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%'e present new forms for the bulk modulus and sound velocity of solids under compression,

based on the universal equation of state of Vinet, Ferrante, Smith, and Rose. We then compare the

Vinet et al. expressions with a number of bulk modulus formulas previously utilized in high-

pressure studies. We demonstrate that this form yields a superior 6t to experimental data to very

high compressions, for a very wide range of solids. These solids cover the entire range of values of
the pressure derivative of the bulk modulus which has been observed in high-pressure measure-

ments.

INTRODUCTION

Significant progress has been made over the past
several years toward the goal of describing the properties
of condensed matter in terms of universal relationships
involving a small number of parameters. Recent work
has demonstrated that the ground-state energy versus
atomic separation for a large number of metals obeys a
universal relationship of the form

E(Rws)=LEE'(a'),

where E'(a '
) is a universal function of

a'=(Rws —Rws, )/L, bE is the energy at equilibrium
spacing Rws„ I. is an appropriately de6ned scaling
length, and R s is the signer-Seitz radius.

Rose, Ferrante, and Smith' calculated the adhesive
binding energy of all pairs of interfaces formed from Al,
Mg, Na, and Zn and found that the binding energy
obeyed a universal relation of the above form, where I.
was chosen as the average of the Thomas-Fermi screen-
ing lengths of the bulk metals. They also found that the
bulk energy of Mo, K, Sm, Ba, and Cu was described by a
universal energy-distance relationship of the same form.
Smith, Ferrante, and Rose then obtained a similar rela-
tionship for the chemisorption of H, Li, Na, K, Cs, and
Rb atoms on jellium. Next they showed that the binding
energy of bulk Mo metal, the diatomic molecule H2+,
chemisorbed oxygen, as well as Al-Zn interfaces, exhibit-
ed simple two-parameter scaling, and thus could be ex-
pressed in terms of a universal binding-energy-distance

F(V)=bF'(a ), (3)

where bF =bE/L, and F (a')= E'(a'). Alt—erna-
tively, one may define O' =F'/a', and thus

G'(&') =4~R2wsL'P( V)/~E(Rws Rws. »—
where Vo=(4m/3)Rws„VO is the equilibrium atomic
volume or in terms of experimental quantities

6'(a')=[X /3(X —1)]P(V)/Bo,

where X =( V/V )'o~ and the scaling length L for metals
is fixed by

L =(hE/12nBOR ws, )' (6)

The universal force function F'(a ') can be related to ex-
perimental quantities by the following:

F'(a')=(Rws, /3L)X(V) P(V)/Bo .

Rose et al. scaled experimental pressure-volume data for

relation. 3' Guinea, Rose, Smith, and Ferrante
differentiated the universal energy relationship with
respect to atomic volume V =4m(Rws) /3 and obtained
an equation of state for metals and alloys

P(V)= [hE/(36m V—)L]E' (a'),
where a prime indicates differentiation with respect to
a'. Later they showed that the shape of the force rela-
tion, F(V)=4nR~sP(V), can be transformed into the
universal form
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Cu, Ag, I.i, Rb, Pt, Pd, Mo, and stainless steel. They ob-
tained good agreement with a theoretical estimate for
F'(a'), namely

F'(c )=a '(1 —0.15a ' +O.OSa ' )exp( —a ') .

Now note, if one forms

H( V)= —BoG'(a')=[X /3(1 —X)]P(V)

and plots lnH versus (1—X), a straight line is obtained if
G'(a') is a universal function of a'. Vinet et al. made
such plots for a number of different solids under compres-
sion and verified that, to a good approximation, G'(a')
is a universal function of a' for all classes of solids. Thus
they obtained an isothermal equation of state for solids
under compression in the absence of phase transitions.
Recently Vinet et al. s extended these results to include
temperature efFects, and thus were able to predict other
isotherms from a reference isotherm, the temperature
dependence of the bulk modulus, and the expansion
coefFicient above the Debye temperature. In addition,
Jacobsen and Vinet have applied the analysis to liquid
lubricants which undergo sohdification transitions at
elevated pressures.

Recently Dobson' proposed a universal expression for
the bulk modulus. Other bulk modulus expressions pre-
viously utilized include the well-known Birch-
Murnaghan" expression, an exponential expression due
to Grover, Getting, and Kennedy, ' the Murnaghan ex-
pression, '3 and the Keane'4 expression. All of these
forms give a reasonable approximation to the experimen-
tal data over some range of compression. In order to elu-
cidate the properties of solids under compression, and to
obtain useful expressions for the analysis of experimental
data, it is of interest to explore the relationship between
the various equations for the bulk modulus.

In this paper we fj[rst present two new expressions for
the bulk modulus and speed of sound based on the
universal relationships of Vinet et al. ' These expressions
are demonstrated to be useful for the analysis of experi-
mental data over an extremely large range of compres-
sions. Next we compare the various bulk modulus ex-
pressions by means of expansions in powers of the vari-
able y =1—X and demonstrate that all the expressions
are equivalent for small compressions. Finally, the vari-
ous equations are compared with experiment in order to
determine the range of validity of the difFerent forms

%e observe that a large body of data, obtained in
shock-tube experiments over an extremely wide range of
compressions, are currently available in the litera-
ture. ' ' Extensive tabulations of density p and sound
velocity c as functions of pressure for room-temperature
isotherms exist. These tabulated variables have been ex-
trapolated from the experimentally determined quantities
on the Hugoniot curves. %'e 5nd that these data can be
fit by a universal function of density and sound velocity.
This has enabled us to predict the behavior of the bulk
modulus, 8, for these materials, over a very large range
of pressures. Conversely, in the case of solid hydrogen

and deuterium, one may predict the variation of the
sound velocity from the bulk modulus measurements
over a wide range of pressure.

It was found in previous work that the pressure iso-
therms for a wide range of materials were very wel1
represented by

P( V)=Bo[3(1—X)/X ]exp[i'(1 —X)],
P( V)=8,[3y/(1 —y)']exp(i'), (10')

where il= —', [(BBIBP)~ o
—1], and y =(1—X). Thus

lnH =lnBo+rly and the lnH versus y plots-are straight
lines of slope g and intercept lnBo Th. e isothermal bulk
modulus is given by

8 =(Bo/X2)[2+(rf —1)X—riX ]exP[il(1 —X)], (11)

8 =[Bo/(1 —y)2][1+(ran+1)y —qy2]exp(riy) .

We proceed by forming b (X) X 8 ( V)

b (X)=Bo[2+(rI—1)X rIX—]exp'(1 —X) (12)

or

b (y) =8o[1+(9+1)y+my']expiry . (12')

Therefore,

lnb =1nBo+riy +in[1+(ii+1)y —riy ] .

The adiabatic bulk modulus is related to the sound ve-
locity and density by

B„=pc =poc /X2 3 (13)

The isothermal bulk modulus

Br=(CtJ/Cp)8„,
where the C's are the specific heats at constant pressure
and constant volume, respectively. Thus

lnb„= ln( Cp /C& ) +lnbr (2 lnv —lnX)——, (13')

where U =p,' 2c.1/2

In Fig. 1 we present plots of lnb„versus y for several
solids except for H2, where we have used br. In Fig. 2
we present plots of inc versus y for the same solids. The
solids chosen cover the entire range of il's characteristic
of the materials which have been investigated experimen-
tally. %e observe that these plots are quite linear over a
considerable range of y. %'e have shown that this result
would be essentially true, whether using the isothermal or
adiabatic bulk modulus. A direct comparison of the two
using the speed of' sound to calculate 8~ and derivatives
of the isothermal P-V curves for 8& gave a rnaxirnum de-
viation in Inb of 5% and a mean deviation of
(0.15+0.13)% for the 19 materials for which we had
data. "

In our analysis of the experimental data, we proceeded
by calculating Inu and InH from the tabulated values of e,
p, and P. Then we obtained Inb from lnv, using Eq. (13'),
rather than from lnH. This has the advantage that one
need not input an q value. The values of the zero-
pressure bulk modulus 8o obtained from least-square 6ts
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of the lnb and lnH plots, are in good agreement with each
other.

In the case of solid hydrogen and deuterium, one has
available values of V/Vo, P, and B. Hence one may uti-
lize Eq. (13') to obtain lnu. Thus we have presented an al-
ternate method for analyzing experimental bulk modulus
and sound velocity data for solids under compression.
We note that the lnb and lnU plots are, to a very good ap-
proximation, linear in y for materials in which there are
no phase transitions over the observed pressure range.

COMPARISON KITH OTHER BULK
MODULUS FORMULAS

8 =Bo[1+(2ri+3)y+[—3r12+4g+3]y +O(y )) .

(14')

Grover, Getting, and Kennedy' utilized the following
expression for B:

8 =Boexp(ab V/Vo),

which may be written in terms of X as

8 =Boexp[n(1 —X )] .

Expanding the exponential in powers of (1—X ), we ob-
tain

%e now proceed to compare several previously utilized
expressions for the bulk modulus of solids, under
compression and compare them to Eq. (11'). The expres-
sions due to Dodson, ' Birch, " Grover eg a/. ,

' Mur-
naghan, ' and Keane' will be shorvn to have identical
leading terms for small compressions, as Eq. (11').

Expanding exp(rly) in powers of y, Eq. (11') for the
bulk modulus becomes

8 =Bo[l+(2g+1)y+3gy /2+O(y )]/(1 —y) . (14)

Now we expand the term in (1—y) to obtain an alternate
expression for 8,

8 =Bo[1+a+a /2 —a(1 —a)X +aX /2+ ] .

(17)

a=Bo (19)

Equation (21) reduces to the following when X and X
are expanded in y:

8+Bo[1+3ay —3a(1 —a)y +O(y3)] .

Note that the leading terms of this expression for B are
identical to those of Eq. (14) if one equates 3a to
(2' + 3), where ri = —,'(8 o

—1). Thus we ftnd that
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FIG. 1. A plot of lnb [b =X 8 (X)], vs (1—X) [X= ( V/Vo }'~3],for (a) hydrogen (Refs. 17 and 18), (b) molybdenum (Ref. 15), (c)
titanium {Ref.15), and (d) silicon carbide (Ref. 15).
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Next we -show that the expansion of the following form
for 8 due to Dodson' has the same leading terms, for
small y, as our expression

8 =a[(1/X) —P]

8 =Be[ 1+(4w +10)y +(64w —55)y /2

+O (y ') ]/(1 —y)' (25)

where m =g/2 ——,'. Expanding in powers ofy, we obtain

8 =(98eBe /4)[(1/X) —1+(2/38o)] {21)

where a =Be(1—P) and P= 1 —(2/38e ). Thus
a=98o80 /4 and

or in terms of q

8 =Be[1+(2g+1)y +(32'—199)y /2

+O(y')]/(1 —y)' . (26)

P =38o(1—X )[1+(rI/2 ——,')(1—X )/X ]/2X (23)

This yields the following form for 8, which has the same
leading terms as Eq. (14):

Substituting y =1—X, we obtain, after some algebraic
manipulation

8 =Be[1+(2g+1)y+(2rl+1)y /4]/(1 —y)' . (22)

Thus Dodson's form for 8 has the same leading terms,
for smally, as Eq. {14).

Another equation of state due to Birch, " which has
been extensively utihzed in geophysics and is based on an
expansion of the elastic strain energy to second order,
may be written as

8 =8,[1+(2rl+3)(X-'—1)/5], (27)

which, upon expansion ofX ~ in powers ofy, reduces to

8 =80[1+(2rl+3)y+(4rl+6)y'+O(y')] . (2&)

The Murnaghan' bulk modulus formula is given by

8 =8,( V, /V) '=8,(1—y)-"v+3) (29)

whose expansion in powers ofy is

Another bulk modulus formula, used in geophysics,
which has the same leading terms as Eq. (14) is that of
Keane.' lt may be written as

8 =BoX 9[9w+7(l —2w)X~+5(w —l)X4]/2, (24) 8 =80[1+(2rI+3)y+(2g +7r)+6)y +O(y )] . (30)
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(R.ef. 15), and (d) silicon carbide (Ref. 15).
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The Murnaghan expression is a 6rst-order expansion of
the elastic strain energy and is thus linear in the pressure.
Therefore, it is not expected to represent the nonlinear
terms arising at high compressions. '

Thus the various expressions for the isothermal bulk
modulus which we have considered all have the same
leading terms for small compressions (small y).

obtained by taking derivatives of pressure data. The
present model and the Birch formula give the best fit to
the data over this unde compression range. Since Ander-
son and Swenson used the Birch equation to smooth their
experimental data, it is not surprising that it 6ts the hy-
drogen data so well. However, as can be seen for Ti, Fig.

2.0—

We now compare the various bulk modulus expressions
with each other and with experimental data for a range of
g values. In Figs. 3(a)-3(e) the various expressions are
plotted for t), varying from 1.36 to 9. We observe that
the curves all agree with each other for small y (low
compression). This is understandable since the leading
terms of the expansions of all the bulk modulus expres-
sions, in powers of y, are identical. However, at high
compressions, substantial di8'etences exist between the
various forms of all values of g. For solids with large
t)(8o) values, the formulas of Uinet et al. and Birch fit
the experimental data most accurately over the entire
range of y. For smaller t), the expressions of Uinet et al.
and Grover et al. yield the most accurate representation
of the data. Several difFerent methods were utilized for
selecting the values of Bo and Bo used in the compar-
isons. For NaCl we used the independent ultrasonic
values of Bo and Bo. For hydrogen we used the values
reported by Anderson and Swenson, and for Ti and Mo
we used values obtained from lnH versus y plots.

Since there is some ambiguity in selecting values of 80
and 80 from compression data, we have performed a fur-
ther comparison which is model independent. The hy-
drogen bulk modulus data of Anderson and Swenson is
given for a very wide range of compressions
(X =0.4—1). Thus the ability to fit this data accurately
is a severe test of each model. We have performed a
least-squares ftt to the hydrogen data for each of the func-
tions plotted. The results are given in Table I as
Q = 1 —g[(rms deviation)/(experimental value)). Where
possible we have used the expressions for the pressure for
each model to fit the data, since the bulk modulus data is
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VIOLET ET Al.
BIRCH

O. Q

TABLE I. A comparison of 80 and 80 for least-squares
curve Ats to the Anderson and Swenson hydrogen data between
the various theoretical expressions. 0.2

Vinet et al. '
Grover et al.
Keane'
BIrch
Dodson'

1.62@10'
9.65@10'

—1.88X10'
1.7X 10'
7.77' 10'

7.45
8.02

—3.1
7.23

210.65

0.9725
0.8811
0.2535
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'Reference 7.
Reference 12.

'Reference 14.
dReference 11.
'Reference 10.

FIG. 4. A comparison of lnH (H=PX /[3(1 —X)]), vs
{1—X) [X=(V/V0)'~3] between the Vinet et al. (Ref. '7) ex-
pression for the pressure, and the Birch equation (Ref. 11) for
the pressure for a range of values of g(80) representative of ex-
perimental data.
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3(e), the Birch equation fails at large compressions when

ri is small (1.37). Examination of Eq. (23) shows that the
'X dependence reverses sign for ri=4. 5 (Bo=4). This
yields a nonphysical decrease of the bulk modulus with
increasing y, without a phase change, for q ~4.S. Thus
we may conclude that the present expression gives the
best representation of the experimental compression data
over the widest range of parameters used (Bo,Bo, V!Vo ).

Since the Birch equation is extensively used at present
for analysis of high-pressure data, we make a further
comparison. In Fig. 4 we plot lnH versus y for q varying
between 2 and 9 for both the Vinet et al. model and the
Birch equation. %e can see that for large q the Birch
equation and the Vinet et al. model yield essentially the
same functional form. Without further experimental
data, at large compressions, for materials with large g, it
is dif6cult to choose between them. However, our equa-
tion has the advantage of representing the widest range of
experimental data and giving a particularly simple
method for data analysis utilizing the lnb and lnu versus y
plots.

There is one final point to be made concerning data
analysis and the fitting of experimental data. Each of the
bulk modulus formulas discussed have 80 and 80 appear-
ing explicitly. The values of 80 and 80 obtained by
fitting the experimental data may differ signi6cantly from
the values given by fitting the small compression experi-
mental data. We have found that the values of Bo and Bo

obtained from the Vinet et a/. model are relatively in-
sensitive to the number of experimental data points used
in the fitting procedure; all the other expressions are

much more sensitive to the number of data points utilized
in the fit. A comparison of the relative sensitivity of the
various expressions is also given in Table I. For example,
for hydrogen the Murnaghan equation yields values for
Bo and Bo of 2.68X10 Pa and 4.26 with Q=0.92 using

all of the data, compared to values of 1.7X10 Pa and 7
obtained using the small compression data.

In conclusion, we have presented several new, general-

ly valid expressions for the analysis of compression data
and determination of the bulk modulus of solids under
high corn.pression. Expressions widely used in the litera-
ture have been expanded in terms of the compression and
compared with each other. All of the expressions agree
with each other to first order; however, they differ appre-
ciably at high compressions. Compression data for solids
having a wide range of t) (Bo ) values has been analyzed.
The g values of the solids studied is characteristic of the
entire range of available experimental data. We have
found that the EOS of Vinet et al. yields the best repre-
sentation of the experimental data over the entire range
of parameter values (Bo,Bo, V/Vo) thus far observed in

condensed matter under compression.
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