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Landauer-type formulas are derived for twodimensional quantum-Hall transport in the ex-
treme quantum limit (hm, ~ oo) for an arbitrary current through an electron system confined to
a channeL For narrow channels the problem is mapped inta a one-dimensional ordinary (B 0)
transport problem. An expression for the critical current and a description of the breakdown of
the dissipationless transport are obtained. %e 6nd that it is possible to have quantization of the
HaB resistance even when the magnetoresistance is nonzero.

In one dimension (1D), i.e., when the electrons enter or
leave the sample only through leads with a single quantum
channel, the resistance arising from the elastic scattering
with the obstacle (sample) is very simply related to the
transmission T: R (h/e ) (1 —T)/T'. This insightful
formula, known as the Landauer formula, ' and its mul-
tichannel generalizations have been used extensively in
the study of transport in 1D and quasi-1D systems.

In this Rapid Communication we consider two-
dimensional (2D) quantum-Hall transport3 in the ex-
treme quantum limit Am, ~ so that the electronic
motion is always confined to the lowest Landau leveL Any
attempt at a "Landauer-type" description must take into
account the following important facts. (i) The problem is
necessarily 2D. (ii) The current depends on the potential
drop along the current V„as well as on the transverse
(Hall) potential V„„. In particular, a current can fiow
with V„, 0, in which case pz, is quantized according to
p„r V,„/I h/e2. (iii) A magnetic field breaks time-
reversal symmetry, and therefore scattering processes are
qualitatively de'erent than in the absence of a field. The
kinetic energy of the electron is frozen out; its classical
trajectory consists of motion along an equipotential con-
tour 4 s with velocity proportional to the gradient of the po-
tential. With this picture in mind, we see in Fi . 1 that an
electron can get transmitted across a barrier either by
following a semiclassical path (e.g., trajectory 1) or by
tunneling through the saddle point (e.g., from trajectory 2
to 2'). The transmission coefficient must be calculated
quantum mechanically including both these possibilities.

We start by considering a model of an ideal sample in
which the electrons are confined to a channel centered
about the x axis by a potential

V-Vo(y) .

For simplicity we assume that Vo(y) is a monotonically
increasing function of (y ( with its minimum at y 0. We
will choose units such that tt 1 and the magnetic length
I 0'hc/e8 1. For magnetic field in the positive z direc-
tion the electrons with y & 0 move towards the right and
the electrons with y (0 move towards the left. It is con-
venient to parametrize the electronic states in terms of a
positive coordinate y and consider two sheets: the R sheet
with R electrons moving rightward, and the L sheet with L
electrons moving leftward. For periodic boundary condi-
tions, the electronic eigenstates are separated by
by 2tt/L„(L„ is the sample length). This can be used to
convert the sum over states into an integral over y. If we
assume that all the R states below pit Vu(yet) and the L
states below pi, Vc(yL, ) are occupied (choose pit & pL, ),
then the net current moving toward right is given by

I — dy Vo(y), (2)
h 4r~

which yields the correct quantized value of the Hall resis-
tance.

Now introduce a potential barrier Ve(x,y) with finite
extent in the x direction, as shown in Fig. 2. On either
side there is a particle reservoir. The reservoir on the left
emits 8 electrons up to an energy ptt, and is perfectly ab-
sorbing for L electrons, while the one on the right emits L
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FIG. 1. Shows equipotential contours in the vicinity of a bar-
rier.

FIG. 2. Shows schematic of Hall transport in the presence of
a barrier.
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electrons up to an energy pt. and absorbs R electrons. Be-
cause this implies that all states with energy below tiL, will

be occupied, only the 8 electrons with energies above pt,
can get reflected at the barrier. Thus, the current is

dy T(y)VO(y)
it ~n

where T(y) is the transmission coefficient at energy
Vo(y). The distribution of L electrons on the left-hand
side of the barrier is modified due to the backscattering of
R electrons from the barrier. Since our model is com-
pletely elastic, the distribution is not thermal. However,
since we expect T to be a basically increasing function of
the energy of the electrons, the occupation probability f
for 1.electrons will be a generally decreasing function of
energy with f 1 for E less than pt, and f 0 for E
greater than pit. We assume that despite the fact that the
distribution is only quasithermal, we can define a chemical
potential pL, —=Vo(yj. ) by requiring that the number of
electrons (occupied states) with E& pL is equal to the
number of holes (unoccupied states) with E & pL, , as one
would if the distribution were thermal. The result is

yL-y~ —., dyT(y) . (4)

Of course, the chemical potential of the L sheet on the
right-hand side of the barrier remains unprturbed. From
the voltage drop along the sample we get

p (p/. pL )/eI

while from the voltage drop across,

p.r-( ~-t k)/eI

We note a subtlety of this analysis which is that the
voltage drops must be de6ned relative to the chemical po-
tential potential for L electrons on the left-hand side of
the barrier pL, rather than the chemical potential potential
pg defined analogously for R electrons on the right-hand
side of the barrier. The reason is that the distribution of
R electrons on the right-hand side of the barrier is not
even remotely thermal; for T an increasing function of E,
the occupation probability is also an increasing function of
E for pL, &E & pit. Thus, the chemical potential is ill
defined; rather, under appropriate circumstances with
very long inelastic lifetimes, this inverted nonequilibrium
distribution could lead to hot-electron effects. We also
note here that the only essential ingredients in our theory
are that the ground state of the electron gas is an in-
compressible fluid, and that the excitations in the ideal re
giori of the sample can be treated in terms of scattering
states of quasiparticles. Thus, the analysis can be readily
extended to include the effect of electron-electron interac-
tion, and in particular to treat the fractional quantum-
Hall effect (QHE).

We now study the consequences of Eqs. (5) and (6) in
~arious situations. Consider first the limit I 0 or
pg pL+, so that T(y) in Eqs. (3) and (4) is approxi-
mately constant over the range of integration. In this case
it is easy to show that p„(h/e )(1 —T)/T, and
p„„h/e for arbitrary T. Thus, for small currents, p,~
remains quantized even though p,„may be quite different

from zero. This situation is realized, for example, when
the barrier is so high that the sample breaks into two clas-
sically disconnected regions. As a result of the small over-
lap between the wave functions on either side of the bar-
rier, the transmission coeflicient and hence the current is
small and the above considerations apply.

The transmission coefficient can be evaluated from the
knowledge of the Green's function

G(rf t r;)—=(rf I e ' 'Ir;&,

which can be written as a coherent-state path integral
G JS(r)exp(iS) wheres

yf
S-— dt [xy+ V(x,y)] . (8)4 0

The action in Eq. (8) is the action for an electron whose
motion is restricted to the lowest Landau level. It can also
be obtained from the standard action~ by taking the limit
h, to, 0 (or m 0). The term xy in Eq. (8) obtains
from the usual (e/c)r&A with the Landau gauge choice
for the vector potential A —Byx. In order to simplify
the calculation of the transmission coefficient we special-
ize to narrow channels with parabolic confinement

V(x,y) 2 Ky +Ye(x),

so that the y coordinate can be integrated away, which
leaves us with

G(xf,x;;t) -„$(x)e' '"',
1

S,[x]- dt x' —Vg(x)

(10)

Thus we have mapped the problem of the motion of an
electron in the 2D potential 2 Ky z+ Vti(x) in the extreme
quantum limit (hm, oo) into the problem of the motion
of a particle of mass K in a 1D potential Vjy(x) with no
magnetic field. This is not surprising considering that the
scattering process is effectivel one dimensional here since
for a given energy there is only one R state and one L state
on either side of the barrier. The evaluation of the
transmission coefficient for this new 1D problem is an ele-
mentary exercise in quantum mechanics. (Away from the
extreme quantum limit, when more than one Landau level
is occupied, the problem reduces in an analogous manner
to a multichannel problem, one channel per relevant Lan-
dau level. )

Now we show some numerical results. The width of the
strip containing electrons is 6xed for a given number of
electrons, i.e., yt. +yz 2yF, where ,' EyF is the Fermi en-—
ergy in the absence of any current. We vary the potential
pt, and calculate pg, I, pt, , p„„, and

p ~. To be specific,
we choose the barrier to be Ve(x) —, Kyg in a region of
thickness t and Ve(x) ~0 elsewhere. Then the transmis-
sion coefficient of a particle with energy i Ky is given by

I+ ya»n'«V'I y
' —ya I )

4y'ly' —ya I

for y &ye, and for y & ye the sin is to be replaced by sinh.
In Fig. 3 we show p„and p,„as a function of current
~ith the parameters t 3, y~ 2, yp 20. The Hall resis-
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FIG. 3. Shows p~ and p ~ as a function of current.

tance p,„remains almost quantized, and p,„remains al-
most zero until the current reaches a critical value, at
which point the quantization breaks down.

The phenomenon of current-induced breakdown of the
quantized-Hall effect is experimentally well known 'e with
somewhat sample specific critical currents. There have
been a number of theoretical attemptsl" to explain this
phenomenon, most of which consider inelastic scattering
with phonons as the underlying mechanism for the break-
down. In the present model, however, we consider only
elastic processes and the breakdown occurs when the
current is increased to the extent that the potential at one
edge ItL, drops below the level of the barrier, so that the
transmission of the R electrons at energy Itr, changes from
nearly perfect to nearly zero. This happens because for
energies above the barrier (E & 2 Eyjf) transmission
occurs as on trajectory 1 in Fig. 1, while for energies
below the barrier, the transmission is classically forbidden
and the electron must tunnel as from 2 to 2' in Fig. 1. The
model predicts that in narrow channels, an increase in the
electron density will result in a higher critical current. A
broader channel translates into a heavier eff'ective mass,
and hence for a given Fermi energy, the wider the chan-
nel, the more sharply defined is the critical current.

There is some structure in p„„at the breakdown, which
comes from the oscillatory part (sin) in Eq. (12). This
sort of structure is a common occurrence for narrow chan-
nels' '3 as well as for regular 2D @HE experiments. ' In
narrow channels, ' p,„and p,„have been found to show

h 1 Th— h 1
Pxw+P~y, +

e T 8 e
(13)

We, on the other hand, emphasize the jfnite current non-
linear behavior, and, in particular, describe a mechanism
for the current-induced breakdown of the Hall quantiza-
tion. We also explicitly evaluate the high-field transmis-
sion coefficient within a simple model.
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sample-specific and reproducible noiselike aperiodic struc-
ture both in the quantized region and away from it. These
fiuctuations are presumably a result of scattering with
very many dilferent scatterers along the current path.
Within our model, we expect the ffuctuations to be small
in the quantized region because of near perfect transmis-
sion, but large in the nonquantized region because then ItL,

is of the order of the impurity potential fiuctuations and
the transmission coefflcient is extremely sensitive to
changes in the current or the magnetic field. This is in
agreement with the experimental observations. '

Within the formalism described above, it is natural to
describe the quantum-Hall transport as a function of the
current. However, one might as easily vary the magnetic
field, which translates into a variation of the Fermi energy
Vo(yr). The physics of breakdown of quantization
remains exactly the same.

In conclusion, we have developed a Landauer formalism
for pz, and p» for 2D quantum-Hall transport in the ex-
treme quantum limit. For narrow channels, the problem
reduces to an ordinary 1D transport problem, which has
been studied in great detail in the literature. '2 Within
this formalism there is also a natural critical current for
the breakdown of quantum-Hall eff'ect.

Note added. After submitting this manuscript we be-
came aware of the work by Streda, Kucera, and Mac-
Donald's in which the Landauer formulas were derived
along similar lines. However, the emphasis is on very
different physics in that work. They study the zero
current multichannel problem and obtain a sum rule
which is the multichannel generalization of
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