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%e consider the indirect exchange between magnetic moments placed in a metallic environ-

ment that is weakly disordered due to the presence of randomly distributed nonmagnetic impuri-

ties. %e 6nd that the even moments of the isotropic exchange interactions are long-ranged, fal-

ling off as a power law in the spin separation distance just as in the pure metal. Depending on

the experimental quantity of interest, the effective coupling between spins is given by either the
6rst or the second moment of the distribution of exchange couplings in the system. The effect of
spin-orbit scattering on the interaction between local moments is considered. In the case of iso-

tropic spin-orbit scattering in both bulk materials and thin 61ms, the isotropic exchange interac-
tions are exponentially suppressed at large distances. In strictly two dimensions, ho~ever, there
are long-range anisotropic spin-exchange couplings that have power-law fall-off with the square of
the distance. In this case the interaction becomes effectively Ising at large distances. The distri-

bution of couplings is seen to be broad, reSecting the sensitivity of the interactions to changes in

the impurity con6guration. Correlations of the couplings between sites are also found to have
power-law fall™o6'with distance; however, these are higher order in the perturbation expansion.
The relevance to experiments is discussed,

I. INTRODUCTION

We consider magnetic interactions between local mo-
ments situated in a weakly disordered metal. The indirect
Ruderman-Kittel-Kasuya- Yosida (RKKY) exchange in-
teraction between two moments mediated by the conduc-
tion electrons of the host metal is well known in the case
of the pure metal to be an oscillatory function that falls.off
with the cube of the distance. ' In the presence of disor-
der, which we assume here to arise due to elastic scatter-
ing of the electrons from nonmagnetic impurities, the
magnetic exchange is modified from that of the pure met-
al because of the existence of a finite mean free path. The
interaction between spins situated a given distance apart is
now taken from a distribution over the values of the ex-
change couphng corresponding to different impurity
configurations. A knowledge of the moments of this distri-
bution would help determine such quantities as the typi-
cal strength of the exchange coupling in a disordered met-
al, and hence an estimate of the critical temperature if the
sample were to undergo a magnetic transition. We com-
pute the moments in the weak disorder limit, where it is
assumed that the spin-separation distance is much greater
than the electron mean free path, and the dominant
modification of the large distance behavior arises from the
diffusive motion of conduction electrons in the disordered
medium. Thus the difFusion-propagator ladder graphs
may be considered to give the most important contribu-
tions. It is seen that the first moment of the distribution is
short ranged, s reflecting the sensitivity of the phase of the
RKKY interaction to changes in the impurity potential.
However, averaging the square of this oscillating poten-
tial, one finds that it decays with the same power law as in
the pure metal. s Thus although the average coupling de-
cays exponentially with the distance, this is the conse-
quence of performing an incoherent phase average that
obscures the fact that the interactions are in fact long-

ranged for any given impurity configuration. We estimate
higher moments of the distribution and show that it is
non-Gaussian and fairly broad. In addition, we investi-
gate magnetic correlations due to a given local moment
between two sites that are arbitrarily far apart. These do
not decay exponentially as might have been expected, but
have power-law fall-off with the distance. We discuss
briefly the implications for spin glasses and amorphous
metallic alloys.

In an early paper3 de Gennes found the exponential de-
cay of the average RKKY interaction. His result has
often been used to analyze experiments on metallic spin
glasses, for example. Later, de Chatel pointed out the
possible importance of fluctuations of the RKKY interac-
tion, and noted that the interactions in disordered metals
could retain the long-ranged oscillatory character of the
pure RKKY interaction provided that the electron wave
functions are extended and have smoothly varying phase
as a function of energy. Recently, Zyuzin and Spivak,
and Bulaevskii and Panyukov have given the correct in-
terpretation of the de Gennes result and have pointed out
that the spin-glass transition temperature depends on typi-
cal values of the RKKY interaction and that these are
long-ranged. The transition temperature in a spin glass is
therefore not expected to exhibit any significant depen-
dence on the mean free path (over a range of values of I).
Indeed, unsuccessful attempts to fit experimental results
to the exponential form ' led to the conclusion' that
the dependence on mean free path was relatively slight.

More generally, let us regard the interactions in the
disordered metal as arising from some probability distri-
bution whose moments may be calculated. In the absence
of ferromagnetism the transition temperature may be tak-
en in mean-field theory to be the second moment of the
distribution, which, as we shall see, is long-ranged. How-
ever, if one admits a possible ferromagnetic ordering in
the system, the transition temperature would then be
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given in mean field by the first moment of the distribution
and in this case one would expect exponential suppression
of the transition temperature as disorder is increased.

We have so far discussed processes of elastic impurity
scattering that do not fiip electron spin. The addition of
impurities with spin-orbit interactions will modify the
spin-exchange couplings at large distances. We find, as
expected, that isotropic spin-spin interactions are limited
in range by the spin-orbit diffusion length L,, This re-
sult holds only for spatially isotropic spin-orbit scattering.
When the motion of the electrons is restricted to lie in the
plane, however, we find that typical interactions remain
long ranged and exchange couplings corresponding to an-
isotropic Dzyaloshinskii-Moriya-type interactions fall off
with the inverse square of the distance. In two dimensions
the residual spin interactions at suf5ciently large separa-
tion become Ising in character.

In this paper we consider noninteracting electrons
throughout, since Coulomb interactions between the elec-
trons produce effects" of higher order than those we con-
sider here.

II. THE RKKY INTKRACiN)N IN
A MSORDKRKD MKTAI.

The interaction energy of two spins S~(r~) and S2(r2)
can be expressed in terms of the zero frequency nonlocal
electronic susceptibility as

Hist - —J'Si S2&(ri,r2),
where J is the local moment-to-conduction electron cou-
pling, and the susceptibility is written in terms of Matsu-
bara Green's functions for the conduction electron as

X(r~,r2) —QG „(rf r2)G (r2, r))

(ra„are the discrete fermion frequencies). In the pure
metal, at zero temperature, Eq. (2) can be evaluated to
obtain the RKKY exchange interaction,

2IPlkF cos(2kFR)
Xo R 3(2~)'R'

where R ( r~
—r2 (.

We note that this is long-ranged, falling off as R 3. It
exhibits Friedel oscillations, making possible the two
features of competition and frustration that are responsi-
ble for spin glass behavior.

In the metal with disorder, we calculate first the aver-
age over random impurity configurations of the suscepti-
bility (denoted by [F),„)and 6nd

[Z(R)I„-X,(R)e (4)

where I is the mean free path. This is computed in the
weak disorder limit (the perturbation parameter being
1/kpl) and is vaHd at distances R exceeding the mean free
path l. The result in Eq. (4), first written by de Gennes,
has been interpreted to mean that the range of magnetic
interactions in disordered metals is limited by the mean
free path I, being exponentially attentuated at large dis-
tances. It was pointed out however by de Chite12 that it is
necessary to investigate higher moments of the distribu-

tion of X(R) to determine the importance of fiuctuations,
and hence the range and strength of the interactions in a
particular sample.

The second moment of the susceptibility has leading
long-distance contributions from the processes shown in
Fig. 1,4 and is given by

X'(R)-, g [[6.,(R)a.,(R)I')„.
P m, &o

The averages over the electron Green's functions taken
pairwise can be evaluated in the diffusion-propagator ap-
proximation to be (omitting exponentially small terms)

[G.,(»a.,(R)]--, exp[- (3 I mi —
m2 I z) '"R/I),3'

4z lR

for rv~ and rn2 of opposite sign (z I/vF). Replacing the
sums over frequency in Eq. (5) by integrals in the limit of
zero temperature, and using the approximation above, one
finds

[X'(R)l.,-3 (7)
. 2 '.

We note, firstly, that the interaction falls off as a power
law in the spin-separation distance, and also that it is in-
dependent of the mean free path. This result is in agree-
ment with the results reported in Refs. 4 and 5. One inter-
pretation of Eqs. (4) and (7) is perhaps readily seen in the
model considered by Bulaevskii and Panyukov, in which
the electrons move in a slowly varying weak random po-
tential. Starting from a path integral representation of
the electronic susceptibility defined in Eq. (2) they evalu-
ate it in a semiclassical approximation. This yields an ex-
pression for X(R), the unaveraged susceptibility, in terms
of a functional of the random scattering potential. The re-
sult thus obtained for the susceptibility is an RKKY-like
expression that has an R prefactor multiplying an oscil-
latory cosine term. The effect of the impurity distribution
is to introduce a random phase shift in the oscillations of
X(R). This is an explicit illustration of a model in which
it is the phase rather than magnitude of the oscillatory po-
tential that is sensitive to disorder effects. Averaging ran-
domly phase-shifted oscillations results in the exponential
decay of the average susceptibility. For a given sample, of
course, the strength of the interactions must be measured
by the amplitude rather than phase of the exchange poten-
tial, and the quantity of relevance in a number of mea-
surements to be described is the typical strength of the

FIG. 1. Diagram for leading large-distance contribution to
f12(R)]„.The dashed lines denote impurity ladders.
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couplin~ between magnetic moments. This is given by
J,a J [[X (R)),„]'~2, which is therefore seen to fall off
like R as in the pure metal.

We note that the result for [X (R))„in Eq. (7) might
have been inferred from taking the interaction in dirty
systems to be given by Eq. (3) modified to include a ran-
dom impurity-dependent phase shift (as suggested by the
approach of Ref. 5). Squaring this interaction and
averaging it over impurity configurations would result in

Eq. (7) up to an overall numerical prefactor that would
depend on the choice of the distribution assumed for the
random parameters. In particular, if we made the simpli-
fying assumption that the random phase shift FAIR;I is a
variable uniformly distributed in the interval [0,2ir], we
would obtain a prefactor of 2 in Eq. (7) rather than the
somewhat enhanced value that we obtain upon summing
the ladder graphs.

This oversimplifies the true situation (as does Ref. 5).
In this random phase model, the fourth cumulant of X(R)
is negative. We show below that this quantity is actually
positive. As pointed out by C. Henley (private communi-
cation), this implies that there are appreciable amplitude
fluctuations in X(R).

Since IX~(R))«gives us information on the strength of
the interaction between spins a distance R apart, a ques-
tion of interest arises concerning the fluctuations of the in-
teractions around the average value given by Eq. (7).
This question relates to the width of the distribution of the

FIG. 2. Connected part of the fourth moment of X(R).

coupling corresponding to a given distance, and deter-
mines whether the estimate of J,a determined from
([X )„)'~ is a good estimate of the "typical" exchange
coupling in a particular sample. We compute therefore
the fourth moment, or the corresponding cumulant

&X'& -[X'(R)].,-3[IX'(R)) 1'
which represents the deviation from a Gaussian distribu-
tion (the first and third moments can be ignored in the
asymptotic region since they decay exponentially). The
leading contribution to this is shown in Fig. 2. We can
easily generalize the analysis to higher moments. The
leading contribution to the connected part of IX "],„is

' 2n

(X2n& ~22n(2n —1)! mkp 12„
(8)

(2~)'

y OO 2n —1

d») d»2„exp —(»2„+»))'~2 —g (»;+»;+, )'~2
1

In particular, the fourth cumulant is

(X4&, -2'3!I, (10)
2~ '

where I4 is evaluated numerically to be =0.4. Taking
the square root of &X4&„we find that it is comparable in
magnitude to the second moment given by Eq. (7). The
distribution of X(R) is thus seen to be fairly broad. This is
an indirect con6rmation of the statement made earlier,
namely that changes in the disorder con6guration have
the effect of phase shifting the oscillations in X, and leads
to a broad, flat distribution of width proportional to R

In two dimensions in a pure system, Xo(R)—(m/2ir R )sin2kFr and in the disordered system,
[X(R)),„decreases exponentially. In order to calculate
higher moments Eq. (6) is replaced in d 2 by

[G,(R)G,(R))„™Eo((R/I)q2 I mi —
m2 ( r), (11)

xl

where Ec is a Bessel function. Using this result we find

[X'(R)),„- (12)
6x R

Again, this is of the same order of magnitude as in the
pure system and is independent of the mean free path.

In the canonical spin-glass systems such as CuMn, one
may obtain for sufficiently low Mn concentrations, a sam-

I

pie for which the conditions R» l, kFI»1 can be met,
where I is the mean free path in the sample due to scatter-
ing ofl' nonmagnetic impurities added to the alloy. This
system is a candidate for transition to a possible spin-glass
state. Assuming a Gaussian distribution, the transition
temperature is given in mean field theory by the second
moment of the exchange couplings. ' ' From Eq. (7) we
find

dR p(R) [X'(R))„ ~ OO

c dR4P R

' 1/2

C

(13)
assuming a constant of spina c, and using a lower cutoff

This scaling of T~ with concentration is a consequence
of the power-law dependence of the interactions and
would be expected to hold although, as shown by Eq. (10),
the actual distribution of exchange interactions is not
Gaussian and the transition temperature, even in the
mean-6eld approximation will not be determined by the
second moment [X ],„alone. As in the pure metal, furth-
ermore, the effective couphng J,a corresponding to the
average spin-separation distance is proportional to the
concentration of magnetic moments, c. The same scaling
laws that have been proposed and experimentally verified
for the canonical spin-glass alloys' are therefore expected
to hold for the weakly disordered alloys formed, for exam-
ple, by the addition of a nonmagnetic impurity. We note



439

Gennes result for [X],„might be expected to apply. If the
disordered metal has a transition to a low-temperature
phase with ferromagnetic or antiferromagnetic order,
mean-field theory gives the result that the transition tem-
perature depends on the first moment of the interactions.
Accordingly, the critical temperature T, is expected to be
exponentially suppressed with disorder. However, the de
Gennes result is valid only asymptotically (R/l»1) and
would not be expected to hold well in the concentrated al-
loys or magnetic compounds such as those studied, for ex-
ample, in Refs. 18 and 19.

In connection with the exponential decay of [X(R)],„,
and experimental measurements of this quantity, it should
be noted that Eq. (4) is valid only asymptotically in R and
therefore does not violate the sum rule on susceptibility

dRX(R) dRXO(R) N(ep) (14)

which continues to hold for the averaged susceptibility
IX]. [In Eq. (14) it has been assumed that the density of
states is not appreciably changed upon addition of the im-
purities. ] There have been several discussions in the
literature' on this point. We emphasize again that the
de Gennes formula [Eq. (4)] is valid at R » / for the aver-
age susceptibility but not for distances less than or compa-
rable to the mean free path.

We consider next the generalization of our results to in-
clude situations in which spin-orbit scatterers are present.
It is assumed that these are sufficientl dilute so that the

spin-orbit diffusion length L, , » /, where L, , Q3DI...
For spin separation distances R such that L, , »R » 1, we
expect that Eq. (7) will continue to describe the typical in-
teraction strength between spins. For distances exceeding
L, , the RKKY interaction must be suppressed due to
spin-ffip scattering. This is found to be the case, when we
compute the contribution to the second moment from the
diagrams in Fig. 2. We assume the spin-orbit scattering is
isotropic (i.e., i,', r,', 3~, , ) and take R&&L... We
find the second moment of the interaction to be

also that Eq. (7) predicts that Tg should not exhibit any
dependence on the mean free path in the sample provided
firstly that I is large enough compared to the lattice spac-
ing to justify the approximation of weak disorder, and
secondly that the concentration of moments c is small
enough that we may use our results obtained in the limit
of R/f »1. Most experiments that have been performed
to investigate disorder effects on Tg in spin glasses cannot
be considered to satisfy this criterion of being doubly di-
lute. s 9'5's However Vier and Schultz'0 have measured
Ts as a function of I by varying the percentage of added
impurities to CuMn and AgMn. As the mean free path
decreases from its value in the intrinsic alloy, they find
that the transition temperature appears to level off and be-
come independent of the mean free path for values of I
comparable to the distance between the Mn ions. This is
the region in which we expect Eq. (13) to begin to hold,
and indeed on the basis of their data Vier and Schultz
correctly concluded that the "interaction was not only
mean free path independent but long ranged as welL" A
similar tendency can be seen in the higher resistivity data
on Au-Fe collected by Larsen. "

Nuclear magnetic resonance in such systems on the oth-
er hand, should yield information on both the average
value of the exchange interactions, and the higher mo-
ments. The line shift, being proportional to the first mo-
ment of the interactions should exhibit the exponential III. SPIN-ORBIT SCA'I I1 RING
dependence on 1 given by the de Gennes result. The inho-
mogeneous linewidth of the host metal NMR, on the other
hand, should be determined by the quantity IXzl„, and in
sufliciently dilute alloys be independent of I. The 1966
data of Heeger, Klein, and Tu, s who measured the change
of linewidth in Cu-Mn as a function of added Al, have
been considered '7 to be evidence of the exponential depen-
d~~ce given by Eq. (4). Unfortunately, the mean free
paths were much larger than typical Mn separations so
that the samples cannot be considered to satisfy the
asymptotic limit in which Eqs. (4) and (7) are valid.
Thus, the observed decrease of linewidth with disorder
remains unexplained.

A different class of systems exists in which the de
I

g [XIJXkl],„S'IS)SIS$ AI(R)8/8(+82(R)[(SIXSz)'+(Sl S2) —Sp8$]+83(R)[2(SI 82) +SISg —2(SIXS2) ],
i,j,k, l (15)
where the coefficients are given first for the case of three
dimensions

W, (R)-,3 Illkf
2' 21r '

mkFa, (R)-—
(21r) '

( ) 1 IIIkF 1 —4RIL o

(2~)' R'L,'.

The terms in the root-mean-square interaction which de-
cay exponentially with a characteristic length L,, include

the isotropic RKKY and some anisotropic
Dzyaloshinskii-Moriya (DM) ' couplings. However, a
term decaying as R I survives; it originates from an an-
isotropic interaction of the DM type. The result, Eq. (16)
is in agreement with that of Ref. 4.

For purposes of comparison with experiment, it is im-
portant to note that the exponential decay and hence ex-
ponential scaling with concentration predicted by Eqs.
(15) and (16) is valid only in the limit of large spin sepa-
rations. To take a specific example, we consider metallic
alloys such as CuMn„A„„.. When the concentration x of
local moments is much greater than that of the spin-orbit
scatterers y„,we expect that interactions will decay with
a power law. The conclusions of Sec. II will continue to
hold, and additionally, due to the presence of the long-
rRllgc Dzyaloshlllskll-Mol'lyR llltcractlolls wc cxpcct lineal
scaling of the macroscopic anisotropy field H~ with con-
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centration y, , For x ~y, , we expect a crossover to ex-
ponential scahng. The spin-glass transition temperature
should decrease exponentially with y, , and so also the an-
isotropy field associated with remanent magnetization.

In thin films (thickness small compared to the diffusion
length) similar results are obtained, with the coefficients
A;(R) of the spin couplings now being replaced by

a, (R)-, „Ko(2R/L, .,)-(2ir)'R" ' "
R 4'/L,

24m'
Bs(R) ~ z z K)(2R/L, , )— s e

LO.

FIG. 3. Leading contribution to three site correlations [Eq.
(i6)].

(the functions have been evaluated for distances
R &&L,, ). Now we consider the case of strictly two spa-
tial dimensions, setting 1 z,", 1/zf, 0. Restricting the
spinwrbit scattering to lie strictly in the plane must now

I

result in a highly anisotropic interaction between the spins
Si and 82 owing to the fact that electrons with spins
oriented along the z-direction are not Hipped by the spin-
orbit scattering. Indeed one now finds long-range spin-
spin couplings, as seen in the following expression for the
second moment:

g IZrgZk(1. ,$'i$$$t$] Ci(R)$/AS/+(Si Sz) +(Si&Sz) )
1,j,k, l

+C2(R)[2(Si Sz) -2S/gSQ-2(Si Sz) ]+Cs(R)[S(,SQ+(Si S2) —(Si&Sz) ] .

The spin components are written (S,S,) where S are the planar components. The coefficients C~ (R) are

Ci (R) ~ 4, C2(R) 4 ~ Ko(2R/L, .o.)— e
3 2ir 'R' 2' 'R' "

R4qR/L

'm'
(2ir) 4R2L z RsL, ,

For large R, the leading contributions are given by
Ci(R), and the two other functions decay exponentially.
The coefficient of the term Ci(R) can also be written
($(,$$+S/S)-$i, $2, ) which shows that the important
long-range part of the spin interactions involves only the z
components of the spins. Thus we expect that addition of
spin-orbit scatterers in d ~2 will lead to a crossover from
Heisenberg to Ising behavior in a dilute spin glass.

To understand the result for the second moment given
by Eq. (18) we consider the long-ranged part proportional
to Ci(R). The spin couplings that survive over large dis-
tances in the disordered medium will of course be random.
The mean square of these interaction strengths is nonvan-
ishing at large distances and is given by the function
Ci(R). The random interactions are therefore long
ranged, falling off as R . In strictly two dimensions,
even in the presence of spin-orbit impurity scattering,
spinwxchange interactions survive at long distances. This
would presumably only be relevant for strictly two-

I

dimensional cases such as semiconductor inversion layers
In thin metallic fi]ms, on the other hand, the usual fits to
magnetoresistance data indicate that the spin-orbit in-
teractions are effectively isotropic.

IV. THREE SITE CORRKI.ATIONS

Finally, we consider the problem of correlations be-
tween the various "random" couplings in the disordered
metal. It might be expected that the spin polarizations at
two distant points due to a single spin at the origin would
be uncorrelated (falling off exponentially with the dis-
tance between the two sites). We compute the correlation
function [Z(Ri)Z(R2)],„where Z(Ri) and Z(Rz) are
essentially the spin polarization fields induced at sites Ri
and Rz by a spin placed at the origin. This represents the
correlation of the couplings between the origin and the
two sites. The leading contribution to such correlations is
illustrated in Fig. 3 and gives

[X(Ri)Z(R,)].,- (20)
(2~) & (I Ri I + I Rz I + I Ri-R21) I RiiiR2iiRi-R21

For sites R i and Rz equidistant from the origin and from each other this correlation faBs off with distance as R . How-
ever, comparing it to the typical exchange couphngs given by Eq. (7), these correlations are smaller by a factor of
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(kFl) (I/R) and can be neglected in the weak

scattering limit.

Typical RKKY interactions in disordered metals with
purely elastic scattering retain their long-range character,
although there are large disorder-induced Iluctuations
about the mean value. The higher-order moments of the
distribution of interactions show it to be fairly broad,
refiecting the sensitive dependence of the interaction on
the disorder. In a spin glass the scaling of thermodynamic
quantities with the concentration of magnetic moments
should however continue to hold as in the pure system.
Spin-orbit scattering suppresses the spin-exchange cou-
nlings at large distances, except when the electron motion

is restricted to two spatial dimensions. In this case the ex-
change interactions persist at long range, falling off as the
inverse square of the distance between local moments.
We expect further that the addition of the spin-orbit
scatterers will result in a crossover from Heisenberg to Is-
ing behavior. Correlations between couplings involving
three spins do not decay exponentially but are small and
can be neglected in the weak scattering limit.
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