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The electronic structure and magnetic properties of Mn-substituted II-VI diluted magnetic semi-

conductors are treated theoretically with emphasis on Cd& „Mn„Te. The derived electronic struc-
ture is based on a combination of ab initio spin-polarized band calculations, a semiempirical tight-
binding model containing the relevant experimental input, and consideration of alloying elects.
The magnetic properties are calculated using a multisite Anderson Hamiltonian incorporating the
derived electronic structure. The derived sp-band-Mn-d and Mn-Mn exchange constants compare
as weB with experiment as any previous calculations of this kind. The results establish the impor-
tance of sp-d hybridization and demonstrate superexchange as the dominant Mn-Mn exchange
mechanism. A phenomenological three-level model for superexchange is constructed, which gives
results in excellent agreement with the detailed calculations, provides physical insight, and permits
exploration of chemical trends in the magnetic behavior for the series Ml' „Mn„X"' (M"=Cd or
Zn; X"'=Te, Se, or S}. The same model, with minor modiScation, is found to be applicable to MnO
and a-MnS, % hich are insulating and have the rocksalt structure.

I. INTRODUCTION

This paper presents a comprehensive treatment of the
electronic structure and magnetic properties of the Mn-
substituted II-VI class of diluted magnetic semiconduc-
tors (DMS's). ' The discussion of the electronic structure
is based on a combination of ab initio band calculations, a
semiempirical tight-binding model (ETBM) based on
these results, carefully referenced relevant experimental
input, and consideration of eeects associated with alloy-
ing. The resulting electronic structure model is therefore
consistent with currently available experimental and
theoretical evidence and represents a suitable starting
point for the formulation of a model Hamiltonian useful
for calcuIating magnetic properties.

The magnetic properties to be considered here are
Mn-(sp-band) exchange and Mn-Mn exchange. The re-
sults establish the importance of p-d hybridization and
demonstrate superexchange as the dominant Mn-Mn ex-
change mechanism. Related calculations of exchange
anisotropy and spin-resonance linewidths will be dis-
cussed in a subsequent publication. 3 Some of the present
results have been briefly reported previously. '

The first picture of the DMS electronic structure
emerged from the empirical-tight-binding-method-
coherent-potential-approximation (ETBM-CPA) calcula-
tions of Hass and Ehrenreich. These calculations em-
phasized the effect of chemical disorder on the s and p
levels. The occupied Mn 3d states were included much in
the same way as in the combined interpolation scheme
for the transition metals and exhibited strong hybridiza-
tion with the anion derived p states.

The results to be described here are based on self-
consistent augmented-spherical-wave (AS%) band calcu-
lations utilizing the local-spin-density approximation

where S; is the Mn moment at site i, cr"' is the spin
operator associated with a valence-band-edge hole (h) or
a conduction-band-edge electron (e), and J; z= —1.0
eV, J,~ d =0.2 eV are the corresponding exchange con-
stants. ' The sum extends over Mn occupied sites
only.

(2) The Mn-Mn or d dexchange describ-ed by the spin-
—,
' Heisenberg Hamiltonian

—g' J (R, . )S;.S (1.2)

where J "(8,")=—1 meV (Refs. 31—40) is the antiferro-

(LSDA) for a hypothetical zinc-blende MnTe compound.
(The structure of MnTe is nickel arsenide. } The derived
electronic structure represents the x =1 limit of the
Cd& „Mn„Te, Zn& „Mn„Te, and Hg& Mn Te alloys to
be considered here. The spin-polarized band calculations
for Cd, „Mn„Te will be described here in detail. In ad-
dition, we present new results for MnSe and MnS (Sec.
II A}. The inclusion of spin polarization in these calcula-
tions is of particular importance for the placement of oc-
cupied (spin-up) and unoccupied (spin-down) Mn d bands
and for treating their hybridization with sp bands
correctly. The derived band structures are fit by an ap-
propriate parametrization of simplified ETBM results
and then adjusted using optical'o '3 and photoemission
data' ' (Sec. II B).

The magnetic interactions to be considered here are as
follows.

(1) The (sp-band-edge) —Mn or sp-d exchange interac-
tion having the Kondo form'

~ gu, c S .~h, e
sp-d
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magnetic (AF) coupling between spins separated by R, .
Again, the sum extends over Mn-occupied sites only.
The exchange constants are determined by a random
multisite Anderson Hamiltonian (Sec. II 8), which in-
corporates the relevant features of the DMS electronic
structure (Sec. II A), using second- and fourth-order per-
turbation theory ' for Eqs. (1.1) and (1.2), respectively
(Secs. III and IV). J;~'d is theoretically determined from
band-edge spin splittings of ferromagnetic AS% bands,
or experimentally from magnetooptic experiments. The
numerical relationship between J;~'~ and the hybridiza-
tion parameter V~& [Eq. (2.4)] determining the sp-d band
mixing, follows directly from a Schrie(Fer-Wolf transfor-
mation. The detailed calculation of Jd (R;, ) presented
here establishes superexchange, resulting from p-d hy-
bridization, as the dominant mechanism at near-neighbor
distances, and as signi5cantly more important than the
Bloembergen-Rowland interaction. The latter has been
previously suggested as responsible for Mn-Mn ex-
change. Further support for the present view is provid-
ed by numerical estimates of the total AS% energy
difFerences between ferromagnetic and antiferromagnetic
configurations which are in surprisingly good agreement
with the perturbation results. The excellent agreement
between theory and experiment (-50% }results from the
accuracy of the input parameters (most notably V& as
determined by the experimental J,"'.d} and the detailed
understanding of the electronic structure, The superex-
change results are at least as accurate as any theoretical
values previously obtained for other materials.

The detailed results for Cd, „Mn„Te are used to con-
struct a three-level, four-parameter phenomenological
model for superexchange which is able to reproduce them
simply, thereby providing insight into their physical
significance (Sec. V). More importantly, the model is
applicable to other Mn-based DMS's and permits the ex-
ploration of chemical trends in magnetic behavior. This
model expresses J (R,, ) as a product of two factors.
The first depends explicitly on the electronic level param-
eters; the second is a function f(R, /a), where a "is the
lattice parameter, which is approximately the same for aH
members of a class of materials like the DMS's having a
given chemical structure. The model is supported by the
results of exchange constant estimates derived from AS%
band and total-energy calculations. Applications are
made to the DMS series Mi' „Mn„X"' (Mi =Cd or Zn;
X '=Te, Se, or S). Experimental information is used to
fix the input parameters. The calculated exchange con-
stants are in satisfactory agreement with experiment.

Somewhat surprisingly, the model turns out to be appl-
icable as well to at least some materials (MnO and a-
MnS) which are largely ionic, insulating, and have the
rocksalt rather than the zinc-blende structure. The func-
tion f(R, /a ), while quantitatively different from that
appropriate for the zinc-blende materials, is again insensi-
tive to the chemical composition for this crystal struc-
ture.

Discussion of theoretical matters pertaining to the ac-
curacy of the LSDA„ the ETBM model and its implemen-
tation, and the derivation and properties of the function
f(R;, /a) are relegated to appendixes.

II. KI.KCTRGNIC STRUCTURE
AND MODKI. HAMII. IONIAN

A. Electronic structure

As a guide to the electronic structure of DMS's, we
have performed self-consistent spin-polarized band calcu-
lations for hypothetical stochiometric antiferromagnetic
MnTe, MnSe, and MnS compounds having the zinc-
blende structure. This section discusses only results for
MnTe; the results for MnSe and MnS are quite similar.
The AF-I ordering, consisting of alternating (001) spin-up
and spin-down planes, is chosen for simplicity, although
the DMS's are believed to prefer the more complicated
AF-III ordering. The zinc-blende lattice constant of
6.430 A used here is obtained by linear extrapolation of
measured values for x &1. Possible tetragonal distor-
tions due to the antiferromagnetic ordering are neglected.

Exchange and correlation effects are treated in the
local-spin-density approximation (LSDA) using an
exchange-correlation functional of the von Barth-Hedin
form. The LSDA is primarily a ground-state formalism
and yields band gaps in semiconductors and insulators
which are typically 40—60% too small. Relativistic
effects are neglected,

The one-electron Schrodinger equation is solved using
the augmented-spherical-wave (ASW) technique, with
extra AS% spheres centered on the tetrahedral inter-
stices, This results in a bcc lattice of spheres for which
the sphericalization of the Wigner-Seitz call inherent in
the AS% method is a good approximation. This radii of
spheres are chosen to be equal. This procedure produces
results for tetrahedrally coordinated materials which
agree well with state-of-the-art linear-augmented-plane-
wave (LAPW) and pseudopotential calculations. Re-
sults for zinc-blende Mn Te similar to those reported here
have recently been obtained using an LSDA-LAPW ap-
proach.

The calculated AS% bands for AFI zinc-blende MnTe
are shown in Fig. 1. The energy zero is fj.xed at the
valence-band maximum. The corresponding density of
states and the densities of states projected on the Mn
sphere majority ( 1 } and minority ( l, ) spin d components
are plotted in Fig. 2. We define the majority (minority)
spin component to be that which contains a larger (small-
er) percentage of the occupied d states at a given site.
The magnitude of the net magnetic moment inside each
Mn sphere is 4.2pz. This is less than the atomic value of
Sp~ because of hybridization.

The states lying between —4 and 0 eV are derived pri-
marily from Mn majority spin d levels and Te sp levels.
Those between —4 and —3 eV and between —2 and 0 eV
have the largest Te sp components but display strong p-d
hybridization eftects. The Mn d content of the valence-
band maximum E„, for example, is .roughly 50%. The
bands are quite Hat between —2 and —2.5 eV and consist
of largely unhybridized d levels ( & 80% Mn d content at

The states lying between +1.0 and +2.5 eV are de-
rived primarily from unoccupied Mn minority spin d lev-
els. The lower bands in this complex are only slightly hy-
bridized with the Te levels (~ 80% Mn d content at I"),
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while the upper bands exhibit stronger hybridization
effects (&65% Mn d content at I'}. The spin sphtting,
which is most directly associated with the splitting sz-ed
in Fig, 2, is roughly 3.5 eV. The bands above 3 eV corre-
spond to the conduction band in an ordinary sp-bonded
semiconductor. The minimum at I contains roughly
equal contributions from the s orbitals in the Mn. spheres,
the Te spheres, and the empty spheres neighboring the
Mn spheres, and none from the Mn d levels.

It should be noted that LSDA band energies have no
rigorous significance except for the highest occupied level
and the lowest unoccupied level. 5' Furthermore, the ap-
proximate I.SDA one-electron potential does not contain
the discontinuity ' between the valence and conduction
bands which must be present in the exact density-
functional potential. Some insight is gained by associat-
ing the LSDA eigenvalues with hypothetical quasiparti-
cles which are completely screened as they would be in a
uniform electron gas. Since true Landau quasiparticles in
an insulator are not completely screened in the absence of
other quasiparticles the LSDA underestimates quasiparti-
cle excitation energies: conduction bands are too low„
valence bands are too high, and band gaps are too small.
In the present case the occupied d states may be about 1

eV too high and the unoccupied d states about 1 eV too
low. Appendix A contains a more detailed discussion of
the errors associated with the I.SDA and with the neglect

of relativistic elects.
In applying the crystalline MnTe and well-known

CdTe results to Cd, Mn Te, we use insight drawn from
Bass and Ehrenreich s empirical tight-binding-
method-coherent-potential-approximation (ETBM-CPA)
calculations for Hg, „Mn„Te and Cd&, Mn„Te. ' The
ETBM-CPA calculations indicate that the important
features of the alloy electronic structure for the present
purposes are understandable within the virtual-crystal
approximation (VCA), which will be made in Sec. II B.

The upper valence bands in both CdTe and zinc-blende
MnTe are largely Te 5p derived. Using the common
anion rule, it is assumed that these he at the same abso-
lute energy level before p-d hybridization. The ETBM
calculations indicate that the effect of such hybridization
on the valence-band edge is small. The valence-band
edge thus remains largely independent of x. This asser-
tion is supported by the observed x independence of the
photothreshold in Cd, „Mn„Te.' It is also consistent
with experimental evidence for a small valence-band
offset in epitaxial Cd& „Mn„Te grown on CdTe. The
sp conduction-band edge, on the other hand, is predicted
to increase linearly with x in the VCA due to the
difference between the Cd 5s and Mn 4s atomic levels.
This is consistent with the linear increase in the net sp
band gap observed in optical absorption' and
reaectivity" measurements.

The location of the occupied and unoccupied Mn 3d
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FIG. 1. Spin-polarized AS%' band structure for hypothetical
zinc-blende MnTe with AF-I ordering. The symmetry direc-
tions I -M and I -8 in the tetragonal unit cell (shown) corre-
sponding to I -X and I -I. in the zinc-blende zone, respective-
ly.
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FIG. 2. Total and projected densities of states (per unit cell)
of zinc-blende MnTe in the AF-I ordering. (a) Total density of
states. (b) Mn d majority spin (solid line) and minority spin
(dotted line) projected densities of states. Calculations em-

ployed the AS%-LSDA scheme described in the text. Majority
and minority spin Mn d states of eg symmetry at l are labeled
by ed~ and ed~, respectively. The valence-band edge is labeled E, .
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states relative to the Te p-like valence-band maximum
should not be very sensitive to x. Photoemission stud-
ies' '" indeed show the growth of a Mn d peak approxi-
mately 3.4 eV below the valence-band edge for all con-
centrations. Angle-resolved measurements indicate that
the occupied states contributing to this peak exhibit
dispersion of about 1 eV, ' suggesting that they are actu-
ally bands resulting from p-d hybridization. Spectral
changes higher in the valence band as a function of x are
also attributable to hybridization. In addition, its pres-
ence provides a qualitative explanation" for the decrease
of the E, optical transition energy observed in elhp-
sometry measurements with x.

The location of the unoccupied Mn d states has not yet
been established definitively. Transitions from sp
valence-band states to the unoccupied d states should be
optically observable. Kendlewicz interprets structure at
4.5 eV in re6ectivity measurements as arising from these
transitions. ' Structure at 4.5 eV has also been observed
recently in ellipsometry data. " The most plausible
initial-state energy for these transitions corresponds to
the first maximum in the upper-valence-band density of
states. This assignment would place the unoccupied d
states 3.5 eV above the valence-band edge. The optical
structure at lower energies can be explained in terms of
standard interband transitions in zinc-blende semicon-
ductors and Mn + multipletlike excitations, ' which are
essentially Frenkel excitons and do not appear in a band
picture.

B. Model Hamiltonian

The model Hamiltonian to be used in the determina-
tion of the magnetic exchange constants has the form of a
multisite Anderson Hamiltonian containing the essential
ingredients of the band structure. Explicitly,

(2.1)

Here

prime indicates that the sum extends over only Mn-
occupied sites. H» acts on a subspace (per site) consisting
only of d, d, and d configurations. ' We assume
(n; ) =0 or 1, and that Hund's rule remains in effect,
consistent with the observed magnetic moment of 5pz.
The parameter gd is taken to have the value —3.4 eV
with respect to the valence-band-edge zero of energy.
The parameter U,z is assigned a value of 7.0 eV in accor-
dance with the discussion at the end of Sec. II A. This is
somewhat larger than the value 5.5 eV used in our previ-
ous calculations of J (R,J ). The results of Sec. IV are
not qualitatively sensitive to variations in U,z of this
magnitude.

The term

H»=g' g +[V„»(n,k)e 'd,t c„„+Hc ]..(2.4)
i m, o n, k

describes Mn 3d- Te 5p hybridization. Here d; creates
a d electron at site i in orbital m with spin 0. %'e define

V& to be the real-space hopping amplitude from a Mn d
to a neighboring p orbital, neglecting any m dependence.
The four-orbital ETBM model of Appendix 8 then yields

V~»(n, 0)=4% '
V~» for the }ipper valence band and a

general wave-vector-dependent hopping amplitude of

V&(n, k)= V&(n, 0) g (p, lk
~
nk) —,

' g e'"'s
5

(2 5)

Here (avk
~

nk) is the coefficient in the Bloch function

~
nk) of the Bloch sum

~

avk) corresponding to orbital
a of basis atom v [ =0 (cation), 1 (anion)] in the unit cell.
The 5 are the four basis vectors to neighboring Te with
respect to a Mn cation at R=O; N is the number of unit
cells in a normalization volume. The value of V& is ob-
tained in Sec. III from experimental sp-d exchange con-
stants. As discussed in Appendix 8, the numerical calcu-
lations in Sec. IV involve averaging Eq. (2.5) over princi-
pal directions.

The Mn-d-sp-band potential exchange is given by

Ho ——g s„(k)c„l, c„q
n, k, a

(2.2)
H»= —

—,
' g g g J„"(k,k')e

H»=g' g ( e»+U d(rn, ))n, (2.3)

describes 6ve degenerate Mn d levels per site i with site-
localized linearized electron-electron interactioos of the
Hubbard form. Here n; is the number operator for d
electrons of magnetic quantum number m on site i. The

describes the virtual-crystal sp bands, s„(k); c„& creates
an electron in band n, with wave number k, and spin cr in
the Bloch state $„1,(r). The sp bands are determined by
the ETBM using a basis of three anion p orbitals and one
cation s orbital (Appendix 8). With the proper choice of
parameters this model yields band gaps in agreement
with experiment as well as reasonable bandwidths and
wave-function components for the highest valence bands
and lowest conduction band.

The term

i n kk'

X Si g Cnkp&pvCnk'v (2.6)

J„'"(k,k'}=+ I d r I d r'P» (r)g„'l, (r')U„(
~

r —r'
~

)

Xp» (r')Q„I, (r)

is the ordinary exchange integral with screened Coulomb
interaction U (

~

r —r'
~

) between a d wave function
(r) and sp Bloch states (n, k) and (n, k'}; o„„are the

Pauli matrices. Hz-derived terms are unimportant for
d-d exchange, and become important for sp-d exchange
only when the H+ contribution vanishes by symmetry.
Mn-Mn direct exchange is even smaller and is neglected.
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HI. st% EXCHANGE

The commonly used sp-d exchange Hamiltonian'

H, «
———

—,
' g' g J„'i' (k, k')e

i n, k, k'

g cnkpo'i vcni 'v

p, v

(3.1)
J

involves J„'~ (k, k'), the exchange between sp band states
(n, k) and (n, k') and Mn local moments S; (S=—,') for
valence bands (n =u) and conduction band (n =c). In-
terband terms n&n' in Eq. (3.1) are smaller and are
neglected. The analysis below is restricted to the band-
edge sp-d exchange constants a —=Jf (0,0) and
P—:J,'~ (0,0). The former will be seen to result ex-
clusively from the term Hz in Eq. (2.1). The latter de-

pends predominantly on H & and is thus more sensitive to
details of the band structure.

Experimentally, u and P are determined from the
enhanced Zeeman splittings of free-exciton lines in mag-
netooptic experiments. ' For an external magnetic 6eld
along the z direction, the spin 8; is replaced in standard
mean-field theory by an average spin S, proportional to
the magnetization. Equation (3.1) is then diagonal in k.
The effect of H, & on band-edge states,

,'xES,J—„'I' —«(0~0)(cotc ot coic o—i) (n =c,u), (3.2)

can thus be considered independently of other k states in
the same band. In all DMS's except Hg-based com-
pounds, the splitting produced by an external magnetic
field in the presence of H,z « is more than an order of
magnitude larger than the intrinsic Zeeman splittings of
these states. The observed splittings therefore are near-
ly proportional to S,. From Eq. (3.2), the splitting of the

j= —', , m J = —,
' (valence-band edge) to j= —,', mz ———,

'

(conduction-band edge) exciton transition is seen to be
AE3/g xNS, (P—a). A different linear combination of a
and P can be obtained from a different exciton transition.

Simultaneous measurements of such transitions together
with magnetization data yield the experimental values
given in Table E.

The exchange constants a and P can be determined
within the mean-field approximation from the AS%
bands for a hypothetical ferromagnetic zinc-blende MnTe
compound. The ferromagnetic order is imposed only to
model the effects of a magnetic field in producing finite
magnetization and associated mean-field spin splittings.
More-direct calculations of sp-d exchange constants for
spin-disordered alloys are dificult. We believe the x =1
case to be relevant because experimentally determined ex-
change constants are reasonably insensitive to x, at least
for x &0.30. The ASW-LSDA calculation scheme is
the same as that described in Sec. II. The results for the
majority and minority spin bands are shown in Fig. 3.
We take S, to be the calculated total magnetic moment
(4.Spy). Assuming the conduction- and valence-band-
edge spin splittings [hF.":E'"( $—) —E'"(1)]to be pro-
portional to S„we find

Na=EE'/S, =0.33 eV, NI3=bE "/S, = —1.05 eV .

(3.3)

Similar ASW calculations were performed for a fer-
romagnetic Cd05Mn05Te alloy in an ordered simple
tetragonal structure. These assume a basal-plane lattice
constant of 6.414 A and perfect tetrahedral coordination.
The x independence of J'1' " is supported by the good
agreement between the calculated values Ra=0. 32 eV
and NP= —1.12 eV and the results in Eq. (3.3).

The comparison of MnTe results with experiment in
Table I shows satisfactory agreement. This agreement
should be viewed with caution because (1) the perturba-
tive treatment of NP given below indicates that this ex-
change constant would be reduced in a calculation em-
ploying the correct 1 level locations; and (2) the experi-
mental NP is properly defined as the exchange constant
for the I s level (j=—,'), whereas the present calculations

TABLE I. M", „Mn,X ' sp-d exchange constants from experiment, and corresponding Mn-X '

sp -d exchange constants from the ferromagnetic ASW band calculations.

Experimental
Xa (eV) NP (eV)

ASW calculation
Sa (eV) NP (eV}

Cd& x Mn„Te

Zn, „Mn„Te
Cd, .Mn, Se

Zn& „Mn„Se
Cdl „Mn„s

0.22

0.18
0.26

0.26
0.22'

—0.88'

—1.05
—1.11'

—1.31
—1.80

MnS

0.33

0.33

—1.05

—1.50

'References 18 and 20.
References 19, 21, 22„and 23.

'References 19, 21, 24, and 25.
References 19, 21, and 26.

'Reference 30.
'Reference 27.
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Majority
Spin

Minority
Spin

IV. Mn-Mn EXCHANGE

The spin- —, Heisenberg Hamiltonian describing the
Mn-Mn, or d d, -exchange in Cd& „Mn„Te is given by

IMnd&

X r r X

FIG. 3. Spin-polarized AS% energy bands for ferromagnetic
MnTe along the symmetry direction I -X. Left (right) panel
shows majority (minority) spin bands. Shown also are the
valence- and conduction-band-edge spin splittings, AE and
aE'.

refer to a nonrelativistic I &5 band edge. The neglect of
spin-orbit splitting in the present calculations may be
unimportant because of experimental evidence that the
exchange constants of the I s and I ~ (j = —,

'
) levels are the

same. ' The uncertainty due to effects (1) and (2) should
not exceed 20%.

The qualitative difference between a and p reAects the
importance of p-1 hybridization and the diferent symme-
try character of the conduction- and valence-band edges.
The present AS% results support the analysis of Ref. 43.
The presence of hybridization introduces an appreciable
Mn d admixture in the I', 5 valence-band maximum. This
is seen in Fig. 3 to give rise to a strong repulsion from
lower, occupied Mn d states in the majority spin bands
and higher, unoccupied Mn 1 states in the minority spin
bands. Large negative values of EE„and hence p result.
By contrast, hybridization between the I

&
conduction-

band edge and Mn 1 states is forbidden by symmetry
The much smaller, positive values of AE, and u are thus
determined exclusively by potential exchange [the Hz
terms in Eq. (2.1)].

An explicit theoretical expression for p in.terms of the
parameters de6ned in Sec. II B permits the calculation of
the hybridization parameter V & from experimental sp-d
exchange constants. By neglecting Hz, and performing a
Schrie8'er-%'olft' canonical transformation to eliminate
H~z to first order in Eq. (2.1), we obtain

iVP= —32V~&[(sz+ U,s E„, ) '+(E, —ez) —'], (3 4)

where E, is the valence-band-edge energy. Substituting
XP= —0.88 eV, E, —sz ——3.4 eV, and U, tr

——7.0 eV for
Cd& „Mn„Te yields V&& ——0.22 eV. The value of V&
agrees very well with that (-0.2 eV) obtained from an
ETBM 6t to the AS% bands.

H = —g'J (R;)S;S (4.1)
l~J

J" (R;~ ) is the exchange constant for Mn local moments
S; and SJ, separated by R;J =—

~
R, —RJ ~, and the sum ex-

tends over Mn-occupied sites. [Note that with the
present convention the total interaction between two
splns ts —2J (Rjj )$( SJ.]

The value of J", —=J~ (nearest neighbor R; ) is estimat-
ed first from ASW-LSDA total-energy calculations.
More extensive calculations of J""(R;J) are then per-
formed within fourth-order perturbation theory using the
model Hamiltonian (2.1) and the electronic structure pa-
rameters obtained earlier.

The estimate of J, is based on the ASW-LSDA total-
energy difFerence between (hypothetical) zinc-blende
MnTe in antiferromagnetic and ferromagnetic orderings.
%e assume only nearest-neighbor interactions in the fcc
Heisenberg Hamiltonian (4.1) leading to an energy per
spin of —24J,"S in the totally aligned (ferromagnetic)
state and 8J &"S in the AF-I state. S is taken to be one-
half the computed Mn-sphere moment: SF ———,'(4.47ps)
for ferromagnetic ordering and S~F ——

—,'(4. 23pz ) for anti-
ferromagnetic ordering. The difFerence in Heisenberg en-
ergies per spin, J, (8S~„+24SF) is equated to EE~s
the difkrence between antiferromagnetic and ferromag-
netic ASW-LSDA total energies per Mn. The computed
AE of —0.23 eV yields an antiferromagnetic ex-
change constant ofJ,"= —17. 1 K.

This result can be directly compared to experimental
Cd& „Mn„Te exchange constants since the latter are
only weakly x dependent. The best evidence for the weak
x dependence is the good agreement between the value of
J,"/kz (=—7 K) obtained from magnetization step ex-
periments ' ' for x &0.05 and the value (J, /k~
= —7.5 K) obtained from neutron scattering experi-
ments for x =O.65. The AS%-I.SDA calculations
overestimate

~
J& ~. Similar overestimates result from

ASW-LSDA calculations of d @exchange -constants in
MnO, MnS, and NiO, This e8'ect is probably associated
with the LSDA underestimate of the energy of unoccu-
pied Mn 3d levels discussed in Sec. II.

The perturbative calculation of J "(R;J ) begins with
the unperturbed Hamiltonian Ho+Hz in Eq. (2.1). The
perturbation H &+Hz partially lifts the large ground-
state degeneracy of Ho+H& associated with the moment
directions on each Mn site. The resulting spectrum of
low-lying states is described by the Heisenberg Hamil-
tonian (4.1). The lowest-order contributions to J "(R;1)

arising from H& and Hx are termed kinetic and potential
exchange, respectively. As pointed out in Sec. III, Hz is
important only at k points where H ~ vanishes (e.g. , the
conduction-band edge). Since J"~(R, ) is determined by
integrals over the entire zone, the contribution of Hz is
significantly smaller and may be neglected.

Previous estimates of J (R;, ) in DMS's have started
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from Ho and the sp-d exchange Hamiltonian (3.1). This
fundamentally different approach neglects important in-

termediate states in which the Mn d-shell occupations
di8'er from 6ve. The restriction to fixed occupancy is val-
id at near-neighbor distances only in materials in which
potential exchange dominates kinetic exchange [e.g., EuO
(Ref. 65}]. Since the opposite limit holds for
Cd, Mn Te it is important to consider the efFects of
Hz& explicitly in calculating J (R; ) instead of starting
from Eq. (3.1).

The kinetic exchange contributions are calculated by
considering an initial state

~

i & = ~, . . . , M, = —,',
M~= —'„.. . & and final state

~ f &= ~, . . . , M;= —'„
MJ =—„.. . &. The specification of

~

i & and
~ f & implicit-

ly includes the quantum numbers associated with filled

sp-valence and empty sp-conduction bands, and the mag-
netic quantum numbers of S;, ——,

' &M; & —', . HH of Eq.
(4.1) connects

~

i & and
~ f &:

&f ~
HH ~i &= —2( —', )J" (R; ) . (4.2)

Since HH is an effective Hamiltonian representing the
eifects of the more fundamental Hamiltonian (2.1),
J (R,~) can be calculated by computing the matrix ele-
ment on the left-hand side of (4.2) in terms of H~~. The
first nonvanishing terms in H~z connecting

~
i & and

~ f &

are of fourth order. Thus,

&f I H~ IIi &&Ii
I &qe lrz &&Iz IHid 113&&lz IH~ I

i &

(g E )(g E )(g E )
(4.3)

Here I„I2,I3 label intermediate states, to be described in more detail below, specified by the occupation of sp-band
states and Mn d orbitals and sites i and jwith four, five, or six electrons per site. E„Ez,Ez, and Eo are the energies of
the intermediate states and the ground state, respectively. This method of calculating J (R;J ) is very similar to the ap-
proach developed for rare-earth compounds and NiO by Falicov and co-workers. '

The assumption in Sec. II 8 that V&(n, k) is independent of the Mn orbital index m allows Eq. (4.3) to be factored
into two terms. The first term depends only on the Mn-ion ground state, and is exactly one for the Mn +( S5&z)
configuration assumed here. The second term is a perturbation expression identical to Eq. (4.3) but for S= —,. The cal-

culation of J (R; ) thus proceeds exactly as in the case of a single d orbital per Mn.
Figure 4 shows a schematic representation of terms contributing to J (R; ). Each arrow represents the formation of

one on the intermediate states I„I2, or I3 through transfer of one electron between Mn ions at R; or R and the sp
bands. All permutations of the arrow labels consistent with particle conservation and the exclusion principle produce
intermediate states that contribute to the exchange constants. The sums of terms with two-hole [Fig. 4(a)], hole-

electron [Fig. 4(b)], and electron-electron (not shown) intermediate states are denoted by Ji,s(R,~), Jz, (R,, ), and

J,","(R," ), respectively Thus J. (R;~ ) =Jii, (R;J )+Jz, (R;J )+J,", (R;1 ).
Let, [A, B,C, D] be the sum of the terms in Eq. (4.3) corresponding to the intermediate-state sequence shown in Fig.

4(a) plus the same term with i and j interchanged. The total contribution to Jii, (R,J ) is then

Jii(R~)=[A, B,CD]+[CD, A, B]+[A,C D,B]+[A,C B,D]+[C,A, D,B]+[C,A, B,D]

= —2 g g )
V z(n, k)

( )
V&(n'k')

[ cos[(k —k') R; ]
k, k' n, n'

X I U,ff'[s„(k)—e& —U,ff] [s„(k')—s~ —U, ff]
' —[s„(k)—ez —U,ff] [e„(k')—ez —U,ff] 'I

(4.4)

Here the sum on bands is restricted to the upper valence bands, and the k, k' sums extend over the 6rst Brillouin zone.
Both terms in curly brackets are positive. The rapid decrease of

~
V~&(u, k)

~
away from k =0 discussed in Appendix

8 implies that the integrals over k and k are positive. Ji,i, (R,J }is thus negative or antiferromagnetic.
Ji",s(R; ) will be seen below to be the dominant exchange mechanism in Cd, „Mn„Te at near-neighbor distances.

Since Jsz(R; ) involves only the anion-derived upper-valence-band states, it is identified with superexchange.
The present k-space description of superexchange is believed to be superior for Cd, „Mn„Te to more familiar real-
space, path-counting schemes because the upper valence bands are relatively broad. In materials with narrower
valence bands (e.II., NiO), the sp hopping itself can be treated as a perturbation and only the shortest paths contribute
signiIicantiy to J (R;J ). Correlation effects within the valence band may also be important. In Cd, „Mn„Te, howev-
er, the broader, uncorrelated valence bands require a relatively large number of paths to be retained. The appropriate
summation over paths is taken care of automatically in Eq. (4.4) by the cosine factor and k-dependent hopping ampli-
tudes V~&(n, k)

Jz, (R;J ) contains intermediate states involving the lowest conduction band and the upper valence bands. In analogy
to Eq. (4.4), we find
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J~,"(R;, ) = —2 g g [ V ~(n, k)
~

2
~

V ~(n', k')
~

'cos[(k —It') R;, ]
k, k' n, n'

x(U,&'[E„(k)—ez —U,s] '[cz —s„(k')]

+ —,'[E„(k)—s„(k')] 't [e& —s„(k')] '+[a„(k)—ez —U,s] 'j ),

where n =c and n'=U refer to conduction and valence
bands, respectively. In a metal [e„(k)—e„.(k')j ' is
singular over the Fermi surface, leading to the oscillatory
long-ranged Ruderman-Kittel-Kasuya- Yosida (RKKY)
interaction at large distances. In systems with an energy
gap, there is no singularity and the interaction (the
Bloembergen-Rowland interaction ') is characterized by
a large-distance associated exponential decay. This in-
teraction dominates asymptotically in DMS's. The su-
perexchange contribution Jzz, (R;J ) also decays exponen-
tially but with a larger decay constant. For Srst and
second neighbors in Cd, ,Mn, Te the calculations below
indicate that Jl„"(R;J) (which in general can be of either
sign) is antiferromagnetic and much smaller ( -5%) than
Jzz"(R;J). The smaller magnitude results from (1) the
smaller density of states in the lowest conduction band

nk

FIG. 4. Diagrammatic representation of fourth-order contri-
butions to J (8;,- ). The filled valence bands, empty conduction
band, and Mn d levels at 8; and 8, are shown. Solid (dashed)
arrows at i and j represent the initial (final) Mn spin states.
Terms contributing to (a) JI,A", (R;,. ) and (b) JA, (R;j) correspond
to allowable permutations of the spin-conserving transfers A, 8,
C, and D. The intermediate states of holes or electrons are la-
beled by (n, k) or (n'„k').

compared to the upper valence band, and (2) the fact that
Vz(c, k) vanishes at k =0 and remains small throughoutpd
the Brillouin zone. These same factors cause the two-
electron contribution J„(R; ), which is also antiferro-
magnetic, to be completely negligible.

Equation (4.3) for J (R; ) has been evaluated numeri-

cally for erst and second neighbors in Cd, Mn Te
(0&x &0.70), using the e„(k) and V~~(n, k) determined

by the four-orbital ETBM model described in Appendix
B. The sphericalization procedure which is used assumes
e„(k) and Vz„(n, k) depend on

~

It
~

according to analytic
expressions obtained along I —X. This approximation is
reasonable because the main contribution to J (R;J )

arises from the central region of the Brillouin zone where
s„(k) and V z(n, k) are isotropic.

For x =0.30, we find J~&"/kz = —8 K and
J2 /ka:—J" (second neighbor R,,)/k~= 0 9—K. (also
antiferromagnetic). The ratio J2 /J& =0.11 is probably
more accurate than the absolute values because it is in-
dependent of Vz&. Superexchange, or Jfz(R;~) contrib-
utes about 95% to the total J~t and Jz~ for x =0.3. The
Jz,"(R;J) contribution accounts for most of the remaining
5% If Vpd is assumed independent of x, the calculated
values of J& and J&" are nearly constant throughout the
physically attainable concentration range (0&x &0.70).
In Sec. V w'e argue that V~& should actually increase
slightly with x, leading to an increase of -20% in the
magnitude ofJ,"and J2 between x =0 and x =0.7.

The nearly complete x independence of J", /kz (with
V z assumed constant) results in part from a competition
between J„z/k~ and Jz, /k~. The former increases in
magnitude for nearest neighbors from —7.6 K at x =0. 1

to —8. 1 K at x =0.7. This enhancement results from
the increasing Te p character of the upper valence bands
which accompanies the increase in band gap. The
Jl„"/kz contribution for nearest neighbors decreases in
magnitude over the same composition range from —0.6
to —0.3 K. The much larger percentage change in J&,

"
rejects the strong band-gap dependence of the energy
denominator [s,(k) —e, (k')] ' in Eq. (4.5).

The principal uncertainty in our numerical results lies
in the parameters V& and U,&. The magnitude of V~ is
largely constrained by Eq. (3.4) and the values of ez, U,s,
and NP but J "is proportional to V z. Sample calcula-

cf8
pd

tions show J, to vary by -+50% for changes in U,N of
—+ 15%, and by -+30% for changes in XP or s~ of
-+15%. The overall accuracy of the calculation of J

&

is thus -+50%.
The most accurate experimental values of J& /k& in

Cd& Mn Te range from —6. 1 to —7.7 K. ' ' ' As
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discussed earlier, no significant differences have been ob-
served between experimental determinations for dilute
(x &0.05) and concentrated (x &0.6) samples. Much of
the experimental variation, in fact, may only re6ect a
diff'erence in assumptions made concermng Jz" and more
distant neighbor exchange constants. Direct experimen-
tal information on interactions beyond nearest neighbors
is unavailable. An upper bound of J2 /J, &0.5 (Ref.
69) is imposed by the observation of short-ran~ed AF-III
ordering in neutron scattering experiments. Detailed
analysis of the neutron scattering data as weil as magneti-
zation step data place this ratio in the narrower range
0.1-0.3." ' Overall, the agreement between the present
perturbative calculations ofJ, and Jz and experiment is
excellent. This agreement strongly supports the basic va-
lidity of the electronic structure model used here and
confirms superexchange as the dominant source of Mn-
Mn interactions at near-neighbor distances. Conversely,
the success of the present calculation of superexchange
may be attributed to the detailed knowledge of the
relevant parts of the electronic structure.

More-accurate calculations of Jsi, have been performed
in connection with a recent study of anisotropic superex-
change in DMS's. These calculations employ the Bal-
dereschi "special k points" method, with 10 k points in
the irreducible Brillouin zone (as well as more reahstic es
and t2 symmetry d orbitals). ' ' The results are very
similar to those reported here: Ji,i",

———5.6 K (-25%
smaller), and relative chemical and compositional trends
are efFectively unchanged ( &10%%uo difference). The good
agreement supports the adequacy of the spherical ap-
proximation used in this section for treating Jd . The
same approximation also leads naturally to the simple
three-level model for superexchange described in the fol-
lowing section.

V. THREE-LEVEL M(ODKL OF SUPKREXCHANGK
IN Mn-BASED MATERIALS

A. Three-level model

A transparent expression for the superexchange contri-
bution to J (R; ) that is unobscured by the elaborate

calculations of the preceding section provides physical in-
sight for this and other Mn-based systems. The
simpli6ed expression to be developed here is based on a
three-level model which contains only the most relevant
characteristics of the electronic structure. The model
contains four parameters: an occupied d level at energy
sd, an unoccupied d level at energy ed + U, ii, a p level at
the energy of the sp-valence-band edge, E„and the single

hopping parameter V~d (defined in Sec. II) which con-
nects the p level to both d levels. The three levels cd, E„
and c„,and ed+ U,~ correspond to cd, E„and ed in Fig.
2, respectively. (The numerical values of the parameters
will be different from those indicated in Fig. 2.) The
model neglects conduction states since these have been
shown to be unimportant for superexchange (Sec. IV).

The expression for superexchange is first calculated
strictly within the three-level model, where perturbation
theory (in analogy to the development in Sec. IV) yields72

Jgp, (R;J ) = 2Vpg[U—ON'(E„—ed —U, ir)

(E ed Ueff ) ]f(r) (5.1)

The dimensionless function f (r) describes the depen-
dence of J""(R;J) on R,J /a = r, where a i—s the cubic lat-
tice constant. This dependence is trivial for the pure
three-level problem: f (r)=1 for nearest neighbors and
vanishes for more distant neighbors.

The expression (5.1}is actually more widely applicable
than its derivation above might suggest. It describes
Mn-Mn exchange in both DMS's and the rocksalt insula-
tors MnO and a-MnS. Within each class of materials a
single —material insensitive —function f (r) may be
defined. Here "material insensitive" means independent
of electronic structure details within a class of materials
having the same or closely related symmetries. Varia-
tions of Jd~ within a class are therefore controlled by the
simple three-level-derived prefactor in Eq. (5.1).

An expression for f (r) in DMS's which is exact within
the fourth-order perturbation theory of Sec. IV may be
obtained by comparing Eq. (5.1) with Eq. (4.4). We
denote the result by f(r):

f(r)=g g cos(ak r)cos(ak' r)V&4( V&(n, k)
) (

V&(n', k')
~

zt U, '[I(sk) —ed —U,s] ' —[e„(k)—zd —U,s)
n, k n', k'

X [e„(k')—eg —U, ir] '[ U,q' (E„—ed —U,s ) (E,—ed —U—,s } ] (5.2)

In the limit of liat valence bands, f(r) becomes 9 for
nearest neighbors and vanishes at larger r. Thus the Bat
band case reproduces the results of the three-level model
as generalized to include valence-band degeneracy. For
finite band dispersion the sums in Eq. (5.2) are dominated
by the region near k=o. The discussion in Appendix 8
shows that both ( V~(n, k)

~
and the energy denomina-

tor factors decrease away from k=0. Phase cancellation
due to the cos(k.r) factors further enhance the zone-
center contribution. Because these features are common

to all tetrahedrally bonded Mn-based DMS's, f(r) is ap-
proximately material insensitive.

By making the following approximations to f(r ) we
obtain a form for f(r) which is explicitly insensitive to
variations in the DMS energy bands E„(k) and electronic
structure parameters cd, U,z„and V d.

(1) The energy bands and
~

V&(n, k)
~

are assumed
to depend isotropically on k as discussed in Appen-
dix B. The result for

~
V„d(n, k)

~

is [Eq. (BS)]
~

V&(0)
~

z (k) cos (ak/4), where z(k) is the averaged
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(5.3)

and z —= (z(k)).
(3) Terms containing a„b„a—re neglected relative to

those containing a„+b„. For DMS parameters this ap-
proximation is accurate to better than 10%.

With these approximations

f(r) =-,'z g a„ ga +b

'3 '2

X —— I d k cos(alt r)cos ( —,'ak) . (5.4)
1 Q

projection of the periodic part of a valence-band Bloch
function onto the anion p orbitals [Eq. (87) and follow-
ing; z(0)=1, z(2n/a)=0. 8). The cos (ak/4) factor
arises from the interference of hopping amplitudes to
difFerent anions.

(2) The energy denominators in Eq. (5.2) and z(k) are
each averaged over the Brillouin zone, weighted by
cos (ak/4). This averaging is performed by first interpo-
lating the k dependence and is carried out explicitly in
Appendix C. Denoting this average for a quantity A (k)
by ( A(k)), we define

'2

wide range of DMS parameters (Appendix C), including
those of Sec. IV. Finite valence-band dispersion is re-
sponsible for the 50% reduction from the Aat band value
of 9.

Figure 5 shows f (r) (dotted line), and the f(r) [solid
line; Eq. (5.2)] corresponding to C107Mno&Te parame-
ters. The functions f and f agree at small r where the
averaging assumption (2) is most accurate. At larger r
the neglect of k dependence in the energy denominators
causes f to fall ofF somewhat too quickly. The reason-
ableness of the functional form given by Eq. (5.5) suggests
fitting f (r) empirically as

f (r)=51.2e (5.6)

(the dashed line in Fig. 5). This function reproduces f(r)
to 20% for first through fourth nearest neighbors with
f(NN)=4. 4 and f(NNN)=0. 4. (Here NN and NNN
denote nearest and next-nearest neighbors, respectively. )

Also shown in Fig. 5 is the exponential asymptotic form
for f(r) obtained analytically as described in Ref. 68.
The exponential is apparently inapplicable for r ~1.5.
Table II contains parameters and the resulting J (R,, )

value for Cd, „Mn„Te using empirical f (r) of Eq. (5.6).
[The -S%%uo difFerence between this value of Ji and the
result in Sec. IV is due to the discrepancy between f(NN)
and j(NN), and the neglect of J„, terms. ]

f (r) = —,'z g a„ ga +b (33e ')
n m

30 7e —5. 16r 2
(5.5)

Here —,'(g„a„)(g a +b ) is approximately 4.S for a

The integral on the right-hand side is expressible in terms
of special functions, but for the physically interesting re-
gion r g 1.5, including out to fourth nearest neighbors, it

—2 58)'is well approximated by 3.3e 2 " (Appendix C). Thus,

8. Chemical trends in DMS's

The usefulness of the three-level model will be illustrat-
ed first by applying it to DMS's other than Cd, „Mn„Te.
Although much less experimental information is present-
ly available for these materials, a consistent set of input
data will be obtained here using what is available togeth-
er with simple theoretical estimates. An additional con-
sistency check on anion trends is provided by the results
of first-principles ASW calculations.

For clarity the comparisons will be restricted to a sin-

gle concentration, x=0.1. Calculations not discussed
here indicate that the chemical trends are characteristic
of a wide range of concentrations. The material insensi-
tivity of f (r) implies that the J2 /J, ratio will be con-
stant. Therefore we focus on changes in J

&
.

1. Anion substitutions

10

210

0.25 0.75

4NN)

l

1.50

FIG. 5. The dimensionless functions f(r) (sohd line), f(r)
(dotted line) of Eq. (S.S), and the empirical f (r) (dashed line) of
Eq. (5.6}, as a function of r =8/a. Here a is the cubic lattice
constant. Parameters correspond to those of Cdp pMnp 3Te.
Also shown is the asymptotically valid exponential form of f (r)
4,'dot-dashed line) for the same parameters. The 6rst four nearest
neighbors on the fcc magnitude lattice are indicated by NN,
NNN, 3NN, and 4NN.

Changes in the anion species are particularly
signi6cant since both d-d and sp-d exchange in DMS's are
primarily determined by the anion-derived upper valence
bands. Chemical trends in the series Cdo 9Mno, Te
~Cd09Mno &Se ~Cdo9Mno &S are summarized in the
Itrst three columns of Table II. The input parameters
E Fgf U ff and Vpp for' the selenide and sulMe are ob-
tained as follows.

(1) E„—ee is obtained from photoemission data. '

The surprising constancy of this difFerence in Cd-based
DMS's presumably results from two competing effects.
E, shifts to lower energy (by about 1 eV between the tel-
luride and selenide and 0.80 eV between the selenide and
sulfide ) due to the deeper anion potential seen by the
outer valence p electrons. For the same sequence the ma-
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TABLE II. Chemical trends for M&' „Mn„X ', computed using the three-level model, compared with experiment. The calcula-
tions of Jdi~ employed Eq. (5.1) with f{r) =4.4 for nearest neighbors as given by Eq. (5.6).

Input parameters
F.„—c,d (eV)
U.a «»
V~d (eV)

dM. VI (A)
Theoretical estimates

[Eq. {5.1)] J', "yk, (K)
Experiment

J""/kg (K )

'Reference 14.
Reference 76.

'References 75 and 77.
dReference 78.
'Reference 11.
Estimated in text.
l'Reference 31.

Cd„Mn, ,Te

3.4'
7.0'
0.219
2.759

—7.6

6 38

Cdo 9Mno iSe

3.4b

7.6
0.255
2.572

—8.1"

Cdo 9Mno )S

3.4'
7.9
0.330
2.453

—21.0

—8.6'

—10.6'

"Reference 32.
'Reference 37.
"Reference 36.
"Reference 38.
'Reference 39.
"Reference 40.

Zno 9Mno l Te

3.4
7.0
0.240
2.722

—11.0

—8.8
—9.3'
—9.5

Zno 9Mno )Se

34
7.6
0.277
2.533

—13.0

—9.9'

—12.3

Zno. 9Mno. &
S

3.4
7.9
0.351'
2.411

—16.1

terials become more ionic and the d-level energy sz also
shifts to lower energy because of the larger Mn-to-anion
charge transfer.

(2} The variations in U,s are estimated using a simple
electrostatic argument. Although information on this pa-
rameter is not available for DMS's other than
Cd, „Mn„Te, the value of U,z is not expected to change
appreciably as a function of anion substitution since it is
largely an intra-atomic property of Mn. A slight increase
is expected in the series telluride ~ selenide ~ sul6de
due to the reduced screening associated with the increas-
ing Mn to anion charge transfer. %e estimate U,z- by as-
suming a linear dependence on the inverse dielectric con-
stant so

' and fitting to Cd, „Mn„Te and MnO. (U, ir
——7

and 9 eV and Fo ——0.14 and 0.25, respectively, for the two
materials. ' ' ') The values so '=0. 17 for CdSe and
0.19 for CdS lead immediately to the U,& entries in Table
II. The estimated variations from the telluride to the
sulfide is less than 15%.

(3) The p-d hybridization parameter V& is determined
from Eq. (3.4) using the above parameters and the experi-
mental sp-d exchange constants NP listed in Table I. The
increase in V d from the telluride to the suMde is qualita-
tively consistent with scaling arguments for V& given a
decrease in the Mn-anion bond length. DiFerent scaling
theories ' predict a bond length d dependence of either
d or d ~ . Recent extended x-ray absorption fine-
structure (EXAFS} studies of a number of semiconduct-
ing alloys including Cd, „Mn„Te (Ref. 84) provide some
further information. They show individual cation-anion
bond lengths in the alloy to retain values close to those of
the limiting crystals. A simple central-force model
based on those results suggests that the Mn-anion bond
length in M"-X DMS's should exhibit the weak x
dependence

dM xvi+

(5.7)

Here d~ii xvi and d vi are the nearest-neighbor bond

lengths in the limiting x =0 and x =1 zinc-blende crys-
tals. The values of d v, (x =0.1) listed in Table II are

obtained from Eq. (5.7) and the tabulated crystalline bond
lengths in Ref. 86. With the value of V d determined in

Sec. III for Cdo 9Mno, Te scaled by the d» (x =0.1)
of Table II, the scaling theories yield V d in

Cdo9Mno, Se, Cd09Mno, S as 0.31, 0.36 eV (d ), or
0.29, 0.34 eV (d ~ ). Neither set of values agrees par-
ticularly well with the experimentally determined entries
in Table II, probably because chemical diFerences be-
tween the anions are neglected.

Substitution of E„—cd, U,z, and V& determined in
(1)-(3) above into Eq. (5.1) yields the theoretical predic-
tion for J i listed in Table II. The 18% increase from the
telluride to the selenide is in reasonable agreement with
the 25% increase observed experimentally. i' The
larger predicted increase in

~
Ji

~

from selenide to
su16de somewhat overestimates the experimental trend.
The discrepancy is still within the accuracy of the model,
and may be corrected when more-accurate input parame-
ters (e.g. , U,ii) become available. (To aid comparison, the
experimental J&" entries in Table II are all taken from ex-
periments in which the effects of second and more-distant
neighbor exchanges are approximately corrected for. )

The results of AS%-LSDA calculations listed in Table
III for the limiting crystalline compounds MnTe, MnSe,
and MnS are qualitatively consistent with the anion
trends. The calculations assume that a11 three have the
zinc-blende structure and an AF-I antiferromagnetic or-
dering. {At small Mn concentrations Cd, „Mn„Se and
Cd, „Mn„S actually have the wurtzite structure. ) The
spin splitting ed —cd, or U,& in the present model, in-
creases somewhat from the telluride to the sulfide al-
though the magnitude of this splitting is known to be
seriously underestimated in the LSDA (Sec. II and Ap-
pendix A). The difFerence E„—cd is roughly constant
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TABLE III. AS%-LSDA results for zinc-blende MaTe,
MnSe, and MnS in the AF-I ordering. Here c is the cubic lat-
tice constant, and M& is the Mn-sphere magnetic moment.
The meaning of cq —eq and E„—eq in all three systems is the
same as indicated in Fig. 2 for MnTe.

Mn Te
MnSe
MnS

6.34
5.82
5.60

4.23
4.15
4.14

3.2
3.4
3.9

2.2
2.1

2.4

2. Cation substitutions

Changes in the cation species play a far less important
role in determining the magnetic properties. Here we
consider only the replacement of Cd with Zn. Hg-based
DMS's are omitted because of larger experimental uncer-
tainties in sp-d exchange constants. Furthermore, JI"„as-
sociated with the Bloembergen-Rowland interaction,
neglected in this section, plays a more important role in
the zero-gap case. Nevertheless, superexchange is be-
lieved to be dominant in Hg-based alloys.

The substitution of Zn for Cd has only an indirect
effect on the band-structure features relevant to suyerex-
change. %e estimate the associated changes in J

&
using

Eq. (5.1) and the input data listed in Table II. E„—sz
and U,z are assumed to be the same in the corresponding
Cd and Zn alloys since these parameters are determined
primarily by the Mn and the anion. (Experimental infor-
mation is presently available only for Zn, „Mn„Se, when
E, —ez is 3.5+0. 1 eV, consistent with this assumption. )

V & values in ZnQ 9MnQ
&
Te and ZnQ 9MnQ &Se are deter-

mined from the experimental NP values in Table I. Small
but definite increases in V & are observed relative to the
corresponding Cd alloys. %'e interpret this trend as an
indirect effect of the cation on the Mn-anion bond length.
The d ~& values in Table II indeed decrease slightly as
Cd is replaced by Zn. The variations in V& for
CdQ 9MnQ ]Te ~ ZnQ 9MnQ f Te and CdQ 954nQ $ Se

ZnQ 9MnQ, Se in fact are well described by a d or
d power law. (Scaling works better here than for the
anion trends because the chemical nature of the anion is
unchanged and the variation in d is smaller. ) In the ab-
sence of an experimental NP value, we estimate V~ for
Zn& „Mn„Sby scaling the CdQ 9MnQ &S value.

across the series, although the values are -30% smaller
than those listed in Table II. The increasing

~
EP

~

values in the AS% results in Table I provide support for
an increasing Vz from the telluride to the sulfide. The
J", values in Table III are obtained as before from ASW
total-energy differences between AF-I and ferromagnetic
orderings. The increase in magnitude is smaller than that
given in Table II. As was found for the larger discrepan-
cy in J~i" magnitudes, the discrepancy in the telluride-to-
selenide J( trend is probably associated with the I.SDA
underestimate of the energy of unoccupied Mn 3d levels
(Sec. II and Appendix A).

The J", results in Table II indicate a clear trend to-
wards a larger superexch ange interaction in Zn-
substituted DMS s. Quantitative agreement with experi-
ment is achieved for ZnQ 9MnQ, Te and ZnQ 9MnQ, Se.
The value of

~
J,

~

in Zno 9Mno, S is found to be the
largest of any of the DMS's considered here. This predic-
tion agrees with a recent neutron scattering experiment.
By using the experimental values of J

&
given in Table II

for Cd, „Mn„S and Zn, „Mn„S together with NP for
Cd~ „Mn„S in Eqs. (5.1) and (3.4), we predict NI3 for
Zn& „Mn„S to be —(2.2 to 2.4) eV. This prediction
should be checked experimentally.

An alternative model of cation trends has recently been
proposed by Spafek et a/. They assume that J"," is
aff'ected principally by the change in the Mn—anion-
Mn bond angle due to the structural distortions associat-
ed with diFerent cations. This undoubtedly has some
effect, but is neglected here, since, as in the case of amor-
phous covalent semiconductors, we regard changes in V z
due to small variations in bond length to be considerably
more important.

The present approach provides a consistent interpreta-
tion of the increase in both NP and J, as Cd is replaced
by Zn. In addition, this interpretation implies a depen-
dence of Vzz on x within the Cd and Zn alloy systems,
since both must extrapolate to the same value at x = l. If
dM xvi follows Eq. (5.7), a 6.2% increase in V z is pre-

dicted in Cd, „Mn„Te between x =0 and x =0.75. This
leads to a 13% increase in NP and a 27% increase in J i~

(if other factors are neglected).

C. MnO and a-MnS

It is remarkable that the three-level expression (5.1) is
applicable to a quite diFerent class of materials, illustrat-
ed by the insulators MnO and u-MnS. This is seen by
calculating the Mn-Mn exchange interaction in these ma-
terials. The f (r) appropriate to the rocksalt structure,
hereafter denoted fRs(r), is again insensitive to the
specific material.

The main diFerences between the electronic structure
of DMS's and MnX (X =O,S) result primarily from the
increased ionicity of the rocksalt compounds. They are
(1) the anion p-derived levels lie primarily below the occu-
pied Mn d levels and are significantly narrower than in
DMS's; (2) U,s is larger than in DMS's, because the
screening charge on the Mn cation is decreased; (3) the
higher symmetry of the rocksalt structure leads to

i V~(u, k)
i

'=0 at both I and X.
Although we would expect the three-level model to ap-

ply generally to Mn-based nonrnetals, the correspondingf (r) for difFerent classes of materials will generally de-
pend on their point-group symmetry. For example, selec-
tion rules (Goodenough-Kanamori rules ) reduce the re-
gion of the Brillouin zone where p-d hybridization
occurs, thereby decreasing f (r). For DMS's these selec-
tion rules impose no restrictions; however, the higher
symmetry of the rocksalt structure causes a reduction of
nearest-neighbor superexchange by ——,'. The erat'ect on

f (r) will generally depend both on the functional form of
V z(u, k) and on the location of critical points in the ener-
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TABLE IV. Chemical trends for the rocksalt compounds MnO and a-MnS, computed using the
three-level model, compared with experiment. The calculations of J~ employed by Eq. {5.1) with

fas(r) =4.4 for nearest neighbors as given by Eq. (5.6).

MnO
g-MnS

F.„,
—cd

(eV)

—2.5'
0.5+1.0'

U.a
(e&)

9.0
8.0

0.46
0.27

2.225'
2.605'

J
&

(theory)/kz
(K)

—5.0
—1.7+0.4

J I (expt. )/kz
(K)

'Reference 63, and references therein.
Reference 2.

gy denominators of Eq. (5.2). For example, in DMS's the
minima in energy denominators [Eq. (5.2)] and in

~
Vd(u, k)

~

both occur at I, causing f(NN) to be re-
duced by ——,

' from the ffat-band result (cf. Sec. VA). By
contrast, in the perovskite compound KMnF&, the
minimum in the energy denominators at I corresponds
to a zero in V~d(u, k), leading to a larger reduction, es-
timated at ——,'.

In MnX the Hat-band limit should correspond to a
good approximation for fRs(r) since W(E„—zz
—U,~) '&&1. (W is the average bandwidth of the sp
valence bands. } In contrast to DMS's, this limit here
implies fRs(r) is nonzero for both ffrst and second neigh-
bors on the fcc magnetic lattice, since superexchange to
both is mediated by p orbitals of the nearest-neighbor
anions. Second neighbor superexchange is reduced by
the same factor —,

' as Grst neighbor superexchange because
only one anion mediates these processes, compared to
two anions for first neighbors. In DMS's, f(NN) is re-
duced by —,

' due to the presence of broad bands (see
preceding paragraph). It therefore turns out by accident
that f„s(NN)=f(NN). However, fits and f differ for
second and more-distant neighbors. The function f„s(r)
is expected to be similar in MnO and o,-MnS because
W(E, —zd —U,s) '~~1 in both. As in DMS's, fRs is
material insensitive because the k integrations are dom-
inated by

~ V~d(u, k)
~

Table IV contains parameters and calculated values of
Jd" for MnO and a-MnS using Eq. (5.1} and (5.6) with

fRs(NN) =f(NN) =4.4. E, —ed was taken from the
ASW-LSDA calculations of Terakura et al. ;

' U,s for
o.-MnS was estimated as in Sec. V 8; V& was calculated
from V& for Cd& „Mn„Te and was assumed to obey the
d scaling law.

The good agreement of the calculated Jl" with experi-
mental results given in Table IV in both magnitude and
trend indicates that the three-level model is applicable to

L

MnX, and that a single function fRs(r}, which needs to
be calculated only once for each class of materials, can be
defined. The calculations, like those for DMS's (Sec.
V B), are remarkably simple, requiring only the electronic
structure input parameters (E„—sd, U,s, and V d ) and
the function fRs. As a result it is reasonable to expect
that the three-level inodel will also provide useful numer-
ical estimates of exchange constants in other Mn-based
nonmetals.
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APPENMX A: CORRECTIONS TO THE LSDA

To quantify the discussion of Sec. II, corrections to the
LSDA eigenvalues has been estimated, employing a sim-
ple method based on empirical dielectric constants.
Corrections to the MaTe conduction and valence sp band
edges, and the majority and minority spin levels of e~
symmetry at I, were computed. The value @0=7 was de-
rived by linear extrapolation from dielectric constants in
the alloy for x &0.7. The estimated difkrence between
the LSDA eigenenergies, c. , and the true quasiparti-
cle energies, c, is given by

e I i 3, 5n (r)5n(r') 5n" (r}5n — (r')
260 unit cell

(Al)

(A2)5n(r)=
~ P,(r) ~ I ~ f,(r)

~

d r
unit cell

g,(r} is the LSDA wave function corresponding to e"so,

I

and 5n (r)=5n (r)+5n„,(r) The LSDA. screening
charge 5n, (r) is given by

5.„,(r)=n fd" [g( ~.—' ~;n) 1)5.(.'),—(A3)
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where g( ~
r r—' ~;n ) is the pair distribution function

(taken to be spin independent) for a uniform electron gas
having the weighted average density

3
n = J6n(r)n' (r)d r (A4)

To aid comparison with experiment, scalar-relativistic
corrections were also estimated. The Mn Te sp-
conduction and valence-band-edge shifts werc approxi-
mated using the corresponding shifts for a Te atom:

(core charge of g)&,„~
(energy shift of g)t„„z= core charge of

X {energy shift of P)„,

These calculations lead to the following results.
(1) The LSDA correction is largest for the d levels

since the associated orbitals are most locahzed. The oc-
cupied d levels are shifted to lower energies by 1.5 eV and
the unoccupied levels to higher energies by 1.0 eV. Thus
the energy required to create a separated d-electron-d-
hole pair is underestimated by the LSDA spin splitting.
Since the LSDA eigenvalues are computed using the
ground-state potential, the LSDA spin splitting may ac-
tually correspond more closely to the energy of an intra-
atomic S = —,

' S =-,' transition. 3 The corrections in-

crease U,~ from 3.2 to 5.7 eV. This improves agreement
with the value U,&

——7 eV, derived from experiment,
which was used in the magnetic calculations.

(2) The valence-band edge is shifted to lower energy by
0.5 eV duc to the LSDA corrections, and by a further 0.4
eV by scalar-relativistic corrections. These shifts, com-
bined with (1), cause the energy required to remove an
electron from the top of the valence band and place it in
an unoccupied d level infinitely far away in the crystal to
increase from 1 to 2.9 eV. Additionally, the valence-
band-edge-to-occupied-d energy splitting increases to
0.6 eV from 2.3 to 2.9 eV. This value is closer to the 3.4
eV (for x & 0.6 }value discussed in Sec. II.

APPENDIX 8: KTSM MOOEL AND SPHERICAL
APPROXIMATION FOR &o AND

The empirical tight-binding model used to obtain the
explicit forms of the Ho and H& terms in Eq. (2.1) em-

ploys a minimal basis set consisting of one s orbital per
cation and three p orbitals per anion. The resulting sp
Hamiltonian Ho provides a good semiquantitative
description of the Te p-like upper valence bands in
Cd] Mn Te. The lowest conduction band is also
reasonably described although this is less important for
the numerical calculations of J (8;~ ) in Sec. IV. Scalar-
relativistic effects agc included in the model by the empir-
ical choice of parameters. The neglect of spin-orbit split-
ting is not believed to lead to serious errors in I (R;J ).

We consider interactions for first- and second-nearest
neighbors. 00 is then completely characterized by six
Slater-Koster parameters for which we introduce a

sz 3(k)=e,, +48 &[1+cos(—,'ak)]+4A2cos( —,'ak) (&2)

s4, (k ) =—,
' [g, (k )+g&(k) ]

kt —,'[g, (k) —g2(k)]'+16V~ sin~( —,'ak) I'~' (B3)

can be obtained analytically. Here

g~ (k) =a, +4C [1+2cos( —,
' ak)),

g2(k)=e, +432*82,cos(-,'ak) .
(&4)

Bands 2 and 3 are degenerate valence bands with an x-
independent bandwidth of 2.2 eV. Band 1 is the wider
valence band, with a bandwidth of 5.1 eV at x =0 and 4.8
eV at x =1. Band 4 is the sp conduction band, with a
bandwidth of 2.8 eV at x =0 and 2.5 cV at x =1. The
band gap is given by (1.6+ 1.6X) eV.

TABLE V. ETBM parameters for Cd& „Mn„Te. The table
also establishes the correspondence between the Slater-Koster
notation and the notation used in this work.

Slater-Koster

E„(000)„
E„„(000)„

sx(2 2 2)ca

E (110)„
E „(110)„
E„(011)„

Parameter
This work

Value
(eV)

3.16+1.6x
0.10

1.103

0.015
0.13
0.15

simpli6ed notation in Table V. The parameter values for
Cd& Mn Te listed in the third column of the table are
obtained as follows.

(1) The cation on-site energy e, is assumed to exhibit
the linear VCA variation

e, =h, +x(e, (Mn) —s, (Cd)) .

Here e, (Cd) =0.12 eV and e, (Mn}= 1.72 eV are the Cd 5s

and Mn 4s on-site energy levels, respectively, and
5, =3.16 eV is chosen to reproduce the experimental
x =0 band gap.

(2) The anion on-site energy e, and the single nearest-
neighbor hopping parameter V„are assumed to be in-

dependent of x and have the same value as in more-
extensive ETBM parametrizations of CdTe. The x in-
dependence of s, re6ects a common anion assumption.

(3) The second-neighbor parameters (C, A, , A2) are
also assumed to be x independent and are required to be
no larger than —10% of V„. The chosen values yield
conduction and valence bandwidths in reasonable agree-
ment with experiment.

The spherical approximation used in the calculation of
J~~{R," ) assumes that the sp bands are isotropic and have
the k dependence given by the diagonalization of Ho
along I"-X. This direction is chosen because the result-
ing ergenvalues
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We now consider 0&, for which we compute V&(n, k)
within the ETBM. Let

~

d (i) ) be a d function at site i
%e assume a Lowdin orthogonalization has made this
function orthogonal to the other basis functions. In the
VCA

(d(i)
~

H [nk) =e 'X ' g a'"', (k) pe 'V~

The a&"'i(k) are calculated along I —X,
~

V~d(n, k)
~

is

averaged over principal directions, and the result is taken
to be a function of

~

lt
~

in a spherical Brillouin mne:

~
Vd(n, k}

~

=16V„N 'z (k)cos ( —,'ak) .

Here z (k) is the average of
~
z„(k)

~
over principal

directions. (For the three sp valence bands the result of
this averaging is independent of n. )

=e 'V&(n, k) . (85)

Here 5~ is one of the four R," associated with nearest-
neighbor anions to the Mn, and a,'"„'(k) is the coefficient
in the expansion of the Bloch function

~

n It) of the Bloch
sum

~

avk) corresponding to the ath basis function P, at
(a=s,p„,p„,p„v=a, c for anion and cation. ) Our

basic approximation is that the hopping integral V~d is (1)
only nonzero for nearest-neighbor anion p orbitals, and
(2) independent of the type of p and d orbitals involved.
We thus define

Vd= & rH r — —v, r.
Here P„(r 5 r, ) —is a—p; orbital centered at 5 +v, .

l

The basic reason for this is a good approximation for
DMS s is that V~d is determined from experiments which
give an orbitally averaged quantity. On the other hand,
orbital indices are summed over in the calculation of
J" (R,J ), so that the averaged parameter should provide a
good approximation. ~

~

V&(n, k) ~, which occurs in the calculation of
J (8;J ), contains the factor

g e ' =4[1+cos(—,'ak„)cos( —,'ak )

APPENDIX C: DERIVATION AND
PROPERTIES OF f (r}

Beginning with the definition of f(r) given in Eq. (5.2),
with the isotropic approximation made for the k depen-
dence of energy bands and

~
V~d(n, k)

~
[Eq. (87) and

following], the energy denominators are averaged next
over the Brillouin zone. Averaging is reasonable because
the energy denominators are weakly k dependent com-
pared to

~

V &(n, k)
~

. The average is weighted by the
dominant cos (ak/4) factor in

~ V~d(n, k)
~

[Eq. (88)].
This choice of weighting ensures that f(r) has the
correct limit as r~0. The average of a quantity A (k),
denoted by ( A (k) ), is given explicitly by

' —1

J d kcos ( ,'uk)A (k)—.( A (k)):— J d k cos ( ,'ak)—
(Cl)

In order to perform this averaging on Eq. (5.2), the k
dependence of the energy denominators and of the factor
z (k) [Eq. (87) and following] are approximated by

[e„(k)—sd —U,g]
' =(E„—ed —U,s )

X [y„+(1—y„)cos ( —,'ak)], (C2)

+cos( —,'ak~ )cos( —,'ak, )

+cos( —,'ak, )cos( —,'ak„)] .

2m 2m'z(k)=z + 1-z
0 a

(87)
The y„are defined by

cos ( —,'ak) . (C3)

This has a maximum at k=O and decreases in all direc-
tions away from k=0, vanishing at the X point. This de-
crease comes from the interference of hopping amplitudes
to different anion neighbors as k ' becomes compar-
able with the Mn-anion distance. The factor

„~,a~",'(It) (
=

( x„(It}(
is the square of the pro-

jection of the periodic part of the Bloch function at k
onto the anion p orbitals. For the upper valence bands,
this factor is just 1 at k=0 and decreases along I —X.
For the lowest conduction band az"'i(it=0)=0. (This

remains true for a more general basis than we consider
here, because it follows from a selection rule. ) The net
effect of the two lt dependencies is to suppress hopping
through the conduction band relative to the valence
bands, and to emphasize hopping through the states near
the zone center.

We adopt an approximation to V~& ( n, It ) which
preserves these features and is consistent with the as-
sumed spherical energy bands (calculated along I"—X).

a„=y„+0.46( 1 —y„},
b„=y„+0.92y„(1—y„)+0.28(1—y„)

(C5)

(C6)

z =z +0.46 1 —z
2m

a
=0.89 .

Inserting Eqs. (C5)—(C7) in Eq. (5.2) and neglecting

y„:(8„—ed —U,s—) /(E„—IV„—eq —U,s ),
where IV„ is the bandwidth of the valence band s„(k)
[Eqs. (82) and (83)]. The interpolation of Eq. (1.2) is
chosen to reproduce the correct values and first deriva-
tives of the energy denominators at I and X. Using

(cos ( —,'ak)) =0.46 and (cos ( —,'ak)) =0.28, (C4)

we compute the quantities a„, b„, and z defined in Eq.
(5.3):
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a„—b„relative to a„+b„(accurate to —10% for y„cor-
responding to a wide range of the parameters E, —c.&,

U,s, and W„), we obtain Eq. (5.4).
The integral on the right-hand side of Eq. (5.4) is

3

d k cos(ak r)cos ( —,ak)1 a 3 2

2 m'

By expanding

[[1(2+2r)I (2—Zr)] ') . (C8)
Bp'

in[I (2+2r) ]=+2r g(2) + 1/2(2r) 1('(2),

where f(r)—:d(lnl")/dr is the digamma function, the in-

tegral is approximated by

16
P'(2)exp[ —4P'(2)r ] .2 (C9)

Using 11'(2)=0.645 yields Eq. (5.5) for f (r).
The results of the averaging appear in Eq. (5.4) as the

factors z and —,'(g„a„)(g a +b )
—=Q. The factor Q

is insensitive to changes in valence bandwidth. To show
this, we compute Q assuming all valence bands have the
average bandwidth 8' with E„—c& —U,z

——3.6 eV. For
W=O, one has Q =9, but for the range %=2 eV to
W =6 eV relevant to DMS's, Q changes only from 5.5 to
3.8.
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