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Scaling and crossover in a fermion-boson mixture
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Thermodynamic behavior of a mixture of weakly interacting fermions and bosons is investigated
in 4—e dimensions by the renormalization-group method with the purpose of studying scaling and
crossover properties of the system in the tricritical region. Conventional tricritical scaling, 6rst
found to break down for a classical infinite-component model, is seen to do so more spectacularly
in the case of the mixture. %'hereas in the infinite-component model, conventional scaling holds
in the ordered and disordered phases separately 4,

'i.e., with difFerent tricritical exponents), it is im-

possible in either of the phases of the mixture. The breakdown of scaling in the mixture is associ-
ated with the dimensionless strength U6 of the six-point interaction in the efFective Hamiltonian
that causes the parameters of the renormalized Hamiltonian to depend on two combinations of
scaling fields rather than one. The strength u6 is a quantum-mechanical parameter, being propor-
tional in three dimensions to b /A, &EF, where A, &, EF, and b denote, respectively, the boson
thermal wavelength, the Fermi momentum of the fermion component, and the scattering length
associated with the fermion-boson interaction. The square root of this quantity agrees with the
nonuniversality parameter, which was found to characterize tricritical amplitude ratios in three di-

mensions in an earlier work.

I. INTRODUCTION

Until now there has been only a limited number of
renormalization-group (RG) studies of tricritical behav-
ior exhibited by He- He mixtures. The few that have
been carried out' employ classical spin models of the
Landau-Ginzburg-Wilson type and are incomplete in the
sense that they are either confined to the behavior of the
model near an unstable Gaussian fixed point' or ignore
the important t() -interaction term corresponding to the
M term in the classical Landau expansion in powers of
the order parameter M. They are, consequently, unable
to give a correct account of crossover from critical to
tricritical behavior in the neighborhood of the tricritical
point.

As the mixtures are composed of quantum fluids, the
relevance of classical models in their study needs to be
called into question. Moreover, an exact solution by
Sarbach and Fisher~ of an infinite-component classical
spin model has revealed the presence of nonuniversal
effects in tricritical behavior. One expects these effects
to be dependent on the classical or quantum nature of
the system.

A natural starting point for a theoretical study of
He- He mixtures is a system of interacting fermions and

bosons. However, as general methods for dealing with
strongly interacting or nondilute quantum many-body
systems are not available, Goswami and the present au-
thor have recently attempted ' to develop a theory of
tricritical behavior in a mixture of weakly interacting
fermions and bosons. The attitude adopted in this work
was essentially that of the RG approach, ' and sought
to eliminate the fermion amplitudes and the short-
wavelength boson amplitudes to arrive at an effective,
low-momentum boson Hamiltonian. A treatment of

fiuctuations of the order of parameter in the effective
Hamiltonian in the Hartree-Fock approximation pro-
duced an improved version of the classical Landau
theory, especially in the normal phase of the mixture.
A more refined approximation for the self-energy parts
in a Green's-function formulation gave results' for tri-
critical amplitude ratios similar to those obtained for an
in6nite-component, classical spin model but character-
ized by a nonuniversal quantum parameter.

In this paper the above work is carried to its logical
conclusion by subjecting the effective Hamiltonian of the
mixture in 4 —e dimensions to RG transformations. The
aim is to study the scaling properties and crossover be-
havior of the mixture in the neighborhood of the tricriti-
cal point (TCP). The analysis follows the lines of an ear-
lier work&i, &2 concerned with application of the RG ap-
proach to a system of bosons with repulsive two-body in-
teractions. The effective Hamiltonian of the mixture
differs from that case by the presence of a six-point in-
teraction term (in the zeroth order this term gives M
term of the classical theory). The main points of the
earlier work are reviewed in Sec. II in the context of the
RG transformation of the effective Hamiltonian.

The essential point of our study already emerges in
Sec. III, where recursion relations crucial to the study of
crossover from critical behavior to tricritical behavior
are derived. These relations show that the renormalized
parameters which characterize the Hamiltonian after the
RG transformation cannot be written in terms of just
one combination of scaling fields u and t (which may be
regarded as measures of small deviations from the TCP}.
A second combination (U

~

t
~

' ') which represents the
renormalized strength of the six-point interaction enters
these relations in an essential manner. Consequently,
conventional or orthodox tricritical scaling' ' does not
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hold for e~ l. Also, U being a nonuniversal parameter
(in particular it is dependent on the fermion-boson in-
teraction strength}, tricritical scaling is not universal.
Calculations of crossover scaling functions in Sec. IV
demonstrate these facts.

In Sec. V results for the mixture are compared with
those obtained by Sarbach and Fisher for the infinite-
component classical model. It is pointed out that apart
from the fact that the nonuniversal parameter U for the
mixture is of a quantum mechanical origin, the violation
of orthodox scaling found in the normal and ordered
phases for the mixture, does not occur in the infinite-
component model. In the latter case, orthodox scaling is
obeyed in either of the phases although with different
sets of scaling exponents. Implications of the results for
a real three-dimensional system have been pointed out.

II. EFFECTIVE HAMILTQNIAN AND
RENORMAI. LXATION-GROUP TRANSFORMATION

IN FIRST ORDER

In this section we recall the effective boson Hamiltoni-
an for a fermion-boson mixture and derive formally ex-
act equations for the order parameter and the coex-
istence line. The perturbation theoretic renormalization-
group approach developed for a Bose system"' is re-
viewed in the context of the effective Hamiltonian and
recursion relations are derived for the parameters of the
Hamiltonian to first order in the interaction strengths.

The system under consideration is a mixture of fer-
mions of mass (m3)/2 and spin —,

' and bosons of mass

(m4)/2 and spin zero contained in a box of volume V
with periodic boundary conditions. The particles are as-
sumed to interact via two-body short-range potentials.
The strengths of the fermion-fermion, fermion-boson,
and boson-boson interactions are denoted, respectively,
by u 3 u 34, and u 4 ~ The partial chemical potentials of
the fermions and boson are denoted, respectively, by p3
and p4. Elimination of the fermion field amplitudes and
the short-wavelength boson 6eld amplitudes belonging to
the momentum range p ~p„where p, is small compared
with the boson thermal momentum (4mP/m 4 )

yields the approximate efFective boson Hamiltonian (in
units such that 4=1)

II, =Co i+
Pl 4

ih, ,'h—V—'"(b,ib', },

Q4
h4

V g bk|bkibki —kbk2+k
k1,k2, k

Q6

V2 1 k1 —k1 2 k2 —k2
k1, . . ., k3

bk bk k'5Kr(k 1+k2+k3) '
k3 —k3

Here Co is a e-number function of the free-fermion den-
sity n 3 and the free-boson density n 4 for the momentum
range p ~p„

I F
p4 ——p4 —u34n 3

—4u 4n 4

2 ~
a"'

+(u34n4+u3u34li3 )
p

FBn 3
u 4 =u4 —Tiu 34 +0(u 34 ) y

~83

u3 a2nF
34 3

6 g}t43
(6)

k
H, =Coig

71k 4

—P4 bkbk+ V2

V3+ V4+ V5+ V6 ~

where

and each k summation has an upper cutofF p, . The last
term in (1) represents the symmetry breaking term ap-
propriate to a system at rest with h denoting the field
conjugate to the real part of the order parameter
(b./V'").

One may use the Bogolubov prescription' to replace
(bo/~V ) by a c number M. The effective Hamiltonian
can then be written in the form

Co ——Coi V( p4M2iu '4M4i—u 6M'} hM, —

V2 ——(4u4M i9u6M ) gbkbk+(u4M +3u6M ) g(bkb kib kbk),

V3 ——V ' (2 'M i9u6M ) g (bk bk bk k iH. . )

1' 2

(bk bk bk +H. c. )5K,(k, ik2+k3),
u6M

V4= (u„'i9u—6M } g bk bk bk bk 5K,(k, ik2 —k3 —k4)2

V 1 2 3 4

3u6M
(bk bk bk bk +H c )5K.(kiik2+k3 k4)

k
1

y ~ ~ ~ }kg
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3u6M
Vs = „, g (bk, bk, bk, bk, bk, +H-c +rc.(ki+k2+ks k—4 k—s k—6»

k lyyk$

Qg
V6 ——

2 g bk bk bk bk bk bk bx, (k, +k2+ks —k4 —k, —k6) .
1 2 3 4 5 6

ki, . . . , k6

(12)

Each k summation excludes the value k =0 and H.c. denotes the Herrnitian conjugate. The thermodynamic potential
per unit volume, 0, associated with 8, is

0=Q'( T,p3,p4, M ) hM— ,

0'= —(PV) ' lnZ,

Z =Tr exp( PH,'—),

(14)

where H,' denotes the e8'ective Hamiltonian minus the symmetry breaking term.
The unknown quantity M, which we identify as the order parameter of the mixture, is deterniined by the require-

ment that 0 be minimum with respect to variations in M. On setting the 6rst derivative of 0 equal to zero, one gets
the equation of state

(17)

where ( ) denotes thermodynamic average calculated with the H,'.
Use of (7) in (17) gives

(18)

r„=—1u4+2u4M +3u6M"+(4u4+18u6M )n'+(2u4+12u6M )Y'

1 2+ ski (2u4+27u6M ) g (bk bk bk +k )+ s (bk bk bk )5K,(k, +k2+ks)
] 2

9u6
+ 2 X &bk bk, bk, bk, ~&Kr(ki+kz —ks

y ~ ~ ~

6u,
+ 2 x &bk/bk2bk3bk4)~K (kl+k2+k3 4)

] s ~ ~ ~
& 4

3u 6+ „, X &b. b. b. b. b. ».,(k, +k, +k, -k4-k, ),

where

n'=V-'y &btb„&,

K=V 'g(bkb k), (21)

and we have used the fact that all the averages are real
quantities.

It is easy to see that r„ is a function of M only. The
di6'erence between the thermodynamic potentials of the
ordered phase (M&0, h~O) and the normal phase
(h~O, M~O, hlM&0) at a given (T,ps, p4) is thus
given by

n'(M', T,P,„I4) n'(0, T,I,—,P4) = f dM21 „(M', ),
0

U6=pu6p~ s2d —3 (25)

and write Ho as

Ho ——Eo+s g (k p, +r)bkbk

(or p,4), the ordered phase and the normal phase can
coexIst along the line gIven by

Mf dM ir„(M21 ) =0 . (23)
0

Our aim is to study the erat'ective Hamiltonian 8, in
d =(4—e) dimensions by the RG method. The quantity
of primary interest is then the dimensionless Hamiltoni-
an Ho=pH, '. lt is convement to introduce the dimen-
sionless parameters"

s=Pp,2
~
m4, r= rn4p4p, , —U4 ——Pu, 4p, s, (24)

with M determined by (18). It follows that at fixed p, i + ( V2+ V3+ V4+ V5+ V6),
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V;=PV, i=2, 3, . . .6,
C=PCo .

(28)

A RG transformation is performed by dividing the k

Eo(M)=C+ V(rsM +u4s p, M +usp, s M ), (27) space into two subspaces ho and h, where ho comprises
momenta 0&

~ q ~ &P,g
' and b

&
comprises momenta

p, g
'

&
~ p ~ &P„g being an arbitrary number large

compared to unity. The boson amplitudes b, b are el-
irmnated through a partial trace procedure by meriting Z
in the form"

Z=Zo Tr exp( —Eo+HF ') 1+g, f dr, f dt„PU(ri) U(t'„) ())
~"o] n=i 0 F

(30)

Zo =Tr exp( Hr' ')—,
Hz')=s g(q p +r)bqbq

HF" sg (p ——p, +r )bz br,

(3l)

(32)

(33)

U(i) =exp[r(Hr' '+HF")]Uexp[ r(HP '—+Hr")] .

=b„exp[ t e(p }—],
br(r) =exp(t.HF")b» exp( —tHF' ')

=br exp[7 «(p ) ]

(35)

(36)

The first-order term in (30} involves averages of V, (~).
Using the fact that

br(~)=exp(tHF' ')b exp( rH~~ ')—

U denotes the sum of the interaction terms V; in (26),
P the time-ordering operator and, ( )H~~I denotes ther-

modynamic average calculated with HF". The trace in
(30) is to be calculated over the momentum subspace ho,
i.e., over a complete set of states constructed from the
operators [b», b I. The vertices contained in U(t) have
been shown graphically in Fig. 1.

(b)

where

e(p)=s(p p, +r), (37)

Here, and in what follows, V;(t, q) denotes the operator
obtained from V, (t ) by replacing all k summations by q
summations, and

one Snds

(V ( ))=V (,q)+(4P 'M +9P M ) 'Vp, I,(,g) .

(38)

exps q +r —1

'-'d
=a,(d) f ', q,

&
' (q'+r)

Ao(d)=[2 'll I (d/2)]

(39a)

(39b)

The approximation implied by the second equation in
(39a) is justified because s is a small quantity by virtue of

FIG. 1. Diagrammatic representation of vertices V2 through
V, appearing in the effective boson Hamiltonian [cf. Eqs.
(9)-(13)). A dot represents s four-point vertex of strength u~,
while a circle represents a six-point vertex of strength u6. An
ingoing (outgoing) solid line represents creation (annihilation)
operator of a boson of momentum k&0. A broken hne
represents a c-number factor M.

FIG. 2. Graphs contributing to ( V~(~)). Each external
tsolid) line carries a small momentum q in the range
0&

~ q ~ &p, g ', whereas each internal line (contraction) has a
large momentum p in the range p, g

'
&

~ p ~
&p, .
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FIG. 3. Graphs contributing to ( V, (r) ). FIG. 4. Graphs contributing to ( V6(r) ).

the definition of the cutoff p, .
As regards Vz, its average is simply V&(r, q). Contri-

butions to the averages of V4, V5, and V6 can be
represented diagrammatically as in Figs. 2, 3, and 4.

Each external line carries a momentum q, while each
internal line (contraction) has a momentum p; a dashed
line indicates a factor M. The results for the averages
are

(V ( )}=V,(,q)+(4p '+36p M') yb ( )b ( )
5

I2 2d

9pusM Q[b (r)b q(r)+b q(r)bq(r)]+V(2pu4+18pu6M )
5 S

P

18pu 6M I,I2,
"

(V, (r)&=V, (r, q)+ „, ' g [b, (r)b, (r)b, , (r)+b, , (r)b, (r)b, (r)],
2

(40)

(41)

( V,(r) ) = V, (r, q)+6Pu,
d 3

+ 18Pus

d'2
lit. g bs(r)bq(r)

9Pu s I iI2,+
* IP l y ~ ~ ~ )I)4

bq (r)bq (r)bq (r)bq (r)Sit„(qi+q2 q& q4} (42)

For the moment we ignore the second- and higher-order
terms in the expansion (30). Then

To restore the original momentum range in the vari-
ous terms in H&, we rescale the q's according to

Z=Zo Tr exp[ —H, (q)],
(ho}

(43) (47)

H, (q) =Z, (M)+H,"'+ y V, (q),

where V, (q) is obtained from the expression for
( V, (q, ~) ) by replacing b~(T), b~(T) by bq, b, respective-
1.y

If one collects all the terms containing (b~b ) in (44),
one gets

s g(q p, +r')b b +4(pu4+9pu6I, I2ds ')M2

Xg bqbq+9Pu6M gb b

where

r p +4pu@ds —2I + 18pu~2ds —3I2

(45)

The advantage of the parameters U4 and v6 de5ned by
(24) and (25) ls obvloUS.

The new Hamiltonian H, is then easily seen to take ex-
actly the same form as Ho given by (26}. In place of C
and the parameters (s,M, V, r, u4, u6} of Ho one obtains
Ci and (si,Mi, V rl, i4"u, u6), where

Ci ——C+ Vp, (2u4I i+6u6I i ),
$1 g S

Vi ——g V,

r, =g (r+4u4I, +18u6I i },
u4

' =g (u~+9u6I, ),
"6(1} 6—2d

(48)

(49)

(50)

(51)

(52)

(53)

(54)

The above Grst-order recursion relations have only the
Gaussian Sxed point

(55)
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which does not give a correct account of critical behav-

ior for d ~4. Before proceeding to second-order calcu-
lations, however, it is useful to note down the expression
for the 6rst-order scaling 6elds associated with the recur-
sion relations (49)—(54).

For small r, the integral I] has the value

I, = A, —A, g — (P—1)r+O(r ), (56)

a2 =g ai(1) 2

(1)a 4' —Pa4, (59)

A, =AD/(d —2) .

Up to first-order terms the relations (52) and (53) can
consequently be written as (d'}

(e)

a2 =I"+43 ) U4+ 183 )U6

Q4=U4+9A )U6

(60)

(61)

and az",a&" denote the same quantities after the RG
transformation. In terms of the initial parameters
(p4, u4, u6), the scaling fields az, a4 are

a2 —s '( Pp4+413u—4Iu+18Pu6IO),

a, =s 'pd(Pu 4+-9PueIO),

where

Iu m4A )p, ——P = Au
d —2 —] ' 0 d9'

exp(Pq /m4) —1

(62)

FIG. 5. Second-order graphs contributing to renormaliza-
tion of the strength v4 of the four-point vertex (m) of Fig. 1.

It is interesting to note that for d =3, apart from multi-
plicative factors (Ps ') and Pp, s, the scaling fields az
and a4 are the same as those appearing in the equation
of state in the Hartree-Fock approximation [cf. Eq. (42)
of Ref. 7].

III. RECURSION RKI.ATIONS TO SECOND ORDER

In this section we calculate contributions of second or-
der to the recursion relations. The calculations are rath-
er tedious, but the results can be presented in a simple
manner through graphs.

In Fig. 5 are exhibited all the connected graphs arising
from the second-order term in (30) which can contribute
to the four-point vertex (m) in Fig. 1. The contribution
of a graph is typically calculated as follows: Consider,
for example, the graph 5(b). It carries a numerical fac-
tor 2" corresponding to two ways of choosing each exter-
nal (q-momentum) line. The internal lines contribute a
factor n~(1+n ), where n~ is the Bose distribution fac-
tor [exps(p /p, +r) —1] '. The smallness of s enables
n as well as (1+n ) to be approximated by
s(p /p, +r). Integrations over the imaginary times ~2

and ~I give a factor —,
' making the total contribution

C(b) of the graph as

C(b)=8
S Pq Ug

V
(65)

This adds to u4
' in Eq. (53) the term

—8Aou4Plng+O(eu4)+O(ru4) . (66)

Ping. The total contribution Cz of all the two-line
graphs to u 4

' in (53) is seen to be

All other graphs with two internal lines connecting the
vertices in Fig. 5 also give contributions proportional to —162u 6I &

A oP in( . (67)

C2 ———10(u4+qu6I, ) HOP in/ —36u4u~I, HOP in/



SCALING ANI3 CROSSOVER IN A FERMION-BOSON MIXTURE

The second and third terms represent, respectively, the
contribution of graphs 5(c) and 5(i).

The three-line graphs 5(d), 5(e), S(j), and 5(k) also
make contributions to the recursion relation (53}. They
add to v4 a contribution C3 given by

C3 = —P(72v4v6+648v~6I, )I, ,

I =J f d"q d'q (q'q'Iq +q I'} ', (69)

where the integration is to be carried over the domain
&( ( q, ), ~ q, ~

) & I subject to the restriction that

~ qi+qi ~

must also lie between g
' and 1. The restric-

tion makes the exact calculation of Ii very difficult.
However, as regards the dependence of Ii on g one finds

to zeroth order in e (Ref. 16)

~o'
Ii = [a(1 g) —bg l—ng],

8
(7O)

where a and b are pure numbers.
The four-line graphs (n) and (p) in Fig. 5 give contri-

butions to v4" of order g . As will be seen below,
these contributions are of no importance.

Upon adding (Cz) and (Ci) to the first-order contri-
bution to v~i ', we find in place of (S3) the relation

=g az 1 —— lng(1) 2 Q4

2%2
(75)

In obtaining (75) we have taken b =12 as before, and re-
placed Ao(d} by Ao(4).

Equations (71) and (72) can be rewritten as

of the strength vs of such a vertex .With v6 positive, the

v& vertex is not of any consequence. Terms proportional
to g' ' will, therefore, be ignored throughout.

We turn next to the recursion relation for r. The dia-
grams contributing to r in second order are displayed in
Fig. 7. The contribution D2 of the two-line graphs 7(a),
7(b), 7(c), and 7(d) to r"' is

D2 —— 4g —(4v4I, +54v4v6I i+162v6I, )Ao in( .

The contribution D3 arising from the three-line graphs
7(e), 7(f}, 7(g), and 7(h) is

D, = —g'(8v', + 144v, v,I, +648vg', )I, .

The four-line graph 7(i} gives a contribution proportion-
al to gs "while the five-line graph 7(j) gives a contribu-
tion proportional to g' . These are ignored in view of
the remarks above concerning terms involving gs

Adding Dz, D3 to the Srst-order contributions, we Snd in
place of (58)

v&" +92 ~v6" ——g "[a4—loa4Ao in( —9v6ai In/]

+0(g' '
v6 in/),

v6" ——g [v6 (24+2b—)v4v6Ao 1ng

(].) 5 9 U682
a4 ——g'a4 1 —

2 a4 1ng — lng
4m Sm +4

v',"=g '+"v, 1 — a, in(
6

6 g 4

(76)

—(216+18b)v6Ao A, lng] . (72)

In analogy with (54), one expects v 6" given by (72) to be
the renormalized v6 up to second order. The graphs
contributing to v6 in second order are shown in Fig. 6.
Evaluation of the graphs gives, for v&", the expression
(72) provided b equals 12. Since b is hard to evaluate
directly, we shall use the value 12 for b wherever it
occurs. The left-hand side of (71) is consequently a4 '.

It is not difficult to see that if we had included an
eight-operator vertex in the effective Hamiltonian, the
last term in (71) would contribute to the renormahzation

(b}

FIG. 6. Second-order graphs contributing to renormaIiza-
tion of the strength U6 of the six-point vertex (t) in Fig. l.

FIG. '7. Second-order graphs contributing to renorma1iza-
tion of the effective chemical potential r [cf. Eq. (26)].
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a2 ——0, U6
——0, a4 ——4m e/5, (78)

The fixed point of the recursion relations (75) through
(77) to first order in e is

relations near the fixed point in RG theory is obviously
not suitable for this purpose. One requires to use the
full recursion relations.

%e define

and is reached provided (a2, a4) satisfy the initial condi-
tions

u4=a4/a4

u =u~l(1 —u4) . (83)
(79)a2 ——0,

a„)0.
a ( ( ) (2t /( 1 + (au )2/5

t =a2/(1 —u4)

(84)
For a~ gO to begin with„one does not reach the fixed
point. In view of the definitions (60) and (61), the fixed
point (78) implies

(85)

To order e, (84) and (75) are identical. On choosing
g =

i
t

i

', we haveu4 4n e—/—5, r'= —e/5 .

The recursion relation for a2 can then be written as
(80)

These are the fixed point values for the parameters of
a weakly interacting Bose system with purely repulsive
interactions. " As wi11 be seen below, the critical behav-
ior of the mixture near its A, line is the same as the criti-
cal behavior of a pure Bose system.

Linearization of the recursion relations near the fixed
point (78) shows that the only relevant scaling field is a2
and corresponds to eigenvalue (2—2e/5). The A. line for
the mixture is thus a2 ——0 as long as a4 ~0.

It was shown in Ref. 7 that, at fixed p4, the lines

az ——0 and a4 ——0 have the general form in p3 —T plane
exhibited in Fig. 8. The point of intersection of the lines
marks the end point of the A,-line in the region a4 p0
and defines the tricritical point. In the region a~ &0, a A,

line cannot exist„but normal and ordered phase may
coexist on the line given by (23).

The tricritical region is by definition the neighborhood
of the tricritical point, In this region one can distin-
guish two limiting types of behavior: critical behavior
corresponding to a2~0, a~ yO and tricritical behavior
corresponding to

i a,
i

~ 0, a, ~0. Our aim is to study
scaling in the tricritical region and to calculate scaling
functions in order to exhibit crossover from critical to
tricritical behavior. The usual linearization of recursion

a(1) y(1+x )
—2/5

where

x=u/i t
i

'/

(86)

(87)

and + denotes the sign of t
In a similar manner, (76) and (77) can be written as

a4"'/a4 ——x/(I+xkw
i

t ' 'lx),
u(() u

i
t

i

i —e/(1+x)24/5

(88)

u =u, /(1 —u, )"", (90)

w= (1—u4)' '(1 —
i
t i' '),

10 (a')' (91)

and k in (88) again denotes the sign of t.
Evidently, (u, t, u, w) are the nonlinear scaling fields as-

sociated with our linear (first order) scaling fields
(u4, a2, u6). Note, however, that (u, t, u) are identical
with (u4, a2, u6) for small values of (u4, a2, u6) in which
we are primarily interested, and m difFers from U in that
case by a pure number.

As will be seen in Sec. IV, the recursion relations (86),
(88), and (89) determine the crossover from critical be-
havior to tricritical behavior. These relations do not in-
volve a single combination of scaling fields; two such
combinations, viz. , x and Ut' ' appear. The phenome-
nological tricritical scaling hypothesis thus fails for the
fermion-boson mixture for e g 1.

IV. CROSSOVER FUNCTIONS

FIG. 8. Qualitative plots of the curves a2 ——0 and a~=0,
where a2, a4 are given, respectively, by Eqs. (62) and (63). The
concave side of the curve az ——0 represents the region a2 ~0
and the concave side of a4 ——0 represents the region a4~0.
The k line (a2 ——0) exists in the region a4 g0 only, terminating
at the intersection of the curves a2=0 and a4 ——0. The inter-
section is de6ned as the tricritical point of the system.

In this section we derive the equation of state for the
mixture and discuss its scaling property.

After the RG transformation, the thermodynamic po-
tential 0' defined by (15) is given by

g
—d

O'=QI) — ln Trexp( —H, ),0 PV
(92)

where Oo is independent of M, and H, is obtained from
Ho by the replacement (s,M, V, r, u4, u6)
~(s),M(, Vt, r(, uz", u6"). The equation of state (17),
accordingly, can be written as
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(93)
r„o——a2+2a4m +3@6m

Ao 2 2+ [(4a~+18U6m )r„o+(6a4+30U6m )r,o]

and the thermodynamic average ( ) is calculated with
the Hamiltonian II, . Comparison of (93) and (17) shows
that the equation of state is formally invariant under the
RG transformation.

An approximation to the equation of state, correct to
erst order in the interactions, is obtained by using a gen-
eralized Hartree-Pock factorization of the four-operator
averages in the expression (19) for the inverse suscepti-
bility r„. The result is'

~o
[(a4+ 3U6m }r„()

+(3a4+ 15U6m )(r„()+2r,())' ' ], (104)

rgo=2Q4pl +6U6pl2 4

(18m u6r„o+2a4r, o+36m v6r, o)
0 2

+a A, [a,r„',-'"—(a, +18m'u, )(r„,+2r„)'-'"],

r„=—p,'+4u,'n '+18u, (n ')'+2(u,'+ 9u, n ')M'

+3u 6M + ( 2u 4 + 12u 6M + 18u 6 n
'

)1'+9u 6 F

(95)

where

m =sp, ~M

rno=s ~rn ~

(105)

(106)

(107)

P~~= —~o
o [exp(Pe )—1]e

r, =2(u +~9 un6'+9u F6)M

+6u,M'+2(u,'+9u, n }r,

e~=(q Im4+r„)(q Im4+r„+2r, ) .

(q /m4+r„+r, )
~ =~o

o (exp(Pe ) —1)e

q /m~+r„+r,
2

+
2Eq

(96)

(97)

(99} r„=Ps i 'h, /2M) ——( r„() . (110)

r, () sPr, ——,
—1

and a2, a4, U6 are given, respectively, by (60), (61), and
(25). It is gratifying to note that one obtains exactly the
same scaling fl.elds in the approximate, direct calculation
of the equation of state as in the RG approach.

Consider f][rst the equation of state in the normal
phase, i.e., h —+0, M~O, h/M&0. The invariance of
the equation of state referred to above implies

a (1)
r( i) a(i) + 4 [r(1) (r(i))) —f/i] (109)

K E'

Here r, denote anomalous self-energy Xo2(0,0) for a
Bose system it is the analogue of the inverse transverse
susceptibility of a classical spin system. For small M
and small h/M, r„,r, are both small quantities permit-
ting for n' and y the approximations

Taking, as before, g =
l

r
l

' and defining the scaling
function y for the susceptibility by

r„o =lrl y

we obtain on using the recursion relations (86) and (88)
the following equation for y:

Aom42
a&n'=Io+ (r„+r, ) —— [r„' '/ +(r„+2r, }' '/ ],

EPq

1 =y l(1+x) ——x lny /(1+x +w
l

t
l

' 'Ix ) .
5

Aopkl 4r~ g )
2 ' + [r)—e/& (r +2r )1—e/2]

p P 2 II It s

where Io is given by (64) and

a i
——AoI(: (d)m 4/ IP,

E(d)= —+0(e) .l
(103)

Substitution from (100) and (101) into (95}and (98) gives

To ensure a positive susceptibility in the normal phase, t
(or a2) has been assumed positive in the normal phase.

Equation (112) shows that the scaling function y is in
general a function of two variables, viz. , x and (wt '

Thus orthodox tricritical scaling' ' does not hold for
the normal phase of the fermion-boson mixture for e ~ l.
In the infInite component model investigated by Sarbach
and Fisher, orthodox scaling holds for the normal phase
with Gaussian tricritical exponents. It may be pointed
out that investigation of a classical one-component field
theoretic model by techniques of renormalized perturba-
tion theory' by Lawrie' did not give results difFerent
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from those of Sarbach and Fisher.
What kind of crossover behavior does (112) imply'? In

the critical regime (t~0, u&0) Eq. (112) has the ap-
proxirnate solution

2/5 1+ 2~
1

{2/5+2m/25}

25

This implies that the susceptibility exponent y has a
value identical with that of a pure Bose system, viz.

y = I ——+0(e ) .
5

In the tricritical regime (t&0, u ~0), (112) gives

P' = 1+ 5x —~~x + +2' /25Nt +8X

The tricritical exponent y, thus is 1 as in the classical
theory. '

Note that in the critical regime as well as in the tri-
critical regime the dependence of y on the variable
(wt' ') is small. It is significant only in the region
x -(wt ' ')- l.

%e consider next the full equation of state given by
(104) and (105). Under the RG transformation m

defined by (106) scales as (g 'm ). Choosing again

g =lt
l

', wefind

3P{1) 4 2 +X —2/5
Pl& X

x =2m + r'"ln(2r'") .
36

l 10 s 5

For small e, the solution for m, is

y I —2/5+ 3e/25 } g2{1+3@/10}
2 —X

(124)

(125)

(126)

which implies that the critical exponent P has the value

P= —— +0(e ) .
1 3e
2 20

(127)

In the tricritical limit (t&0, x~0), (116) and (117)
give, after some simplification,

Thus, in the ordered phase also, orthodox tricritical
scaling is not valid. In addition to its occurrence in X4,
the variable u

l

t
l

' ' now also ~pp~ars
coe%cients of the terms involving the anomalous self-
energy r, . For the infinite component model, on the oth-
er hand, classical scaling holds in the ordered phase.

The exponent (1 —e/2) in (123) cannot be identified
with either the critical exponent 2P or the tricritical ex-
ponent 2P, for the square of the order parameter
without a knowledge of the crossover function F2. In
the critical and tricritical limits the forms of F2 are,
however, easily determined. In the critical limit, Eqs.
(116) and (117) give

r„"'=%1/(1+x) +2m)x4+m, ax6
l
t

l

'

+ 20(X4+3m

r,")= ', + ,'m-", a-l t
l

'-',

1=m', a
l

t
l

' '+ m', a
l
t

l

' 'r'"ln(2r ")36'

(128)

(129)

+ (3x4+15m(ax6
I
t

l

' ')

)((r(1)+2r(1))ln(r(1)+ 2r(1) ) (116)

The solution of these equations for small e is

m =(alt l' ') ' [1—3(alt l' ')' In2] (130)

r,"'=2m i)X4+2m 4)aX,
l
t

l

'-' — X,r„'" lnr„"'

which implies that the tricritical order parameter ex-
ponent P, is —,

' as in the classical theory

(x4+6miax6
l
t

l

' ')

X(r(1)+2r(1)) ln(r(1)+2r(1) ) (117)

where r„"' given by (110) is
' —~/2

(1) Ph Wc

2fn 1 g 4

m, =mia4
l
t

l

)+'~2,

a=3u/(a4 )

X4 =a 4 /a4{l}

X,=(1+x)-"".

(118)

(119)

It is evident that in the ordered phase (h ~0, m) &0,
t (0)

m a4 =
l
t

f

' '~~F2(x, a
l
t

l

' '),
where 1'z denotes the solution of (116) and (117) for m2

when r„"'=O.

V. CONCLUSION

In this paper we have carried out RG analysis in
(4 e) dimensi—ons of the efFective Hamiltonian of a mix-
ture of weakly interacting fermions and bosons with a
view to study scaling and crossover effects which may
occur in such a model. The earlier RG studies' of tri-
critically have been confined to classical spin models,
and on account of imperfect treatments were unable to
provide proper accounts of scaling and crossover from
critical to tricritical behavior.

The essential results for the mixture are contained in
the recursion relations derived in Sec. III which reveal
that for a~1 the renormalized thermodynamic fields
az'-', a4", and U6" cannot be written in terms of a single
combination of scaling fields. Two combinations, viz. , x
and u

l
t

l

' ' characterize these relations. As the renor-
malized fields are important ingredients of crossover be-
havior both in the normal as well as the ordered phase,
conventional, orthodox scaling' ' does not hold in ei-
ther of the phases in the tricritical region. Calculations
of crossover functions for the susceptibility in the nor-
mal phase and for the order parameter in the ordered
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phase in Sec. IV demonstrate this explicitly.
It is interesting to compare the results of the RG

treatment of the fermion-boson with those obtained by
Sarbach and Fisher for the in6oite-component classical
spin model which provided the first example of break-
down of orthodox scaling. As pointed out in Sec. IV,
study of an Ising-type model' by the methods of renor-
malized perturbation theory did not give diferent re-
sults. The erst point worthy of notice is that breakdown
of scaling in the classical model is not as direct or trans-
parent as in ihe case of the mixture. %hereas no scaling
in the orthodox sense is possible either in the normal or
in the ordered phase of the mixture, in the case of the
in5nite component model orthodox scaling holds for
each phase though separately, i.e., with diferent sets of
critical exponents. Secondly, while the failure of scaling
in the classical model is associated with a nonuniversal
parameter which involves the range of the spin-spin in-
teraction, for the mixture it is associated with a quantum
parameter a given by (120). In the high density fermion
hmit, a can be written in view of (6), (25), and (90) as

rt =N(d) (p, d 6/A. rkF )(2m 3u 34 )',
m3

where A, r denotes the boson thermal wavelength, kF the
Fermi momentum of the fermion component and N(d)
is a pure number.

Although the analysis of this paper is not applicable
to a real three-dimensional system, it illuminates the re-
sults obtained in Ref. 10 connected with nonuniversality
of scaling in three dimensions. The recursion relation
(54) for U6 shows that, for d =3, u6 is a marginal vari-
able. The breakdown of scaling found in 4—e dimen-

sions may, therefore, be expected to be absent in three
dimensions. The equation of state, however, will still
contain U6 as a nonscaling parameter and unless this can
be scaled away by a suitable redefinition of the various
quantities, univeIsality of classical scaling will be violat-
ed .The equation of state (104) is, in fact, valid for d =3
provided that one replaces Ao/e by 1/4m. It is not
diScult to see that if one tries to eliminate U6 from this
equation by defimng m U6 as rn1& I"nOU6 as nl& one flIlds

an equation which does not contain U6 except that the
last term now carries a multiplicative factor U6~ . Classi-
cal sealing in d =3 thus lacks universality. The conse-
quences of this lack of universality have been investigat-
ed in Ref. 10. It is interesting to note that the
nonuniversality parameter in that treatment (denoted by
a) is nothing but U6~ . As discussed in detail in Ref. 10,
certain tricritical amplitude ratios (such as Q~ which is a
measure of the deviation of the upper coexistence line
from the A, line in T —x plane, x denoting He concen-
tration) are directly connected with the nonuniversality
parameter U6~ which, in view of (131), is proportional to
(b /A, rk~), b denoting the scattering length associated
with the fermion-boson interaction u34 An accurate
measurement of these ratios can provide a test of
nonuniversality of scaling in three dimensions.
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