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Elastic constants and density of states of a molecular-dynamics model of amorphous silicon
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Recently we formed a model of amorphous silicon by using a molecular-dynamics calculation
with the Stilhnger-%'eber potential to rapidly cool liquid silicon. %e report here on the calculation
of the elastic constants of this model of amorphous silicon at two temperatures, 294 and 478 K. The
Rayleigh surface-wave velocity of our model is lour than the minimum shear velocity in the crystal
by OAX10' cm/s. The observed Rayleigh surface-wave velocity is 0.5X10' cm/s lower than the
minimum shear velocity. The Young's modulus of our model shows a decrease of 3.5)(10"
dyn/cm2 from the average Young's modulus in the crystal, which is close to the observed decrease.
%e also exhibit the density of states for our model of amorphous silicon and compare it to the ob-
served density of states. The main discrepancy is a shift of the high-energy peak to higher frequen-
ries. The molecular-dynamics models of amorphous silicon we form can be of any size, satisfy
periodic boundary conditions by construction, and show no memory of the crystalline phase. Our
models seem to be as good as or better than the random-network models that have been used previ-
ously to study the tetrahedral semiconductors.

I. INTRODUCTION

Recently, we have reported on the formation of a mod-
el of amorphous silicon which was produced by rapidly
( = 10' K/s) cooling liquid silicon in a molecular-
dynamics computer simulation. ' Although we shall dis-
cuss only one such sample, we have produced several,
and are still studying the formation process. The poten-
tial employed in this calculation was the Stillinger-%cher
potential which has been used in a number of computer-
simulation studies of silicon. '~ In the present paper we
report on various other properties of the sample of amor-
phous silicon discussed in Ref. 1.

As was explained in Ref. 1, the geometrical structure
factor of our sample of amorphous silicon gives very
good agreement with the observed structure factor of
amorphous silicon as determined by neutron scattering. '

Also, a study of the structure factor at Bragg vectors
shows that the sample retains no memory of the crystal-
line phase, as would be expected for a sample of amor-
phous silicon prepared by rapidly quenching a well-
equilibrated liquid. In the present paper the calculated
elastic constants and the phonon density of states for a
sample of Stillinger-%eber amorphous silicon are com-
pared with experimental results. In both cases we find
good agreement. Of particular interest is the excellent
agreement for the change in elastic properties in going
from the crystalline to the amorphous phase.

II. KI.ASTIC CGNSTANTS

A. General discussion

stants were difFerent than the observed values by
10-30%, the softening of the calculated values with in-
creasing temperature is quite similar to the observed be-
havior. Given the simplicity of the Stillinger-Weber po-
tential, as well as the fact that no mechanical material
properties were used in its construction, we consider the
agreement of the calculated elastic with the observed
values to be good. In Table I we show the experimental
and calculated values of the elastic constants of crystal-
line silicon at room temperature. The experimental
values are from the I.andolt-Bornstein compilation, '

whereas the theoretical values are ex'trapolated to room
temperature from our previous calculations. Also
shown in Table I are the average Young's modulus, bulk
modulus, and the maximum and minimum shear veloci-
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c-Si (Expt. )'

16.6
6.4
7.9

16.0
9.8

c-Si (Theory)

15.0
7.6
6.0

12.4
10.1

TABLE I. The experimental and theoretical elastic constants
of crystalline silicon at room temperature in units of 10"
dyn/cm2 and the maximum and minimum shear velocities in
units of 10 cm/s. The average Young's modulus Y,„ is deter-
mined by writing Young s modulus for an arbitrary direction
and averaging over the unit sphere. The shear velocity UT& is
determined from the shear constant (C» —C»)/2 and U» is
determined from C~.

In earlier work we have determined the elastic con-
stants of crystalline silicon at three difFerent temperatures
using the Stillinger-%'eber potential. The results of this
calculation show that while the values of the elastic con-

'Reference 14.
Reference 4.

4.7
5.8

4.0
5.1
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ties as determined from the elastic constants. All elastic
constants in Table I are in units of 10" dyn/cm2, while
the shear velocities are in units of 10 cm/s. As men-
tioned above the actual values obtained using the
Stillinger-Weber potential are different by up to 30%;
however, in the present paper we show that the change in
the elastic properties between the amorphous and crystal-
line phases is very accurately modeled by the StiHinger-
%eber potential.

Our method of calculation of the elastic constants
makes use of microcanonical ensemble fluctuation formu-
las which contain the elastic constants. These formulas
were evaluated by using the molecular-dynamics method.
The theory of this method, for molecular dynamics, was
Srst given by Ray and Rahman, 's whereas examples
showing that the method furnishes an eflicient and accu-
rate method of determining elastic constants using molec-
ular dynamics were presented by Ray, Moody, and Rah-
man. ' ' We employed these same formulas and calcula-
tional techniques to determine the elastic constants of
amorphous silicon reported in this paper. %'e shall refer
the reader to Refs. 15-17 for the relevant formulas.

8. Experimental values

The elastic properties of amorphous silicon have been
experimentally studied by Grimsditch, Senn, Winterling,
and Brodsky, Senn, Winterling, Grimsditch, and Brod-
sky, ' and Tan, Berry, and Crowder OTh. e Rayleigh
surface-wave velocity in amorphous silicon was deter-
mined' using Brillouin scattering to have the value
ux ——4. 16X10 cm/s. Young's modulus of amorphous
silicon was determined to have the value F=12.4& 10"
dyn/cm using vibrating thin reeds. Due to experimental
diSculties these are the only known elastic properties of
amorphous silicon. In both of these studies the authors
reported the density of amorphous silicon to be 95% of
the crystalline density or 2.21 g/cm3. There is no way to
compare in detail the samples used in these studies of
amorphous silicon, since no common properties except
the density were reported.

A recent interesting study contains suggestions that
when forming an amorphous phase, a difFerent amor-
phous phase is produced when irradiating a (111)surface
as compared to irradiating a (100) surface.

C. Theoretical values

In Table II we present Young's modulus, shear
modulus, and bulk modulus, of our model of amorphous
sihcon at two diferent temperatures. These values were
calculated using the fluctuation formulas mentioned
above. A detailed study of our calculation yieMs error es-
timates of about 10% for our calculations of the elastic
properties of amorphous silicon. By increasing the lengt, h
of time over which averages are calculated in the Auctua-
tion method we could decrease the error in the calculated
values.

In Table III we show the comparison between the cal-
culated and observed properties of amorphous silicon.
The observed Rayleigh surface velocity is 4.2 X 10 cm/s,
whereas we obtain 3.6&10 cmfs in our calculation.
Also shown is the dllerence between the crystaHlne shear

TABLE II. The theoretical elastic constants of amorphous
silicon at two temperatures for our model. Note the signi6cant
softening with increasing temperature. There are no experimen-
tal results available at the higher temperature. The density of
the system at both temperatures is 0.98p, where p, is the crystal
density. The elastic constants are in units of 10"dyn/cm .

a-Si (Theory)
294 K

8.9
3.3

10.6

a-Si (Theory)
478 K

7.5
2.7

10.0

TABLE III. The Rayleigh surface wave velocity U~ and
Young's modulus F for amorphous silicon compared to our cal-
culated value at 294 K. Also shown are the differences between
the crystalline minimum shear velocity from Table I and the
Rayleigh velocity, and the difference between the average
Young's modulus in the crystal from Table I and Young's
modulus of the amorphous material.

'Reference 19.
bReference 20.

a-Si (Expt.)'
4.2
0.5

12.4
3.6

a-S1 (Theory)

3.6
0.4
8.9
3.5

velocity UT& and the surface velocity Ua,
' the observed

difFerence is 0.5 X 10 cm/s, whereas our calculations us-
ing our model of amorphous silicon give a difference of
0.4X10 cm/s for this same quantity. The observed
Young's modulus is 12.4X10" dyn/cm~, whereas our
calculated value is 8.9 X 10"dyn/cm2. The difFerence be-
tween the average Young's modulus in the crystal and the
value in the amorphous phase is 3.6X10" dyn/cm ob-
served to 3.5X10" dyn/cm calculated. Thus, while the
absolute values calculated for Uz and Fare not so close to
the observed values, the changes are very close to the ob-
served changes. Thus„our calculation using the
Stillinger-Weber potential yields the correct softening of
the elastic properties when going from the crystaBine to
the amorphous phase. This suggests that the softening of
the elastic properties depends more strongly on the struc-
ture difFerences between crystalline and amorphous sil-
icon than the details of the potential.

D. Details of the calculations

The formation of amorphous silicon, using molecular
dynamics, by rapid cooHng of the liquid, is discussed in
detail in Ref. 1. The theory of the method of calculating
elastic constants using fluctuation formulas is discussed
in Refs. 15-17. Our calculations used a system of 216
atoms together with periodic boundary conditions. As
shown in Ref. 4, the elastic constants of crystalline silicon
were unchanged when we increased the system size to
1728 atoms. Therefore, for the present calculation on
amorphous silicon we used 216 atoms.

The use of fluctuation formulas to calculate elastic con-
stants involves estimating ensemble averages of several
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quantities by molecular-dynamics time averages. The
molecular-dynamics runs used to calculate the elastic
constants in Table II consisted of 80000 iterations of the
equations of motion for the 478-K calculation and 50000
iterations for the 294-K calculation, with each iteration
being equal to 7.66&10 ' s for a total time of 61.2 and
38.3 ps, respectively.

For an isotropic system such as an amorphous solid
there are two independent elastic constants, say C» and

C44. The elastic constant C&2 is related to these indepen-
dent components by the relation C,2

——C» —2C44, . In a
molecular-dynamics calculation we can easily calculate
all (there are, in general, 21 independent elastic constants)
of the elastic constants. In the present work we calculat-
ed C11 C22 C33 C12 C13 C23 C44 C55 C66 and C63 in
dependently. The values found for C», Cz2 and C33 can
be used as independent values for C» to calculate a stan-
dard deviation for an error estimate in the calculated
value of C». The errors in C,2 and C44 can be estimated
in a similar same way. These standard deviations show
that the error in all the calculated elastic constants for
amorphous silicon are less than +10%.

Also, as a measure of the isotropy of our sample we
can use the independently calculated elastic constants to
check the tsotropy condttton C() —2C44 ——C)2. For C)z
we found the value 8.3 X 10"dyn/cm for the 478-K run,
and from the values in Table D we may determine
C~~ —2C~=8 0X10" dyn/cm . The difFerence between
the values 8.3 and 8.0 is not significant to the accuracy of
our calculation; in other words, our system satisfies the
elastic constant isotropy condition to the accuracy of our
calculation. For the 294-K run these numbers are
Ci2 ——8.3 X 10"dyn/cm, whereas Cii —2C~ ——8.6X 10"
dyn/cm . As another check on our calculations we cal-
culated the elastic constant C63 which should be zero by
symmetry; the value of C63 was zero to the accuracy of
our calculation; that is, its value was less than the error
determined in the nonzero elastic constants.

K. Other theoretical results

Related theoretical results can be found in the work by
Guttman. Guttman's calculations make use of random-
network models of amorphous silicon that he construct-
ed. These models satisfy periodic boundary conditions.
In the random-network method of constructing models of
amorphous silicon one starts with a crystal lattice of
atoms and follows a specific set of rules for altering bond-
ing of the atoms; this alteration of the system is followed
by a relaxation of the lattice by minimizing the potential
energy. The Keating potential was used by Guttman.
Repeated alterations and relaxations leads in some cases
to a lattice that has properties, that one believes,
represent a good model for amorphous silicon; some of
the properties that one considers are tetrahedral coordi-
nation, bond-angle distributions, and nearest-neighbor
distance distributions. With such rules one can construct
random-network models of amorphous silicon of several
hundred atoms, satisfying periodic boundary conditions,
although not. every attempt will end in a successful mod-
el. For further details of such methods we refer the

reader to the references.
In Ref. 22 Guttman determined the elastic constants

of amorphous silicon by homogeneously deforming ran-
dom-network models and determining the change in the
energy for given strains. The models employed by Gutt-
man were composed of 16 and 54 atoms with periodic
boundary conditions. The elastic constants were deter-
mined from derivatives of the energy with respect to the
strain. The parameters in the Keating potential may be
chosen so that the elastic constants of crystaBine silicon
are correct to a few percent. Guttman's results for
Young's modulus, shear modulus, and bulk modulus of
amorphous silicon are I'=0 74(a. iro), p, =0.30(a/ro),
and 8 =0.46(airo), where a is the bond-stretching force
constant in the Keating potential and ro is the interatom-
ic distance in the crystal. The Keating-potential bond-
bending force constant p was chosen to satisfy p/a=0. 3,
which implies that the elastic constants of crystalline sil-
icon may be fit to about 5%. If we fit the crystalline
value of C»,

C» &3(a/4ro——)(1+3p/a)=16. 6X10" dyn/cm

then we find a/ra=20. 2X10". Using this value for
a/ro, we determine the values F=14.9X10" dyn/cm,
@=6.05 X 10" dyn/cm, and 8 =9.28 X 10" dyn/cm2 for
Guttman's model. The Rayleigh surface wave velocity
determined from these elastic constants is Uz

——4.7X10
cm/s. Recall that the observed Young's modulus is
12.4X 10" dyn/cm, while the observed Rayleigh veloci-
ty is 4.2X 10 cm/s. Thus, Guttman's calculations give
too high a value for both 7 and Uz when compared to the
observed values. Recall that the Stillinger-Weber calcu-
lation gives values too small when compared to experi-
ment. %hen compared to the average crystalline value
Guttman's Young's modulus softens by 1.1 X 10"
dyn/cm, whereas the Rayleigh velocity is the same as
the shear velocity Uz, in the crystal. Recall that in the
Stillinger-%'eber calculation one obtains excellent agree-
ment in the changes between crystalline and amorphous
values for F and Uz. Note that the crystalline elastic con-
stants in Guttman's calculations are the observed values.

III. PHONON DENSITY QF STATES

Our model of amorphous silicon was cooled until it
reached a temperature near zero. The eigenfrequencies
of small vibrations about equilibrium were then deter-
mined by finding the eigenvalues of the dynamical matrix
D„gj.

D, ( qj. dU/dx„Bxq/——, . (3.1)

where a and b denote particle numbers and i and j denote
Cartesian components. The eigenvalues of the matrix
D, A, are related to the vibrational frequencies co by
6J =A, .

We also cooled a crystalline system and calculated the
density of states for comparison purposes. Figure 1

shows a plot of the crystalline density of states along with
the experimental curve calculated from potentials 6tted
to the dispersion relations determined from neutron
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Early work by Guttman and Ross, Perlov, Fong, and
Guttman made use of Guttman's random-network
models discussed above. A more-recent discussion of the
phonon density of states is contained in a paper of
Winer, which also contains references to the literature.

b

o
Q

2.Q

FIG. 1. The experimental and theoretical vibrational density
of states (DOS) for crystalline silicon. The experimental curve
is distinguished by the + markers. The density of states curves
have not been normalized.

scattering. ' Except for the thermal broadening, which
makes the theoretical curve smoother, the high-frequency
peak being shifted to higher frequency is the main
difFerence between the curves in Fig. 1. Except for this
one feature the theoretical curve agrees well with the ex-
perimental results.

The phonon density of states for amorphous sHicon is
essentially a broadened version of the crystal density of
states. In Fig. 2 we show the comparison between the ex-
perimental density of states as determined by inelastic
neutron scattering and our model of amorphous silicon.
The agreement shown in Fig. 2 is as good or better than
that for the crystal; again the main diS'erence is the shift
of the high frequency peak to higher frequencies. In con-
trast to the elastic constant data there has been a great
deal of work on the density of states of amorphous sil-
icon. Most of this work consists of ending the density of
states for random-network models of amorphous siHcon.

zr (1 0'' a ")

FIG. 2. The experimental and theoretical vibrational density
of states for amorphous silicon. The experimental curve is dis-
tinguished by the + markers. The density of states curves have
nat been normalized.

IV. CONCI USIONS

In this paper we have used a model of amorphous sil-
icon which is formed by rapidly quenching the melt. In
earlier work' models of amorphous silicon produced in
this manner gave a good description to the observed stat-
ic structure factor. By construction our models satisfy
periodic boundary conditions and can be made of arbi-
trary size.

In this paper we have shown that the observed soften-
ing of Young's modulus and the lower value for the Ray-
leigh velocity, as compared to the crystalline shear veloci-
ty, in amorphous silicon is very well fit by our model.
Also, the phonon density of states is in good agreement
with the observations. The agreements between observed
and calculated values one obtains using the Stillinger-
Weber potential is not of high precision, but given the
simplicity of the potential these agreements show that the
potential does contain much the physics of the bonding of
silicon atoms in crystalline, amorphous, or liquid phases.
As a word of caution we mention that other properties
calculated using the Stillinger-Weber potential are in
poor quantitative agreement with the observed values.
As an example we mention the determination of the la-
tent heat of fusion of crystalline silicon to be 932 J/g in
Ref. 11, whereas the observed value is 1800 J/g. This
makes it clear that the potential needs improvement.

In a recent paper Sroughton and I.i have studied a
model of amorphous sihcon using the Stillinger-Weber
potential. Their model was constructed by taking the
coordinates of a random-network model of amorphous
sHicon and using this conftguration as initial conditions in
a molecular-dynamics calculation with the Stillinger-
%eber potential. The coordinates used by Broughton
and Li were obtained from the models discussed by
Wooten, Winer, and Weaire. ' It has been shown by
%'ooten and Weaire and %iner2 that the models dis-
cussed in Ref. 31 retained a memory of the crystalline
phase through, for example, their structure factor for
Bragg vectors, and are, therefore, not good models of
amorphous silicon. These models may be further ran-
domized, by continuing the rules for making these
random-network models, in which case they loose the
memory of the crystalline phase. It is not clear from
the paper of Broughton and Li whether they used the
original "crystalline' amorphous silicon constructed' in
Ref. 31 or the "noncrystalline" amorphous silicon dis-
cussed in Ref. 32. If the former is true then some of the
results in Ref. 30, in particular, phase transformations be-
tween amorphous and crystalline silicon, could be due to
their sample having a memory of the crystalline phase.
Recall that our models of amorphous silicon do not re-
tain a memory of the crystalline phase since they are
formed by rapidly cooling a liquid.

Nevertheless, it appears from a study of Ref. 30 that
their model of amorphous silicon has some properties
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similar to the models we have formed by rapidly cooling
the liquid. The phonon density of states given by
Broughton and Li is very similar to the Stillinger-%'eber
result shown in Fig. 2. Also, they state that the zero-
temperature energy per atom of their model is —1.9022,
~hereas we 6nd an energy of —1.9074 for the amorphous
system discussed in this paper; the crystal energy is
—2.0000. Also, in their simulation they found 86.6% of
the atoms had fourfold coordination while 11.8% had
fivefold coordination and 1.2% had threefold coordina-
tion. In the simulation that we used to determine the
elastic constants of amorphous silicon at 478 K we found
86.1% of the atoms had fourfold coordination, 13.1%
had fivefold coordination, 0.5% had sixfold coordination,
and 0.3% had threefold coordination; for a precise
de6nition of our coordination number see Ref. 1; the
same numbers were found for the 294-K calculation.

The results of this paper along with Ref. 1 make it
clear that molecular dynamics may be used to construct

models of amorphous silicon, of arbitrary size, satisfying
periodic boundary conditions, and having no memory of
the crystalline phase. These model show excellent agree-
ment with the observed static structure factor, give good
agreement with the phonon density of states, and show
the correct changes in elastic properties from the crystal-
line to the amorphous state.
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