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We present s minimal tight-binding Hsmiltonisn which describes properly both valence and
conduction bands of tetrahedrally coordinated seIniconductors. %A Snd that, for a correct
description of the electronic structure, it is neoesary to include a realistic wave-function basis and
at least the interaction matrix element between sp orbitals in second-neighbor atoms pointing to-
wards the common neighbor. Using Sister orbitals as basis functions and a six-parameter Hsmi1-
tonian, the band structure of silicon is reproduced with a root-mean-square deviation with respect
to the experimental one of 0.3 eV.

Since the pioneer work of Slater and Koster' in 1954
the tight-binding method has been extensively applied to
semiconductors. Not only the band structure of crystal-
line structures has been studied but also defects like va-
cancies, impurities, surfaces, etc., have been analyzed
within the tight-binding framework. Several ddferent
tight-binding Hamiltonians have been proposed in the
pastz 'c because many complicated problems can only be
managed by using this simplified and yet realistic ap-
proach.

In order to keep the simplicity of the method it has been
customary to assume an orthogonal basis localized at the
different atoms of the system (Wannier functions, "'2
say). The matrix elements of the Hamiltonian in this
basis are fitted to reproduce the experimental energy lev-
els. In spite of the success of this approach it has several
shortcomings. First, the matrix elements of the Hamil-
tonian in the assumed orthonormal basis have a diScult
and in some cases meaningless interpretation (the chemi-
cal pseudopotential' provides this interpretation in a
comphcated way). Second, since the basis is unknown,
magnitudes like charge transfer between the atoms,
dipole-matrix elements, etc. are of dubious validity.
Third, the conduction bands and therefore the energy gap
are poorly reproduced unless far-neighbor interactions are
taken into account or ad hoe extensions of the atomic
basis are introduced. Fourth, since the assumed basis is
orthonormal it depends on the local environment of the
atoms as the Hamiltonian matrix elements do. Therefore,
these matrix elements are not transferrable from one local
environment to another as is currently done in defect cal-
culations.

To overcome these shortcomings while keeping a
manageable number of parameters, we present a tight-
binding Hamiltonian using a basis formed by atomic or-
bitals that reproduces accurately both valence and con-
duction bands of a prototype semiconductorlike silicon.

We assume an atomic orbitals basis formed by Slater

orbitals of the form

where N is a normalizing constant, Y1 is a spherical har-
monic, and p ~r/ac. The coef5cient p is taken to be 1.75
which is the value obtained in totalwnergy calculations of
clusters of sihcon atoms. The overlap between these
atomic valence orbitals can be calculated analytically. '

Results for the overlap S~J between sp orbitals labeled i
and j (see Fig. 1) at first- and second-neighbor silicon
atoms are given in Table I.

In order to obtain the minimal tight-binding Hamiltoni-
an and therefore the minimum number of matrix elements
to be included in the calculation we make the assumption
that they are governed by the corresponding overlap ma-
trix element (in the Hiickel approximation they are pro-
portional). In this way we observe that the overlap be-
tween two sp3 orbitals in second-neighbor atoms and
pointing towards their common nearest-neighbor atom is

3

FIG. 1. Labeling of the sp3 orbitals at nrst- and second-
neilhbor atoms in the diamond structure.
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TABLE I. Overlap between sp 3 orbitals at 5rst- and second-
neighbor silicon atoms (see Fig. I). The orbitals are Slater-type
orbitals of the form of Eq. (1).

(1 [ 5) -0.477
(1 [ 6& -0.046
&2l6& 0033
&2 ( 8)-—0.058

&1 i
2') 0.038

&I (
3') -0.011

&1 I 1 & -0.012
(3 i I ') - -0.005
&3 [ 3'& -0.003
&3 ( 4'&-0.006

much larger than any other second-neighbor overlap and
moreover it is larger than some of the nearest-neighbor
overlap. We therefore consider a Hamiltonian which in-
cludes all the interactions between nearest-neighbor atoms
and only the matrix element (I ~H[2') and the corre-
sponding overlap (1 (

2') (see Fig. 1). To obtain the Ham-
iltonian matrix elements we diagonalize the corresponding
8 X 8 matrix and fit the parameters (the Hamiltonian ma-
trix elements) to the "experimental" band structure. '

We consider the four valence bands at the I; X, and L
points of the Brillouin zone. For the conduction band we
fit to the four energy levels of the I point and to the lower
ones of the X and L points. The resulting band structure
is shown in Fig. 2. The corresponding matrix elements are
given in Table II. For the diagonal matrix element
(1 ( H ~

I& the atomic value -9.732 eV is taken. We ob-
serve a good overall agreement between this band struc-
ture and the "experimental*' one. The root-mean-square
deviation for the eigenvalues fitted being 0.31 eV. We ob-

TABLE II. Hamiltonian matrix elements in eV between the

sp 3 orbitals given in Fig. 1. These parameters correspond to the
silicon band structure dragon in Fig. 2.

&I ( H ) 2& —1.069
(11H I 5)-—8.77'
&1 I H I 6& -—1.097
&2(H[6&--0.974
&2[Hi 8&-+0.713

(1 I H I
2'& —2.487

tain an indirect gap of 1.24 eV. In addition, the direct op-
tical gap is of the order of 4 eV throughout the whole Bril-
louin zone. This clearly indicates a correct description of
the band structure particularly in the vicinity of the ener-

gy gap. The energy levels calculated here and the experi-
mental ones for the I", X, and L points of the Brillouin
zone are given in Table III. It is important to indicate
that the rms of these bands is similar to the best fitted
band structure including up to third-nearest-neighbor in-
teractions between orthogonal orbitals.

We have tried to reduce the number of parameters and
to study the effect of the overlap in the band structure. '

To this end we have performed the same calculation as
above for two model Hamiltonians. We consider (i) a
nearest-neighbor Hamiltonian with the same nonorthogo-
nal basis as before and (ii) a six-parameter Hamiltonian
assumt'ng an orthogonal basis. The resulting band struc-
tures are shown in Figs. 3 and 4, respectively. We obtain
a much worse band structure than in previous case with a
very poor conduction band. The root-mean-square devia-
tion in Figs. 3 and 4 with respect to the experimental
bands is 1.09 and 0.74 eV, respectively. It is remarkable
that the difference between Figs. 2 and 4 is that in the
former a realistic basis is included in the calculation but
in both cases there are the same number of adjustable
parameters.
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-12.96
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3.36
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—12.36
0.00
3.42
4.10

TABLE III. Calculated and experimental (Ref. 15) energy
levels of silicon. The calculated values correspond to the Hamil-
tonian matrix elements of Table II and the band structure of
Fig. 2.

L I

FIG. 2. Band structure of silicon calculated ~ith the set of
parameters of Table II and the corresponding overlaps of Table
I. The band structures (the Hamiltonian matrix elements) have
been obtained Iltting to experimental values the lower eight, six,
and Sve eigenvalues at the points I,X, and L, respectively.
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neighbor interactions plus the matrix element

W &1 I H12 )

and the overlap

cr &I 12') .

The splitting between the nondegenerate energy levels
I ~ and I 2. is given by the solution of the matrix

E,+3(W-Ea) -E 4(V -ESg, )
4(V„.-ES„.) E,+3(W-E~) -E

where V„and S„stand for the interaction and overlap
between s orbitals at nearest-neighbor atoms. On the oth-
er hand the separation between the X~ energy levels is
given by the solution of

FIG. 3. Band structure of silicon calculated for the Slater-
type orbitals basis described in the text and limiting the interac-
tions (and the overlaps) to nearest-neighbor atoms. The Hamil-
tonian matrix elements have been obtained Stting to experimen-
tal values the lour eight, six, and ave eigenvalues at the points
I,X, and L, respectively.

In order to understand the origin of the different
features in the band structure and how they depend on the
different input parameters, we have calculated analytical-
ly, considering the symmetry of the diamond lattice, the
energy levels at some high symmetry points of the Bril-
louin zone. The Hamiltonian includes all nearest-

I
4

Ep —(W-Ecr) -E 4(V» -ES»)
4(V„,-ES„.) E, —(W-Ea) -E (4)

where V„, (V~~+2V~~)/3 and S» (Sz~+2S~~,)/3
between nearest-neighbor atoms. A similar equation can
be written for the Xq splitting such that the Hamiltonian
parameters enter only through the parameter V,„

(V~~- V~~)/3. In this way we observe the effec of
the different parameters. We notice two main effects of
the overlap and the interaction W &11H12'). The over-
lap appears in the denominator of the solutions increasing
the energy of the antibonding states making the conduc-
tion band more free-electron-like than in nonorthogonal
basis calculations. One of the main effects of the interac-
tion W is to make a kMependent effective pwrbital atomic
energy shifted by the matrix element

&p, 1H1p, & Wf —cos(ak„) [cos(ak„)+cos(ak, )l

+cos(akim)cos(ak, )f . (5)

E, —(W-Ea) -E 4(V,s -ES~,)
4(V„-ES„) E,+3(W-Ea) -E

Fitting these energy levels allows us to 6x the parameters
V„,V@

—V„,3'~ between nearest-neighbor atoms and—E
In addition, the separation between the I &5 and I't, , en-

ergy levels is given by the solution of

L f

FIG. 4. Sand structure of silicon calculated for an orthonor-
mal basis. In addition to the interactions between nearest-
neighbor atoms, the interaction &t 1H [ 2') (see Fig. 1) between
the sp orbitals at next-nearest-neighbor atoms pointing towards
the common neighbor is included in the calculation. The Ham-
iltonian matrix elements have been obtained by fitting to experi-
mental values the lower eight, six, and Sve eigenvalues at the
points I,X, and L, respectively.

This matrix element is positive at the I point and negative
at the X point. This is clearly responsible for the indirect
gap between these two points of the Brillouin zone since it
raises the p-like bands near the I point and lowers them
near the Xpoint.

In conclusion, we have presented the minimal tight-
binding Hamiltonian that provides us with a correct
description of both the valence and conduction bands of a
prototype semiconductorlike silicon. The results obtained
with the model allows us to conclude the following.

(i) Inclusion of a realistic basis appears essential not
only to reproduce adequately the conduction band but also
to substantiate the physical meaning of the Hamiltonian
matrix elements.

(ii) The inclusion of only one interaction between sp3
orbitals in second-neighbor atoms improves in a funda-
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mental way the band structure of silicon. Inclusion of
other interactions improves even more the band structure
but the already obtained parameters remain essentially
unchanged (inclusion of the remaining interactions be-
tween second-neighbor atoms reduces the fms with
respect to experiments to 0.17 eV). This stresses the
paramount importance of the parameter 8'.

(iii) The obtained band structure reproduces well both
the four valence and the lower conduction bands-. The
rms with respect to experimental ones is similar to the best
band structure calculated in the literature using localized
basis. The bands calculated by Louies using 10 orbitals
per atom and interactions up to fifth-neighbor atoms have,
for the symmetry points of the Brillouin zone, a rms of
0.26 eV. Also, our rms is similar to that corresponding to
the tight-binding bands calculated by Papaconstanto-
poulos and Economou7 with interactions up to third-
neighbor atoms and including 19 adjustable parameters.
This clearly stresses the point that to reproduce the band
structure using orthogonal basis, interactions between well
separated atoms have to be considered.

(iv) We believe that we have obtained the minimal
physical Hamiltonian that reproduces both valence and

conduction bands. The number of parameters is the same
as in the sp s model with a much better description of
the conduction band. In the case of the sp 3s a spurious
empty band associated to the s orbitals appears in the
conduction band.

(v) The band structure obtained can only be considered
as a correct first approximation to the experimental band
structure. In order to describe accurately all the conduc-
tion bands, atomic d-orbitals have to be included in the
basis set as explicitly demonstrated by Louie. s

(vi) Due to the realistic basis, the Hamiltonian matrix
elments depend only on the local environment and there-
fore can be transferred to other situations like surfaces, in-
terfaces, vacancies, etc. At the same time, the Hamiltoni-
an is simple enough to allow one to handle difficult atomic
configurations like amorphous networks, alloys, etc. ,
which cannot be considered using more sophisticated
Hamiltonians. Work in this direction is in progress and
will be published elsewhere.
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