the lowest-
order nearest-neighbor mixing. The remaining —, of the
states originally associated with the potential Vz(n) = —1

will have one neighboring interval with VN(n) = —1. For
those states which now see two neighboring regions of
the chain with the same potential, the symmetric and an-
tisymmetric linear combinations of the localized states
are now the energy eigenstates. As usual, the energy of
the symmetric combination will be lower than the unper-
turbed energy, while the antisymmetric combination will
be higher, by the same amount. Thus —,

' of the states orig-
inally degenerate with energy E=—A, will now occupy
each of the three equally spaced energy levels into which
this band has split, as a result of the nearest-neighbor
perturbation. A similar argument applies to the breaking
of the degeneracies between particles localized in regions
of the chain with VN(n }=1.We therefore obtain the six
equally degenerate levels described above.

Figure 2 shows a plot of the tight-binding energy spec-
trum computed numerically from Eq. (26}with N = 8 and
A, =5, 1, 0.5, and 0.2. We see that in Figs. 2(a)-2(c), the
largest gaps neatly divide the spectrum into six regions.
These are the bands which in our 6rst-order strong-
perturbation approximation are degenerate. Notice that
when the energies are arranged in increasing order, the
gaps are equally spaced and divide the system into six re-
gions. Let z be the Bloch index. %'e see that for very
large coupling [Fig. 2(a}] the gap at z =—,

' is largest, while

the gaps at —,', —,', —'„and —,
' are smaller. We also observe

that as k decreases, the gap at z =—,
' shrinks faster than

the gaps at m /6 (m &3). In Fig. 2(d) the gap at z = —,
' is

almost gone, and the largest gap 1s at z = 3, correspond-
ing to the large peak in Fig. I at k =—,', as predicted by
Eq. (25).
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in the chain), as the sequence ahba. (Here a and b are as-
sociated with different value of the potential. ) But a short
sequence which repeats n1ore or less uniforn11y
throughout the chain with finite density will give rise to a
peak in the structure factor at a k which is the inverse of
its average repeat distance. Thus it is natural to expect
peaks in the structure factor at values of k = —,'„—,', and —,',
and using (25), corresponding gaps in the energy spec-
trum, even for small A,. We see, then, that although the
Thue-Morse chain has a complicated and unusual sym-
metry, it is still the symmetry that determines the qualita-
tive features of the spectrum for any value of A, , as in sim-
ple periodic systems.

C. The 1V-+ ce limit

0—
0 0.5

z
(c)

I0 0
0-

0.5
Z

(d)

FIG. 2. Energy spectrum calculated from Eq. (26) for the
Thue-Morse t:hain with %=8 for various values of A, . {a) A, =S,
(b) 1,=1, (c) A, =0.5, (d) A, =0.2.

The quahtative behavior of the gaps as a function of A,

is easily understood. For the moment, let us consider
only chains of finite length. (The X~ oo limit will be dis-
cussed below. } The gap at z =—,

' for large A. just reflects
the simplest average symmetry of the Thue-Morse chain:
Since half of the elements in the chain are of each type,
half the highly localized states are associated with each of
the two values of the potential. The gaps at z=m/6
(m&3) are associated with sequences of single and dou-
ble occurrences of the potential, as explained above. As
A, decreases, the localization length becomes longer, and
differences in the average potential seen by each state be-
come smaller. The first property of the potential to
"average out" is the most local one, namely the single-
site potential. Thus the gap at z= —,

' disappears faster
than other gaps which are associated with sequences of
the potential extending over several lattice spacings. On
the other hand, as k decreases, wave functions wiB be
able to distinguish between increasingly longer sequences,
and so new gaps will open. These gaps, while smaller in
magnitude, will diminish still more slowly as A, decreases.

At first sight, the origins of ihe gaps in ihe weak- and
strong-coupling limits appear to be somewhat different.
In the strong-coupling case, gaps appear at z =m /6 be-
cause all six energy states are equally degenerate. In
weak coupling, on the other hand, there is a large gap at
z =—', because there is a large peak in the structure factor
at k = —,', at least for a finite system. (For weak coupling,
z is roughly twice the inverse wave length of the state. )

In fact, however, the origin of the gaps in both limits is
related. As we discussed earlier, the equal degeneracy of
the six energy levels that appear in strong coupling is due
to the fact that in the Thue-Morse chain, the sequence
aba occurs exactly half as often (—,

' of the time there is a b

In Sec. III 8 we described the electronic spectrum of
the finite Thue-Morse chain. %e now want to consider
the fate of the gaps in the X~ao limit. In ordinary
periodic and quasiperiodic systems, the peaks in the
structure factor increase in intensity as the size of the sys-
tem grows proportional to L . As a result, the deter-
mination of the positions of the gaps in the thermo-
dynamic limit is often straightforward (although usually
nontrivial). In the Thue-Morse system, on the other
hand, the peaks in the structure factor scale with
difFerent exponents which are a function of k. Except for
the trivial peak at k = —,', which just represents the under-
lying periodicity associated with the unit length of the
Thue-Morse potential, all the peaks scale with an ex-
ponent less than 2. Thus relative to the large peak at
k = —,', the structure factor looks more and more like that
of an amorphous system as L increases, making a deter-
mination of the energy spectrum in the thermodynamic
limit more diScult.

It is useful to see how this diSculty manifests itself in
the context of weak-perturbation theory. The second-
order perturbation-theory result displayed in Eq. (25) in-
dicates that the gaps should disappear as L~co since
V~(k)/L —+0 as L~ao. However, this argument is
inadequate. As we stated earlier, the average unper-
turbed level separation decreases like t. ' while the size
of the weak perturbation does not decrease that quickly.
Thus as the system grows we must use near-degenerate
perturbation theory with increasingly many nearly degen-
erate states to obtain reliable results. In addition, as t. in-
creases, more new peaks in the structure factor appear
close to a given value of k, so that many more terms must
be included in the perturbing potential. From the weak-
coupling point of view, it is very diScult to analytically
determine the band structure in the thermodynamic lim-
it, even qualitatively.

In the context of the strong-perturbation approxima-
tion, the L ~~ limit is somewhat n1ore straightforward.
In this approach thc gaps persist since thc wave functions
are more or less localized. If the system is n1uch larger
than the finite-localization length, any further increase in
the size of the system is expected to have a negligible
effec on the gaps. The following scenario thus suggests
itself: As A, decreases for a finite system, the existing en-
ergy gaps decrease in magnitude, while new, smaller gaps
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appear. If A, is fixed, the localization length is fixed, and
increasing the system size well beyond the localization
length will not substantially affect the sizes of the gaps.
Thus as N ~ go for 6xed P., the gaps are expected to per-
sist. In this regard the system is reminiscent of a random
chain with diagonal disorder. Since gaps persist in that
system in the thermodynamic limit, they will persist in
our system a fortiori, so long as the localization length is
finite. Notice that this is not what a naive application of
second-order weak-perturbation theory [Eq. (2,5}] would
suggest, since the intensities of all the nontrivial peaks
scale with an exponent less than 2. But, as we argued
earlier, nondegenerate perturbation theory is inapplicable
in this limit in any case. Unfortunately, since we have no
reliable analytic results for small A, and N~ ao, we can-
not completely rule out the existence of a transition at
some finite A, to a state with no gaps. More work is need-
ed to dispose of this possibility.

IV. SUMMARY

In this paper we have studied the structure factor and
electronic properties of the Thue-Morse chain. Despite
the simplicity of the algorithm by which it is generated,
this system has a remarkably interesting structure, being
neither periodic, quasiperiodic nor random. We found
that the structure factor consists of a dense set of delta-
function peaks, as in quasiperiodic systems. However,
unlike quasiperiodic systems, the peaks in the spectrum
scale with the size of the system in a complicated way.
We have proved a number of general properties about
these exponents, and in particular, we have shown that
all the peaks scale with an exponent less than 2 and thus

vanish relative to the peak at the center of the Brillouin
zone as the system grows.

%e have also described, semiquantitatively, the energy
spectrum of the chain, in the context of a discrete tight-
binding approach with both weak and strong potentials.
%e have qualitatively described the origin of the gaps in
both limits and showed how they are related. Our argu-
ments have also led us to conclude that for any fixed po-
tential strength there are nonzero gaps in the limit of an
infinite system. This conclusion is contrary to the expec-
tations of naive nondegenerate perturbation theory, and,
as we have discussed, is probably related to the appear-
ance of additional small peaks in the structure factor as
the size of the system increases. Because of the intrinsi-
cally hierarchical nature of the Thue-Morse algorithm, it
should be possible to demonstrate these ideas more quan-
titatively using a renormalization group approach. We
are currently working on this problem.

Finally, we note that we have fabricated and experi-
mentally studied GaAs-A1As Thue-Morse superlattices
using molecular beam epitaxy techniques. Because of
their intriguing properties, physical realizations of sys-
tems which are not periodic, quasiperiodic, or random
may be of signi6cant experimental and technological in-
terest.
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