PHYSICAL REVIEW B

VOLUME 37, NUMBER 1

1 JANUARY 1988

Exact-cigenstates study of the disordered Hubbard model

Avinash Singh
Loomis Laboratory of Physics and Materials Research Laboratory,
University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801
(Received 3 April 1987)

The static magnetic susceptibility of the disordered Hubbard model for the half-filled-band case
is studied using exact eigenstates of the noninteracting disordered system. The macroscopic
renormalization-group method is applied to study the critical behavior in the vicinity of the nonin-
teracting (Anderson) fixed point. A weak Hubbard interaction is found to stabilize the metallic

phase.

I. INTRODUCTION

In this paper we have studied some aspects of the
Hubbard model with disorder (random on-site energies)
using exact eigenstates of the noninteracting part of the
Hamiltonian. We have calculated the static magnetic
susceptibility of the noninteracting system in one and
three dimensions (1D and 3D) and have studied the na-
ture of the magnetic instability in this disordered, in-
teracting system within the random-phase approxima-
tion (RPA). We have also applied the macroscopic
renormalization-group (MRG) method to first order in
interaction strength to study the nature of the phase dia-
gram in the vicinity of the noninteracting fixed point
which describes the Anderson transition.

The presence of strong interaction leads to a develop-
ment of spin alignment, and spin fluctuations which play
an important role in the mechanism of the metal-
insulator transition are generated in the system.!=® To
this end it is thus of interest to study the nature of spin
fluctuations (e.g., their ¢ dependence®). The g depen-
dence of the impurity (static) susceptibility for the para-
bolic band case was studied recently* in the (impurity)
ladder approximation. However, it appears difficult to
go beyond this approximation and calculate, in particu-
lar, the localization contribution to the static susceptibil-
ity. Here we have used the exact eigenstates to evaluate
the static impurity susceptibility, and so the localization
part of the problem is treated exactly. By substituting
this in a RPA-type formula for the magnetic susceptibili-
ty of the interaction system we find that the appearance
of magnetic instability is still signaled by the Stoner cri-
terion. The magnetic response is maximum for q=m,
suggesting a disordered antiferromagnetic arrangement
in the magnetic phase. The response is, however, very
broad, implying that the spin fluctuations which are gen-
erated are extremely localized in space.

A surprising aspect of the interplay of disorder and
short-ranged interaction is that the correction due to in-
teraction, to first order as well as to higher orders [(but
all being of O(1/N) within a 1/N expansion scheme)],
to the dc conductivity, do /o, is positive.> (The 1/N ex-
pansion scheme was introduced by Wegner® and Opper-
mann and Wegner® who showed that by introducing N

37

species of electrons with N large, it is possible to use
1/N as an expansion parameter.) This implies that the
metallic phase is stabilized by short-ranged interaction.
By using the MRG method we have verified that this is
true even when the disorder part is treated exactly.
However, one significant difference is that in our exact-
eigenstates analysis of the lattice system this stabilization
effect is present in the O (1) contribution of interaction.
This stabilization of the metallic phase can be under-
stood within a self-consistent Hartree picture in which
the Hubbard interaction is seen to screen disorder.”?
The self-consistent treatment of short-range interaction
within the exact-eigenstates analysis is, in fact, nontrivial
for the lattice system and is, we have indicated in Sec.
III C, quite important.

II. MAGNETIC SUSCEPTIBILITY

We consider the disordered Hubband model on a lat-
tice. The Hamiltonian is
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The first term in Eq. (1) is the on-site random potential
and the €; are chosen from a uniform distribution on
—W/2<€; <W/2. The second term is the hopping,
with the prime indicating a sum over the nearest-
neighbor pair of sites only. The last term is the on-site
Hubbard interaction.

Information about the nature of spin fluctuations in
the disordered system is contained in the magnetic sus-
ceptibility, X(q,w); therefore, it is of interest to study the
effect of disorder on X. We first study the
configuration-averaged static impurity susceptibility, X0
of the noninteracting part of the system, H®. In the
pure system, for the half-filled band case, X°(q) exhibits
a peak at q=m/a, indicating that the magnetic instabili-
ty in the interacting system is antiferromagnetic in na-
ture. Disorder will lead, quite generally, to a broadening
of this peak. Through the Kramers-Kronig relation,
which connects the real and imaginary parts of the
dynamical susceptibility, this then indicates a spatial lo-
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calization of spin fluctuations. However, we expect that
spin-independent impurity scattering will not remove
this feature* and that the system will still exhibit a
(disordered) antiferromagnetic arrangement in the mag-
netic phase. Spin-dependent impurity scatterings (e.g.,
due to spin-orbit interaction, or magnetic impurities)
lead to a competition between different types of order-
ings, and it is possible that a system with such impurities
exhibits a qualitatively different kind of arrangement of
spins in the “magnetic” phase.

In terms of the eigenfunctions { | ¢,)} and eigenvalues
{69} of HO, obtained with periodic boundary conditions
in all directions, the susceptibility matrix X ?j is given by
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We have considered the half-filled-band case and the po-
sition of the Fermi energy & is determined accordingly.
After ensemble averaging over several configurations of
the random potential we find that )7?; depends roughly
only on the separation between sites i and j and has the
following features.

(i) The oscillations in X%r) become increasingly
damped with increasing disorder ending up with an
overdamped form.

(ii) Xj; is extremely local in 3D. [For W/V =15,
X% |i—j| =1)/X%0) is ~%]. This suggests that spin
fluctuations in the interacting system are extremely lo-
calized. This local nature of the susceptibility is not a
consequence of configuration averaging resulting from a
cancellation between terms of different sign. It is rather,
a general feature of every configuration.

Fourier transformation leads to

X(q= 3 coslqrXy . (3)
r/a=|i—j|

The sign change in X°(r) locally is what leads to X%(q)
exhibiting a maximum at q=w/a. In Fig. 1 we plot
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FIG. 1. Plot of X(q) vs g for the n =150, 1D case for

different values of W /V: solid line, W/V =0; dashed line,
W /V =1, dotted line, W /V =3; chain, W /V =5.

k_’o(q) versus g for the (1D) system with n =150 and
different values of W /V. The vanishing of X0 (g =0) is
an artifact of the finite size of the system. X0 (g =0) is
the response to an infinitesimal uniform magnetic field,
and since a finite system the energy levels have a finite
spacing, the response vanishes. Mathematically, it is
seen to be a consequence of orthogonality of the wave
functions [Egs. (2) and (3)]. Particle conservation re-
quires that the g =0 static susceptibility in an infinite
system must equal the density of states per spin.

We can now write an RPA-type expression for the
susceptibility of the interacting system in terms of the
configuration-averaged impurity susceptibility )_(_o(q),
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In the RPA or ladder approximation the susceptibility
matrix [X]; is given by ([Xo]/[I~U§]),-j. Instead of
impurity averaging the resultant matrix, if we average
separately the numerator and denominator, we obtain
Eq. (4) upon Fourier transformation. Performing the
averaging separately amounts to ignoring, in a diagram-
matic scheme, graphs with vertex corrections and
crossed impurity and interaction lines. Another way to
look upon this approximation is that it ignores the fluc-
tuation terms in the impurity-susceptibility matrix,
[8X°]=[X°]1—[X°]. Any power of [X°] can be expressed,
after impurity averaging, in terms of powers of [X"] and
(even) moments of the fluctuation part [6X°]. Now, as
far as the spatial behavior of the susceptibility is con-
cerned, especially the oscillatory nature, it is contained
in [X°]. Therefore, the neglect of the second and higher
moments of [8X°] does not lead to any change in the
qualitative nature of the magnetization in a disordered
system with spin-independent scattering impurities,
which is what we are concerned with here.

From Eq. (4) we see that a magnetic instability first
occurs for q=m when U=U*=1/X%#). Within this
approximation a transition thus occurs at this value of
U* between a disordered paramagnetic phase and a
disordered antiferromagnetic phase. The value of U* is
fairly independent of the number of lattice sites in the
range of disorder values studied. The variation in X°
(@q=w) is within 6% in 1D in going from n =50 to
n =150 for the range of disorder values studied
(1<W/V<5) and is within 3% in 3D in going from
n=4 to n=6 for disorder values in the range
7.5<W/V <15. In Figs. 2 and 3 (insert) we have shown
the phase boundaries by plotting the critical interaction
strength versus disorder for the 1D (n =150) and 3D
(n =6) cases, respectively. It is clear that the Stoner cri-
terion is still valid in the 3D case. The density of states
per spin goes roughly as 1/W when W >>V and U* /W
is very close to 1.

III. MACROSCOPIC RENORMALIZATION GROUP

We now set up the MRG method in which we
preserve certain macroscopic physical properties of the
system as the lattice parameter is varied. We consider
specifically two systems with different lattice spacings
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FIG. 2. Phase diagram for the 1D system.

but the same physical size. The first one has n° sites,
with lattice spacing a and length L =na, and the Hamil-
tonian parameters are W,V,U. The second system has
n'? sites with lattice spacing a’, the same length
L =n'a’=na, and the Hamiltonian parameters are
W', V', U'. We require that the two systems represent
the same physical problem with different microscopic
length scales a and a’ and, therefore, demand that the
Hamiltonian parameters of these two systems be so relat-
ed that the physical properties are preserved. The physi-
cal properties we choose to preserve under the renormal-
ization group (RG) are the one-electron density of states
near the Fermi energy N (0), the antisymmetric Landau
interaction parameter F° and the width of the phase-
sensitivity-energy distribution, ©. Fermi-liquid theories
of very dirty metals’~!! indicate that the Landau in-
teraction parameters are indeed relevant physical quanti-
ties. The justification for using F° the antisymmetric
part, as an appropriate MRG variable has been dis-
cussed by Singh.!? © measures the sensitivity of quasi-
particle energies to changes in boundary conditions and
was first used as a measure of localization by McMil-
lan.!* We have used this formulation because it is more
convenient for the interacting fermion problem being in
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FIG. 3. RG flow in the (w,u) parameter space in the vicini-
ty of the noninteracting fixed point. Inset: Phase diagram for
the 3D system.

terms of energies. Equating these three physical quanti-
ties for our two systems we obtain the recursion rela-
tions for the Hamiltonian parameters implicitly.

N W', V', U)=N,(W,V,U), (5)
Fo. (W', V', U)=F4W,V,U) , 6)
8, (W, V', U)=8,(W,V,U) . ¥

In Sec. III A we consider Egs. (5)-(7) to first order in U.
In Sec. IIIC we discuss some possible consequences of
treating these relations within the bubble approximation
in which the quantities are evaluated by summing all the
bubble graphs. '

A. Weak interaction limit

In this subsection were are concerned with the behav-
ior of the system for weak interaction in the vicinity of
the noninteracting fixed point describing the Anderson
transition (W /V =15). We already know that the Hub-
bard on-site interaction is relevant within first order'*
and that the noninteracting fixed point is unstable. The
fixed point for the interacting system, which we feel also
describes the transition between the disordered paramag-
netic and antiferromagnetic phases, is not accessible
within a finite-order perturbation theory as seen from
the discussion in Sec. II. However, it is possible to study
the effect of interaction on the stability of the metallic or
the insulator phase near the noninteracting fixed point.

This issue is of current interest as it appears that the
correction due to interaction [which is of O (1/N) within
a 1/N expansion scheme] to a dc conductivity, do /o, is
positive.> This suggests that the metallic phase is stabi-
lized by short-ranged interaction. In fact, as Béal-
Monod points out, in the strong interaction limit
[UN (0)=1] the interaction contribution can overwhelm
the localization contribution and thus preempt the
metal-insulator transition. In these calculations disorder
is always treated at the lowest level and the results are
valid in the metallic regime (kp/>>1). Rainbow dia-
grams are summed for the one-particle Green’s function,
yielding a result identical to the one obtained using a
large kpl approximation,’* and ladder diagrams are
summed for the two particle Green’s function (ladder ap-
proximation).!* We have used the exact eigenstates for
the disorder problem and find that to first order in U
[this term is of O(1) within a 1/N expansion scheme]
the metallic phase is indeed stabilized.

The result of interaction is to change the quasiparticle
energies by the self-energies and this modifies the density
of states as

<A2(1}>av

N©0)=N90) |l - —+—=
<A6(0)>av

1 , (8)

where (A6'?),, is the mean level spacing near the band
center for the noninteracting system and

(Az'), =z =2, , ()
SV=U 3  S4)¥eL ). (10)
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The Landau interaction parameter is given (to first or-
der) by

—F“=UN<°’<0)<2(¢; )4>av : (11)
1

The averaging is done over one-four of the quantum
states in the middle of the band and over several
configurations of the random potential, typically 10000
samples in all. The Fermi energy is chosen to lie at the
center of the band, the precise location being unimpor-
tant (for the purpose of this section) due to presence of
disorder.

We now turn to the calculation of the width © of the
phase sensitivity energy distribution. Essentially, the
idea is to determine the sensitivity of quasiparticle ener-
gies of the system to changes in boundary condition as
one goes from a case with periodic boundary condition
on the wave function in all three directions to one with
periodic boundary condition in two directions but hav-
ing, in the third (say z) a periodic boundary condition
supplemented by a small phase shift 8. The boundary
condition in the z direction is, then

¢1(x,,z+L)=e'%$,(x,y,2) , (12)

and this is achieved by replacing the hopping matrix ele-
ments V in H, by Ve'® and Ve ‘% at the appropriate
boundaries. We calculate the sensitivity of the unper-
turbed energies 6| and the self-energies =|!’ separately.
Let us denote the eigenfunctions and eigenvalues of H
for these two boundary conditions by {|¢,),6\”} and
{ 16,(8)),6°(8)], respectively. Since the routine used
for eigenanalysis orders the eigenvalues (and the corre-
sponding eigenfunctions) with &\* increasing with I, we
are assured that {|¢,(0)),6°(0)} corresponds to the
state { | ¢,),6\"'} provided 6 is taken to be small enough
so that the change 6{°(8)— & is much less than the
level spacing.

Now, for these two cases the quasiparticle energies to
first order in U are

V=643, (13)
&M0)=62(0)+=10) . (14)
The phase sensitivity energy of state / is
6,=[6"0)—6"1/6?
={[62(6)—61V]1+[2"(0) -]} /6*
=6+ Ue; . (15)

The 67 and O] are distributed with zero mean and have
Lorentzian wings. Following McMillan'® we define a
Lorentzian width & which minimizes the mean-square
error between the observed distribution and a Lorentzian
of width ©. It is given by the condition

62-67

402 | ——
(62467

=1. (16)

av

If we expand © in powers of U and substitute Eq. (13)
into Eq. (14), then to first order in U we have

6=06°4+U06", (17)
where © % and 8! are given by
450 (6°)72—(67)
(&%) ()72
51-80 (B81[3(8°)°—(67)?]/1(8°)+(6))?]%],,
{(OD)[3(8°2—(60)2]/[(8°)?2+(69) ]

=1, (18)
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The averaging is done as before, over one-fourth of the
quantum states in the middle of the band, over three
directions of applying the phase shift, and over several
configurations of the random potential, typically 10000
samples of ©) and O} in all. ©° is a measure of free-
particle localization. We interpret © ! as a measure of
localization due to the interaction effect. The net contri-
bution to it comes predominantly from situations where
the the noninteracting energy and the self-energy both
change with the same sign when the boundary condition
is modified.

We define a dimensionless coupling constant,
G=N(0)®, which is a function only of the ratios
w=W/V and u =U/V. From Egs. (5)-(7) we get a
two-parameter recursion relation contained implicitly in

G, (w'u')=G,(w,u) , (20)
Fi(w',u')=FX(w,u) . (21)
B. Results

We calculate G, and F, (for n =4 and 6) for different
values of w near the noninteracting fixed point value of
15. The data for each n are fitted appropriately to get
the w dependence in an algebraic form. We can now
study the (RG) equations contained implicitly in Egs.
(20) and (21) to examine flows in the parameter space
formed by (w,u). The noninteracting fixed point is ob-
tained (Fig. 3) at (14.8,0) as before,'® and it represents
the Anderson transition. The flow to its right is towards
(00,0), which represents the noninteracting insulator
phase, whereas to its left it is towards (0,0), which corre-
sponds to the noninteracting metallic phase. The Ander-
son fixed point is, however, unstable with respect to in-
teraction and the flow out of it is towards the interacting
fixed point which is, as we mentioned before, beyond the
reach of perturbation theory.

An interesting feature of the phase diagram is the
manner in which the flows emerge from the vicinity of
the noninteracting fixed point—they are tilted to the
right. The line which emerges from the noninteracting
fixed point corresponds to the phase boundary which
separates the metallic phase from the (gapless) insulator
phase. Thus, the metallic phase is stabilized by short-
ranged interaction and for small but finite U more disor-
der is needed to make the system insulating. This be-
havior can be understood within a self-consistent Har-
tree picture in which interaction is seen to screen disor-
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der. A spin-o electron moves in an effective potential
which is a sum of the bare impurity potential and a
repulsive potential due to spin (— o) electrons:

€=, +U(n7) .

The amount of disorder seen by the spin-o electron is
therefore reduced by the presence of spin (—o) electrons
because their density is more on sites with deeper bare
potential. This behavior is contrary to the generally be-
lieved additional localizing influence of Coulomb interac-
tion. However, for long-range interaction it is the ex-
change (Fock) term which is more important in a disor-
dered system. The Hartree term gets averaged out and
just leads to a shift in the chemical potential.

C. Higher orders in interaction strength

In this subsection we discuss some possible conse-
quences of going to higher orders in interaction. When
disorder is treated in the rainbow approximation to get
the impurity-averaged Green’s function for the
parabolic-band case, e.g., the Hartree term leads to sim-
ply to a chemical shift. However, in the exact-
eigenstates analysis the self-consistent treatment of the
Hubbard interaction is nontrivial and, as we shall show
now, is important in determining the critical behavior of
the system. In the following we shall evaluate approxi-
mate expressions for the Landau parameter and self-
energy in the bubble approximation and study how the
MRG equations are modified qualitatively.

Using the result in Ref. 12 we can write an approxi-
mate expression for the antisymmetric Landau parame-
ter in the bubble approximation:

U

—_—, (22)
1-Ul(w)

Fi=—NO)3{(¢))*)
where I;; represents the expression for the polarization
propagator for the noninteracting system and is given by
the same expression as the impurity susceptibility [Eq.
(2)]. Here also, performing the averaging separately
amounts to ignoring the vertex corrections and crossed
impurity and interaction lines. From the discussion in
Sec. II we know that the divergence in F° when
1—UI(m)=0 corresponds to the transition from a disor-
dered paramagnetic phase to a disordered antiferromag-
netic phase. From the behavior of I(w) with disorder
[Fig. 3 (insert)] this phase boundary is given roughly by
U/W =1. The self-energy in the bubble approximation
is given by'2

S Z@)e,

U
2[:
& (<6F) ij

1+UI

(23)

m

i
Using the fact that matrix I is almost diagonal in the re-

gion of interest (W /V =15) and performing the averag-
ing separately we get

S Se)HeL D).
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(24)

Comparison with Egs. (9) and (10) suggests that as far as
the density of states is concerned, U is to be replaced by

U/(14UI;), which is approximately U/2 near the
phase boundary. Since [ ; is extremely local and hence
we expect it not to be much susceptible to changes in the
boundary conditions, the same argument carries through
for the phase sensitivity energy in Eq. (15).

Thus in going from first order in interaction to the
bubble approximation we observe that the effective in-
teraction gets changed from U to U /2. This is actually
a consequence of a partial cancellation between self-
energy terms with different signs coming from different
numbers of bubbles. However, the bubble diagrams for
self-energy in the bubble approximation only form a sub-
set of all diagrams contributing to the self-consistent
Hartree level. Since these additional diagrams also con-
tain bubbles we expect this cancellation to be even more
effective leading to a further reduction in the effective in-
teraction strength, U.. This reduction in U, implies
that the contribution to localization due to the interac-
tion effect (which stabilizes the metallic phase) is actually
much reduced at the self-consistent level.

IV. CONCLUSION

We have studied the static magnetic susceptibility of
the disordered Hubbard model with on-site disorder for
the half-filled-band case. The impurity-averaged suscep-
tibility fo(q) has been evaluated using the exact eigen-
states of the noninteracting system in 1D and 3D. The
susceptibility for the interacting system is obtained using
X° within an RPA-type approximation which neglects
certain vertex corrections. The system exhibits a mag-
netic  instability which is of a disordered-
antiferromagnetic nature.

The Stoner criterion is found to be valid for the onset
of this instability. The density of states per spin goes
roughly as 1/W (for W/V >>1) and the critical interac-
tion strength U* at which a transition between the
paramagnetic and disordered-antiferromagnetic phases
occurs, is given by U*/W=1. In their decimation
study of the disordered Hubbard model, Shimizu et al.!®
find that for large W /V the critical line approaches the
U=W line. The RPA-type approximation used here
therefore gives an asymptotically correct description of
the magnetic phase boundary.

We expect that nonmagnetic impurities do not qualita-
tively affect the critical behavior. Spin-dependent im-
purity scatterings lead to a competition between different
types of orderings and may cause frustration and lead to
a spin-glass-like phase. We have applied the macroscop-
ic renormalization group method to study the critical be-
havior of the system for weak interaction near the
noninteracting fixed point which describes the Anderson
transition. We have chosen to preserve the density of
states, the antisymmetric Landau parameter, and the
width of the phase-sensitivity-energy distribution as the
macroscopic length scale is varied. A small Hubbard
term is actually seen to stabilize the metallic phase.
Within the bubble approximation we find a reduction of
the effective interaction and hence of this stabilization.
This indicates the necessity of treating strong interaction
within a self-consistent scheme—especially within the
exact-eigenstates approach.
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