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Mixing of valence subbands in GaAs/Al„Ga, „Asmultiple quantum wells by uniaxial stress
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The efFects of uniaxial stress on the energies of exciton transitions in GaAs/Al„Ga& „Asmultiple

quantum wells are investigated both theoretically and experimentally. The valence subbands and

the corresponding wave functions are analyzed at the Brillouin-zone center by solving a 4&4
Luttinger-Kohn Hamiltonian in conjunction with a 4X4 strain Hamiltonian in the spin J=

2
basis.

Appropriate boundary conditions are obtained by integrating the total Hamiltonian across the in-

terfaces of the wells. Good agreement is obtained between numerical calculations on a 22-nm-wide

quantum well subjected to a uniaxial stress in the plane of the well and experimental results ob-
tained using photoluminescence excitation spectroscopy at hquid-helium temperatures. Evidence of
valence-subband mixing between the light-hole exciton and higher levels of heavy-hole excitons is
clearly observed.

I. INTRODUCTION

The optical properties of a semiconductor quantum-
well (QW) structure exhibit many unique characteristics
which difFer from those of the bulk constituents. For ex-
ample, the binding energy of excitons increase as a result
of two-dimensional confinement. Consequently exciton
absorption persists, and has been observed at room tem-
perature. ' Another interesting feature of the structure is
the observation of forbidden exciton transitions which
have been interpreted in terms of valence-band mixing.
The oscillator strengths of these "forbidden" transitions
become large when the energy of the valence subband in-
vo1ved is close to that of another valence subband which
participates in an allowed transition as a consequence of
shifts of valence-subband energies due to spatial
confinement effects. 3 Since, in the Luttinger-Kohn for-
malism, all ofF-diagonal elements in the Hamiltonian are
zero at the zone center, k =0 (where k is the wave vector
describing the relative motion of the electron and holes
parallel to the interface of the quantum well}, the obser-
vation of parity forbidden transitions is attributed to
direct transitions between states situated away from the
zone center (k+0). However, if uniaxial compression or
tension is applied parallel to the plane of the quantum
wells, o5'-diagonal elements of the total Hamiltonian,
which is a sum of the Luttinger-Kohn and the strain
Hamiltonians, can be nonzero, even at k =0, leading to
valence-band mixing. Using externally applied uniaxial
stress, the coincidence of the valence-subband states can
be brought about in a precisely controllable and reprodu-
cible manner. Since the magnitude of the interaction can
be tuned and precisely controlled in this way, a detailed
comparison between experiment and theory is possible.

In this paper we examine, both theoretically and exper-
imentally, the e8'ects of uniaxial stress on excitons in
quantum wells at k =0. In Sec. II, a theoretical model is
presented which can be used to calculate the eigenener-
gies and the corresponding eigenfunctions of the total
Hamiltonian. In Sec. III, we describe our experimental

technique and results of uniaxial stress experiments on a
22-nm-wide GaAs/Al„oa, „AsQW. Finally, in Sec. IV
we discuss our numerica1 results and compare them with
our experimental results.

II. THEORETICAL MODEL

H 12 H22 0 —H13

H13 0 H22 H12

0 —H13 H12 H11

2 2
Hi& —— (ro+3 i+1 z}k— 2+ (

~ )2] 1 /2

+rok, +(r, —2ri)k, ,

H22= (ro+ri r»k ——2

[ 2+( )2]1/2

+ roke'+(r i+2r 2)k,'

In our theoretical model, semiconductor quantum
wells were taken to have a finite depth (V, in the conduc-
tion band and Vi, in the valence band) and assumed to ex-
perience an external compressive uniaxial stress I along
an arbitrary direction. A confined exciton is then de-
scribed by a Hamiltonian H„containing the I uttinger-
Kohn Hamiltonian H (with the Coulombic electron-hole
interaction included) plus the strain Hamiltonian H, . In
a spin- —, basis for a valence band without spin-orbit in-
teraction and in a spin- —,

' basis for the conduction band, H
and H, are 4X4 matrices (in atomic units) with matrix
elements H;~ and H,.~, i,j= 1,2, 3,4:

H, =H+H, ,

H11 H12 H13
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where the numerical values of the Luttinger parameters
appropriate for GaAs (Ref. 10}are yo=14. 925, y, =6.85,

y2 ——2. 1, and y3 ——2, 9.
It is dif6cult to solve the eigenvalue problem for Eqs.

(1)—(13}directly. However, most experiments probe exci-
ton effects near k =0, where H&2 [Eq. (5)] and H» [Eq.
{6}]are small. Therefore, we assume that H, 2 and H, 3

are negligible and, further, that the quantities in the large
parentheses in Eqs. {3) and (4) may be replaced by the
binding energy of the heavy-hole exciton, E», and the
binding energy of the light hole exciton, E&2, respectively.
Then we obtain the following simpli5ed matrix elements
for the total Hamiltonian:
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——,'D„[e —
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0 if Iz

I
&L/2, (13)

where L, is the quantum-well width. In the barrier re-
gions i.e

I
z

I
&L /2 and

I

z'
I & L /2, the I.uttinger pa-

rameters yo, y1, y2, and y3 must be replaced by those ap-
propriate to the material of the barrier, yo, y', , y2, and

y3. For a GaAs/Ga, „AlAs quantum well, the x
dependences of V„V&,and y,

' are given by'

V, =70%[x(1.155+0.37x )]eV,

Vh
—30%[x(1.155+0.37x )]eV,

yo(x) =yo —13.52x,

y)(x)=y) —3.40x,

yq(x}=yz —1.42x,

y3(x) =y3 —1.61x,

In the above, the Luttinger parameters are yo (for the
conduction band), and y„yz, and y3 (for the valence
band}; the deformation potentials are C, (for the conduc-
tion band), and Dz, D„,and D„' (for the valence band);
e,",i,j =x,y,z, is the strain tensor; and

lr = i V, —k, = —i8/B„k,.= —i8/Bz'

are operators. p is the relative displacement of the elec-
tron and hole in the x-y plane, and z (z') is the projection
of the position vector of the hole (electron} on the z axis
(the spatial quantization axis due to confinement). The
total Hamiltonian g, contains the confinement
potential-energy functions for electron,

V, if Iz'I (L/2
V (z')= 120 if Iz'I&L/2

where @ has the same form as in Eq. (2). If uniaxial
stress X is applied in the [100] or [001] directions, the
strain matrix element H t3 is zero, and the 4 X4 matrix H,
is reduced to two identical 2X2 matrices. We only need
to solve a coupled diff'erential equation

Y,a2+ V„—(z)+E, +E„+H;,—E H;, y, (z)

,H12 Y2~&+ Vh( }+Ee+~b2+H22 @ 02(

(16)

with

[—yoB, + V, (z'))p(z') =E,y(z'),

where E is the total energy of the system, E, is the con-
duction subband energy, and y(z'} and g, (z) are the en-
velope functions of the conduction band and valence
bands, respectively. The boundary conditions are ob-
tained by integrating Eqs. (16) and (17) across the inter-
faces of the quantum well at z =EL/2 and z'=EL/2.
Equation (16) yields the boundary conditions

Y)tPI +—+5 =YIP', 2—+5

YA'z +—+& =Y'A'z +—+&
2 '' 2

+—+Q =g) +—+5I. I.
2

for the valence bands, while Eq. (17) produces the condi-
tions
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roq' +—+& =Xoq' + 2+&
L, , L
2

(19)

if y is an odd function of z . Quantities q and a are
defined as (E, /yo)'~ and [(V, E—, )/yoj', respectively,
and 8',8., j =1,2, are constants. To obtain the solu-
tions for Eq. (16) with the boundary conditions Eq. (18),
we follow the scheme proposed by Nedorezov' and sum-
marized below. If f;(z) is an even function of z, we write

for the conduction band. Here, the prime in g'(z') and

g,'(z) represents the partial difFerential with respect to z'
and z, respectively, and 5 is an in6nitesmal. The solu-
tions of Eq. (17) with the boundary conditions of Eqs. (19)
are well known' and are given by

W, cos(qz') if 0&z &L/2
g(z') =

8&e "' if L/2&z & Oo,
(20)
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if p is Rn even function ofz, and by

Wz sin(qz') if 0&z &L/2
g)(z') = .

Bze "' if L/2&z & oo,
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But if P;(z} is an odd function of z, we have
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where 8'; and 8;, i =1,2, 3,4, are amplitudes of the envelope functions and q, k, A, and A', j=1,2, are de6ned as

q i, z =
I
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ed stress monitor. The absence of any signi6cant
broadening of the noninteracting exciton peaks in the
presence of stress was taken to be an indication of the un-
iformity of apphed stress.

The energies of the ground state and several higher-
energy exciton transitions in the quantum wells were

In Eq. (26), the + ( —) sign in the curly brackets corre-
sponds to q I and Irt (qz and Irz). In the above equations,
g;(z) is composed of two components, cos(qtz)[sin(q, z)]
and cos(q2z)[sin(q2z)] in the well region if P, (z) is an
even (odd) function of z. We will call the Srst component
heavy-hole-like and the second component light-home-
like. Whether f;(z) is heavy-hole-like or light-hole-like
will depend on the relative amplitudes of each com-
ponent.

To perform numerical calculations, we Srst solve for
E, using Eqs. (20) and (21) and then specify E,=E,

„

for
n =1,2, 3, . . . . For each E,„,we solve for E using Eq.
(23) if f;(z) is even and Eq. (25) if Iti;(z) is odd. The nota-
tion nIIIH (nIIIL) represents transitions between electrons
in the nth subband and the heavy (light) hole in the mth
subband. For the parameters of our experimental sam-
ple, a GaAS/Gat „Al„Asquantum well with x =0.3 and
L =22 nm, we have the following: yo ——14.925, y,
=6.85, y2 ——2. 1, ys ——2.9 in the well region, V, =265.86
meV, Vs ——113.94 meV; yo ——10.87, yt ——5.83, yz

——1.674,
ye =2.417 in the barrier region from Eq. (14). Equations
(20) and (21) yield E,„:E„=8.677 meV, E,2 ——34.66
meV, and E,I =77.73 meV for the conduction subbands.
Numerical results for E and g;(z) are discussed in Sec. IV
and comparisons are made with the experimental data.

I I & ! l

31H
32H

III. EXPERIMENT

The sample used in this study was grown by
molecular-beam epitaxy along the [001] axis of a semi-
insulating GaAs substrate approximately 0.5 mm thick.
A series of identical GaAs quantum wells (22-nm GaAs
layers separated by 15-nm AloIGao7As layers) were
grown on top of a 1-pm GaAs bufFer layer. All of the ep-
itaxial layers were undoped.

The 2 X 8-mm sample, required for the low-
temperature compressive-stress experiment, was carefully
cut, using a wire saw, with the long axis along [100].
Care was taken to ensure that the surfaces to which stress
was applied (the 0.5X2-mm faces) were smooth and
parallel. the sample was mounted at the bottom of a
liquid-helium Bow-through cryostai and uniaxial stress
was appbed to it via a stainless-steel push rod, driven by a
piston at the top, which exited the sample chamber of the
cl'yostat thI'ougll an 0-flllg seal. NltfogeII gas was used
to pressurize the piston. An in-line strain gauge was used
to monitor the force on the sample. An accurate deter-
mination of the uniaxial stress experienced by the sample
was obtained by measuring the stress dependence of exci-
tons in the GaAs bufFer layer and utilizing it as a cahbrat-

22H

3)H
32H

12H
Q

E.. —
E&&H (meV)

ij 11H

FIG. 1. Lour-temperature photoluminescence emission (PLE)
spectra of a GaAs/Al„Ga, „Asmultiple quantum well (L, =22
nm) under five difrerent values of compressive uniaxial stress,
X!![100].The labels refer to exciton transitions between con-
duction and valence subbands as explained in the text. E]» is
taken as the origin of the spectra.
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determined using low-temperature (5-K) photolumines-
cence excitation (PLE) spectroscopy. This technique
monitors the ground-state PL intensity as a function of
exciting laser energy and produces spectra closely analo-
gous to absorption, especially at low temperatures. Typi-
cal spectra of a 22-nm GaAs jA1„Ga, „Asquantum well
are presented in Fig. 1. In the bottom and the top curves
the peaks in the spectra are labeled according to the nota-
tion described in the last section. The spectra in this
figure illustrate the changes in exciton energies and oscil-
lator strengths observable as compressive uniaxial stress
is applied along the [100] axis. As we shall see later, in
this orientation the energies of the light-hole (LH) exci-
tons increase with stress several times more rapidly than
do heavy-hole excitons. In order to clarify and em-
phasize this distinction, the spectra in Fig. 1 were plotted
with respect to the ground-state heavy-hole (HH) exciton
energy E»H. Then, in comparing these spectra, it is easy
to distinguish features associated with HH excitons
(which, as the stress is increased, are stationary or slowly
varying in energy with respect to Z»H) from those asso-
ciated with LH excitons (which increase their energy rap-

I
32H

80 — 32H ~ ~
~ p ~ ~ ~0r

~ e ~

~ ~ ~ ~ y ~ ~ ~ ~ ~

31H

idly from spectrum to spectrum as the stress is increased).
Thus, for example, the peak labeled 22L is observed to
move quickly to higher relative energies as the stress is
increased from 0 to 5 kbar while those labeled 31H and
32H remain almost fixed in relative energy.

This anisotropic sensitivity to stress is observable,
perhaps somewhat more clearly, in Fig. 2 in which the
energies of the features are plotted as a function of uniax-
ial stress X. Again, the peak energies are measured with
respect to E»H. The solid circles are the experimental
data and the solid lines are the results of the calculations
described above. Again, it is clear that the LH excitons
increase in energy more rapidly than HH excitons.

Valence-subband interactions can occur when LH- and
HH- exciton states overlap in energy. Experimental evi-
dence for this occurring is in the observation of level
repulsion (in which the energies of two states approach
each other as X is increased and then are observed to
move away from each other without ever crossing) and
oscillator-strength transfer between these two states near
the "distance of closest approach. "

These points, and the comparison of experimental data
with numerical calculations, will be discussed in greater
detail in the next section.

IV. RESULTS AND MSCUSSION

In this section the energy E„L[8] and wave functions
1(;(z) are numerically calculated for two specific direc--
tions of stress.

Case I: X((IOOlj. For X(([001],i.e., along the quanti-
zation axis z, the strain matrix elements [Eqs. (8)-(11)]
are given by

I
50

LLI

I

40 =23H with

H 1 t
——(ri —25)X,

I» ——(ri+ 25)X,

H)2 ——0

(2&)

22H

N ~ 0 ~ % 0 0 ~ 0
30, (&earn + 11L

ri=(Dd+C) )(2S)2+S„),
D„

(Si2 —Sii»3

(29)

20—
13H

12H

STRESS X(kbar)

FIG. 2. The uniaxial stress dependencies of higher-energy ex-
citon transitions with respect to E»H. The solid circles are the
experimental data and the solid lines represent the theoretical
predictions (see text).

where e„„=e~~=S&2X,e„=S»X,and ej =0 for i&j.
S,J are the coefficients of the elastic compliance tensor
and their numerical values for GaAs are listed in Ref. 15.
The values for D„and (Dd +C, ) used in our calculations
are chosen to be —8.23 and —2.75 eV, respectively to fit
the experimental data and are in agreement with our ear-
lier results. In our notation, a negative X indicates
compression. Since H&2 ——0, the wave functions in Eq.
(16) are decoupled and the envelope functions P, (z) and
@2(z) represent pure heavy- and light-hole states, respec-
tively. That is, there is no valence-band mixing at k =0
and the total energy E is a linear function of X, as is
shown in Fig. 3. In this figure transitions corresponding
to the heavy-hole excitons move faster with X than those
of light-hole excitons. Consequently, E]&H and E»I in-
tersect at X=0.54 kbar (for L, =22 nm). However,
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FIG. 3. The calculated energies of exciton transitions,
Ej'J (0) as a function of compressive uniaxial stress, when the
stress is along the growth axis, X~([001].

valence-band mixing does not occur since the strain
Hamiltonian is diagonaL Further, the probability densi-
ties are independent of X because the strain energies do
not change the barrier heights V, and VI, .

Case II. X([flOOJ. When X[[[100],the strain matrix
elements of Eqs. (8)-(11)are

H ti —(i}+5)X,

H22 =(g —5)X,
H'„=v35,

(30)

where g and 5 are defined in Eq. (29). This situation cor-
responds to our experimental configuration, the results of
which were presented in Fig. 2. The sohd lines in this
figure are the calculated values of E „I[&& as a function
of X. Even though, in the theoretical computations, no
effort was made to adjust the parameters to maximize the
fit, the overall agreement between the experimental data
and the calculated curves is very good.

As experimentally observed, the theory predicts that
the energies of the I.H excitons increase more rapidly
with X than those of HH excitons. This is in contrast to
the case of X~([001]and is a consequence of the change in
sign of the 5 terms in H» and H zz as can be seen by com-
paring Eqs. (29) and (30) for the two difFerent directions
of applied stress. Thus E»0 and E&IL move apart from
one another when compressive stress is applied along
[100] and never intersect. However, the ground state of
the LH exriton and some of its higherwnergy states can
overtake and overlap some of the slower-moving higher

HH exeiton states. Thus, for example, in this 22-nm
quantum-well sample, E&&I intersects E&2+ at about 0.62
kbar and E»0 at about 2.5 kbar.

In the model outlined in Sec. II, E&]I and E&20 are cal-
culated from two decoupled equations [Eqs. (23) and (25}]
because of parity arguments. Thus the theory predicts no
valence-subband mixing between these two states. On the
other hand, the theory predicts a strong mixing between

E»I and E»H which produces a level repulsion (or "an-
ticrossing") between these states at about 2.5 kbar. The
curves for E»L, and E&30 in Fig. 2 were calculated using
Eq. (23) and the even envelope functions g, (z). This mix-

ing of the 1L and 30 wave functions is a consequence of
the nonzero off-diagonal element H;z in Eq. (16). The re-
sult is that the hole wave function g, (z) is the sum of two
components, the cos(q, z) and cos(q2z ) terms in Eq. (22),
which are heavy- and light-hole-like, respectively. The
amplitudes of these two components and therefore the
character of the resulting states vary continuously with
X. This is illustrated in the next four figures in which the
probability densities p, for the 1H, 1L, and 3H, states are
shown for three diff'erent values of stress.

In Fig. 4, at X =0, the probability densities for the 1H
state are pi(z)= i tti(z) i

and pz(z)= i 1(2(z) i
=0 pi(z)

is HH-like because only the cos(q, z) term exists. How-
ever, when the stress is increased (to 2 and 4 kbar in Fig.
4), although p, decreases and pz increases, both remain
HH-like with maxima at z =0. The situation for the 1L
state is quite different as is shown in Fig. 5. At X=—2
kbar, pz decreases and p, increases. However, both
remain LH-like. With X=4 kbar, pz(z} is smaller still
and p, (z) dominates and now has HH-like characteristics.
A similar but opposite transformation takes place for the
3H state as is illustrated in Fig. 6. In this case, at X =0,
p2(z) =0 and p, (z) is the dominant wave function. p, (z) is
HH-like. As X is increased, p2(z) increases and dom-
inates when X~ 2 kbar. At these stresses it has LH-like
character and, in fact, is similar to the 1L state at small
stresses. (See, for example, Fig. 3.) This is in good quali-
tative agreement with the experimental data in which

E»L and E»~ exhibit an energy-level repulsion and
oscillator-strength transfer at X=2.5 kbar (Figs. 1 and
2}.

O.OOSO

0.0020

0.0040

0.0000

FIG. 4. Probability densities for the 10 state for three
diSerent values of stress. The solid, dashed, and dash-dotted
curves correspond to X =0, 2, and 4 kbar, respectively.
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0.0040
0 AA4A

0.0030

q (I.u.)

0.0030

q {I.u.)
OAXOO

0.0010

0.0000
0 120 160

0.00&0

0.0000
80

a (A)

120 160

FIG. 5. Probability densities for the 1L state for three
different values of stress. The solid, dashed, and dash-dotted
curves correspond to X =0, 2, and 4 kbar, respectively.

FIG. 6. Probability densities for the 3H state for three
different values of stress. The solid, dashed, and dash-dotted
curves correspond to X =0, 2, and 4 kbar, respectively.

The main discrepancy between the experiment and
theory lies in the experimental observation that, as the
stress is increased, the state which began as E»L appears
to approach an energy somewhat below that of E/3tt
(which the theory predicts should be the asymptotic
value). Possible explanations for this unusual behavior
are based on processes not included in our theoretical
model. For example, our model includes only ground-
state excitons and neglects their excited states. Previous-
ly, it has been suggested that normally forbidden transi-
tions can give rise to some anomalous features observed
in the PLE spectra of QW's. In this picture, the close
proximity of a strong, allowed transition„such as E&&L,
produces an increase in the oscillator strength of a nor-
mally forbidden transition, such as EU&. The same argu-
ment may also be applied to the excited levels of E&zz,
which are expected to occur at energies slightly lower
than E/3+ in this sample. This may be the source of
feature A in Figs. 1 and 2. Thus E»L crosses and in-
teracts with several closely spaced states near E]38 and
not with just E,3H alone. In this picture, at large X, E»L
asymptotically approaches not E,3H, but rather the excit-
ed states of E,20, while these levels approach E,».
Another possible explanation is based on the fact that our
calculations only deal with transitions at the Brillouin-
zone center, i.e, k =0. This is usually acceptable since
densities of states for transitions between the conduction

and valence bands normally have maxima at this point.
However, as discussed above, when level repulsion
occurs, the wave functions and the energy bands of the
interacting levels are strongly distorted. It is conceivable
that, under these circumstances, valence energy bands
could parallel that of the conduction band over some por-
tion of reciprocal space. Vertical transitions between
these bands would result in relatively constant transition
energies, i.e., the densities of states for these transitions
would possess a peak due to processes taking place away
from the zone center. Thus, in this model, the asymptot-
ic energy that E&&L approaches would be due to vertical
transitions taking place over some portion of the recipro-
cal space away from the zone center and thus would not
be predicted by our theory. The validity of this model, or
of any other explanation, awaits further calculations and
experiments on QW's with difFerent thicknesses.

In conclusion, we have presented experimental evi-
dence and theoretical calculations of the mixing of the
heavy- and light-hole subbands in GaAs/Al„Ga, „As
quantum wells subjected to external uniaxial stress along
the [100]axis. The agreement between theory and exper-
iment is good with the exception of the magnitude of the
level repulsion experienced by E»L and E»H. The
theory predicts no valence-subband mixing for stress ap-
plied along the [001]direction.
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