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%e have studied simple tunneling problems in two dimensions in the presence of a high trans-
verse magnetic field both by numerical integration of the Schrodinger equation and by semiclassical
evaluation of the path integral. %e have chosen three model potentials: (i) asymmetric single mell,

(ii) symmetric double well, and (iii) quadruple mell. %'e find that the semiclassical approach is
analytically tractable and gives a very accurate description of the exponential and oscillatory behav-
iors of the tunneling matrix elements. A precise definition of the Aharonov-Bohm phase for the
tunneling paths is given. In addition to the Aharonov-Bohm phase, there is also a geometrical
phase coming from the fluctuation determinant, and me find that for every closed loop it is exactly

I. INTRODUCTION

Since the advent of high-quality molecular beam epi-
taxy, it has become possible to study the properties of
electrons in a nearly perfect two-dimensional system.
The discovery of the fractional quantum Hall eff'ect has
led to an especially intensive study of the nature of the
electronic states in the presence of a high transverse mag-
netic field. In particular, a recent theory' of the two-
dimensional electron gas in a large magnetic 6eld focuses
on the efiect on the ground state of exchange processes
involving the cooperative tunneling of rings of electrons.
However, the study of tunneling processes in a high mag-
netic field is in its infancy.

In the absence of magnetic fiel there has been ample
study of tunneling processes using semiclassical
methods, of which the Wentzel-Kramers-Brillouin
(WKB) approximation is one specific example. Let us
consider a symmetric double-well potential for example.
Solving the Schrodinger equation separately in each well
produces a doubly degenerate ground state. The actual
ground state, however, consists of two nondegenerate lev-
els whose eigenfunctions are approximately given by the
even and odd combinations of the individual ground-state
wave functions of the two wells; the degeneracy being lift-
ed because of the overlap of the two individual ground
states. In the path-integral approach one obtains the par-
tition function (and hence the energy levels) by consider-
ing all the paths that begin and end at the same point.
The paths responsible for the splitting of the ground state
are the ones that tunnel from one quantum well into the
other. These paths are called "instantons" (because they
are localized in time), and the splitting they produce is
called the tunnel splitting. There exist powerful instan-
ton techniques for computing the tunnel splitting. %e
refer the reader to Ref. 3 where it is shown for the exam-
ple of a one-dimensional symmetric double-well potential
that the tunnel splitting calculated using the dilute in-

stanton gas approximation agrees (in the regime of its va-
lidity) with the correct tunnel splitting obtained from
solving the Schrodinger equation. Our work is in essence
a generalization of these techniques to two-dimensional
potentials in the presence of a high transverse magnetic
field. A brief report of parts of this work has been pub-
lished.

A high magnetic 5eld fundamentally alters the nature
of the quantum states —it leads to quantization of the
(rapid} cyclotron motion, producing Landau levels
separated by energy %co, =l(eB/rnc). If ittco, is large
compared with all other energies in the problem (formal-
ly, if we take the effective mass m ~0}, then the cyclo-
tron degrees of freedom are confined to the lowest Lan-
dau level. The remaining degrees of freedom are the elec-
tron guiding-center coordinates. These have no kinetic
energy; a free electron in the lowest Landau level will
remain localized about a given guiding center inde6nitely.
In this sense, the kinetic energy is quenched by the mag-
netic field. The resulting Hamiltonian involving the par-
ticle guiding-center coordinate R alone is not, however,
purely classical since the coordinates now specify the
center of a Gaussian-localized probability amplitude of
width I determined by the condition that the cyclotron
orbit encloses one fiux quantum: 2nl =ttpo/Il =hcle&.
%'e shall see that the dynamics of the guiding centers in
the presence of an external potential V(r) is equivalent to
the quantum dynamics of a particle in a two-dimensional
phase space such that R plays the role of the spatial
coordinate, 8 that of the momentum of the particle, and
I plays the role of A.

By virtue of this analogy, it is possible to use a hase-
space or coherent-state path-integral expression for
the partition function to compute the energy spectrum of
a particle in a high magnetic 5eld. The advantage of this
is that we can study the effect of exponentially small tun-
neling processes on the spectrum by using semiclassical
methods to evaluate the path integral. %e know of no
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other method, short of numerically integrating the
Schrodinger equation, to compute tunneling effects in this
limit. However, there are two problems with the ap-
proach. The first is that the coherent-state path integral
is not in and of itself a mathematically well-defined object
in the sense that there exists no measure for it which is
analogous to the %'iener measure for the di5'usion in-
tegral. It can indeed be defined (for analytic potentials)
as a limit of other well-defined objects, such as the van-
ishing time-step limit of a discrete-time path integral or
as the vanishing-mass limit of a normal path integral.
The problem with this is that any manipulations of the
path integral, such as a regrouping of the paths, or an ap-
proximation to the action, must be performed using the
more complicated objects before the limit is taken, rather
than the relatively simple path integral itself. In particu-
lar, the analytic continuation of the paths to complex
space, which we encounter as soon as we begin to search
for classical paths, involves untested implicit assumptions
concerning the nature of the contours which pass
through the various saddle points. Thus it is not a priori
clear that the semiclassical expression for the partition
function is reliable. The second problem is that no useful
method has been developed for evaluating the fiuctuation
determinant or, in other words, for computing the prefac-
tors in the expressions for the tunneling matrix elements.
It has not even proven possible to derive index theorems,
such as those that are known for the regular path in-
tegral, to determine the phase of the prefactor.

In this paper we study three model potentials: the an-
isotropic single well, the double well, and the quadruple
well. These potentials are simple enough that the exact
spectrum can be computed numerically. We can also
compute the splitting of the lowest energy levels (tunnel
splitting) using the semiclassical approximation. Based
on the comparison between the semiclassical expressions
and the exact results, we have drawn the following con-
clusions. (1) The semiclassical expressions for the ex-
ponential dependences of tunneling matrix elements are
analytically simple (hence useful} and extremely accurate.
The magnitude of the resulting tunnel sphtting can be
very different from what one would expect based on the
overlap of two Gaussian wave functions. (2} The prefac-
tors are in general unspectacular in their dependences on
the parameters in the problem. For instance, in the
double-well problem, over a range of parameters in which
the tunnel splitting varies by 16 orders of magnitude, the
prefactor varies only by a factor of 2. (3) There are non-
trivial phase factors associated with the fluctuation pre-
factor whenever there are multiple tunneling paths be-
tween wells. We have empirically determined that there
is a phase +n. (i.e., a phase factor —1) associated with
any classical path which forms a closed loop. 'We want to
emphasize right here that this phase is not the usual
Aharonov-Bohm phase that originates from the Aux en-
closed by the classical path; rather, this phase comes
from the fluctuations around the classical path. We find
that this phase depends only on the geometry of the sys-
tem (and not on the shape) and hence we call it the
geometrical phase. (4) Whenever there is more than one
tunneling path, there is interference between them. In

the usual case when the electron moves in a magnetic-
field-free region of space, the relevant phase for a closed
path is the Aharonov-Bohm phase given by 2n.g/$0,
where P is the fiux enclosed by the closed path and

$0 ——hc/e. In the present case, however, the magnetic
field is everywhere and the electron moves (as we will
show later} along complex classical trajectories, thus
complicating the meaning of "enclosed" Aux. We shall
give a precise definition of the Aharonov-Bohm phase for
these situations. The interference leads to an oscillatory
behavior of the tunnel splitting. In particular, when the
total phase difference between the two paths is (2n + 1}m,
they interfere destructively and the tunnel splitting they
produce vanishes. This may seem surprising at first be-
cause intuitively one thinks that the odd parity state is al-
ways of higher energy than the even parity state, and
hence the tunnel splitting can never vanish, but this is
true only in the absence of a magnetic field. Which state
has higher energy in the presence of magnetic field is not
obvious, and we find that the path-integral techniques
again provide a simple answer.

The plan of the paper is as follows. In Sec. II we re-
view how the Schrodinger equation reduces to a
difference equation in the high-field limit which can then
be solved by numerical methods. (The numerical results
are "exact" in the sense that in principle one can calcu-
late the energy levels to any accuracy one desires. In
practice, however, we determine the energy levels with
such an accuracy as to get the tunnel splitting correct to
four or five significant figures. In this whole paper, the
word "exact" is to be understood as "accurate to at least
four or five significant figures. "} In Sec. III we set up the
path integral and obtain equations for the classical paths.
Sec. IV contains the canonical example of a harmonic os-
cillator, and Sec. V deals with a symmetric double-well
potential in detail. %'e study the energy levels both using
semiclassical and numerical methods, and compare the
results. In Sec. VI we discuss the phase associated with a
tunneling matrix element; a precise definition of the
Aharonov-Bohm phase is given here. In Sec. VII the
quadruple well potential is studied in order to test our
conjecture about the geometrical phase. Sec. VIII con-
tains a discussion of the prefactor, and especially of why
it is so diacult to compute explicitly. The paper is finally
concluded in Sec. IX.

II. EXACT SOLUTION

In order to get the exact solution we first project the
potential onto the lowest Landau level (LLL). The eigen-
states of an electron in the LLL in symmetric gauge are
given by

(2"+'m. n!) ' z" exp( ——,
'

~
z

~
),

where z=x+iy, n=0, 1,2, . . . , and (x,y) are position
coordinates measured in units of Landau length
i=&Ac/eB. (In the rest of the paper, we shall take
/ = 1. ) By the phrase "projection onto the LLL" we
mean that we want to express the potential V(z, z*) in
terms of z and its derivatives alone in such a way that its
matrix elements in the LLL remain unchanged. The pro-
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cedure is well known, ' but we outline it here briefly for
completeness. If V is of polynomial form, then a specific

ig 2term in V is of the form z '(z') ' and its matrix element
between two I.I.L states of quantum numbers m and n is

which can be rewritten as

e
—

~
s

~ /2(Z» )m (Z "lZn)

and then as

a„changes sign. Now, in this interval the eigenvalue can
be more precisely located by choosing yet smaller steps
&&, and by continuing this process until the desired accu-
racy is attained. %e are interested in the tunnel splitting
which is the difFerence between the symmetric and an-
tisymmetric eigenvalues. This difFerence is at times (e.g. ,
when the wells are very far apart) extremely small com-
pared to the individual eigenvalues, so thai a reasonable
accuracy in the tunnel splitting requires a determination
of the eigenvalues to an extremely high precision. We are
able to determine the splittings of up to 20 orders of mag-
nitude smaller than the eigenvalues themselves, and it is
remarkable that this uses typically only a few seconds of
cpu time on a UNiVAC.

Now the way to project V onto the LLL is clear: Expand
V as a power series in z and z'. Normal order each term
so that all the z "s are to the left of the z's. Now replace
z' by 2(B/Bz). Notice that this operator only operates
on the polynomial part of the wave function; it does not
act on the exponential. Thus the projected form of the
time independent Schrodinger equation for V(z', z) can
be expressed as

Vq 2,z f(z)=Ef(z),
Z

(2a)

where V is the projected potential, and f (z) is the poly-
nomial part of the wave function, f(z )
=f(z) exp( ——,

'
~

z
~

). The most general form for f is

For an analytic potential the eigenvalue equation thus
reduces to a difFerence equation which relates the values
of successive coeScients a„and can thus be solved nu-

merically. Solutions can be found for any E and the
coefFlcients depend on the value of E The va. lues of E
which correspond to eigenvalues are those for which the
eigenfunction QE(z) is normalizable. It can be easily seen
that this normalizability condition is equivalent to the re-
quirement that the series

g [ A„[2= g ) a„/ 2 n! 2"+'m (3)

be convergent. For studying the convergence of the sum
in (3}one needs to know a„ for large n, which can be ob-
tained by looking at the asymptotic form of the
(Schrodinger} difFerence equation. We do this in detail
for the symmetric double-well potential (Sec. V) and show
that the convergence of (3) is guaranteed if

~ a„~ ~0 for
~non. This criterion is obviously necessary (but not

suScient, . as one must show in each case that u„goes to
zero fast enough) and we assume it for other potentials as
well without proving it rigorously.

Thus the numerical method to obtain the eigenvalues is
as follows. For each value of E we compute a„as a func-
tion of E for very large n (We vary. E by small steps of
slzc AE.) Tllc cigcnvalllc is dctclnllllcd within all llitcrval
bE to be that value of E for which a„(E)=0, i.e., where

H= p — + V(r),1 eA
2ppl C

(4)

where A= ,'Br Xz. W—ewant to obtain the path-integral

representation for magnetic fields that are so high that
the electron always stays in the LLL.

One approach is to start with the standard (real time)
path-integral representation,

(x&yI ~
exp( —iA 'Ht) ~x,y;)= f2)(r)exp(i' 'S),

where the action functional is given by
'2

1 dr e drS= —m +— A —V(r) dT .
0 2 dT c dT

With the substitution t -+ ifiP we g—et the desired imagi-
nary time (Euclidean} form

(r& ~

e ~H
~
r; ) =f$(r) exp( —S),

(5)

S= — ixy+ V(x,y—) dT,1x +y
0 2 Pico,

where we have rescaled all lengths by the magnetic length
f, and co, =eB/nic is the cyclotron frequency. In Eq. (5)
the B~ no limit is taken by letting %0,~ ao, which final-

ly yields

S= f [—ixy + V,tt(x, y ) ]d T .P

0

EvcIl tllollg11 this proccdllrc lllipllcs tllat V»e(x, y }
=V(x,y), we have introduced a new symbol, V,e, for
reasons that will be made clear below. The limit 8~ o

described above is more properly the limit m ~0, since
we have explicitly kept the magnetic length 6xed. In this
limit the kinetic degrees of freedom of the electron are

III. PATH INTEGRAL

A matrix element of the temperature Green's function

G(r ry'&)=&rt I
e

I
r )

can be written as a weighted sum over all paths from
point i to point f, and this is termed its path-integral rep-
resentation. For an electron in a potential V(x,y) with a
perpendicular magnetic field S=Bz, the Hamiltonian is

given by
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frozen, since the spacing between Landau levels, Am„ is

large compared with all other energies in the problem.
Another approach is to proceed to a path integral from

the projected problem directly, as in Ref. I. In sym-
rnetric gauge the wave function for an electron in the
LLL with guiding-center position R can be written as

0

( r
I
R )= exp ——(r —R)i+ —(r XR).z, (7}

2m 4
L

which has the same form as a coherent state in a two-
dimensional phase space. The states IR) form a
nonorthogonal, overcomplete basis;

(Ri I Rz) = exp ——
I
Ri —Rz I

2+ —(Ri yRz) z
2

The LLL projection operator is given by

Po= fdiR IR) (RI

which is unity within the LLL since

&R, IP, IR, &=&R, IR, &.

Now the path-integral representation of G(r&, r, ;P) can
be obtained in the usual way. First the inverse tempera-
ture P is broken into a large number of equal intervals e,
i.e., e ~ is written as [exp( eH)], and th—en the pro-
jection operator Po is inserted at each in6nitesimally
small interval (ensuring that the electron is in the LLL
throughout its motion in imaginary time}. Then

1 N N

G(R;,R;P)= f gd R g(R, , I

' IR &,
k=i 1=0

where RO=R, , R~+, =R&„and eN=I3. For @~0 the
matrix element can be written as

(R)+ Ie ' IR)
(R,„IH IR, )= (R +i I

R ) exp —6('
J+1 J

= exp e ——RJ )—& Ri.z+ V,ir(R~ )

ness of the basis we are using.
Notice that nowhere do we have to assume that R is

real. In fact, Eq. (7) with complex R also satisfies the
Schrodinger equation (although it is unnormalizable) and
the subsequent equations follow as well.

Now we come to the definitions of V,ii in Eqs. (11)and
(6). For nonzero i, these definitions are inequivalent,
whereas they coincide for /~0. A few examples are

&RIx IR&=x,
(RIx'I R) =x'+1,
&R I"IR&=x'+3x,
(R Ix'IR&=X'+6X'+3,

(12)

where we recall that x and X are measured in units of /.

This shows that the choice of V,s {x,y) in the definition of
the path integral is uniquely defined only to zeroth order
in 1. A unique choice of V,s is determined only when the
path integral is defined as the limit of well-defined quanti-
ties, and the proper choice depends on how the limit is
taken.

It is interesting that a path-integral representation
(PIR) with V,s(x, F)= V(X, F) can also be obtained
within the coherent state scheme. This is done as fol-
lows: We know that in the LLL

1=f IR) (RI,
using which we de6ne

8 —ev'(x, F) R R (13)

where e=P/N is very small. It is easy to see that to or-
der e, V'(X, F}= V(X, F) because

&RI V IR&= fd'—«(x ~) I &rIR& I'

implies

&R
I
v

I
R) =f v(x', Y')

I
&R'

I
R&

I
'.

By multiplying Eq. (13) N times we obtain e ~ and the
path integral thus derived is given by Eq. (10) with

V,ir(x, Y)= V(X, F) . (14)
with the help of which we obtain

G{R,, R&,P) = fB(R)exp( —S),
where the Euclidean action S is given by

S= f [ ixY+V,s(X, Y—)]1~
0

(10a)

(10b)

V,s(x, Y)= (R
I

V(x,y) I
R) .

The trace of G(R, R;)9}over all R is the partition func-
tion. The path integral defined in Eq. (10) is not a
mathematically well-de5ned object, due to the fact that
discontinuous paths have finite action, and hence dom-
inate the path integral, which rejects the overcornplete-

Thus we see that even within the coherent-state PIR
there is no unique choice for V,ir(X, F) although the
limi Ov, ir(x, F) is unambiguously defined.

As several authors have observed '7 this ambiguity in
the de6nition of V,ir has to do with the ordering of opera-
tors which quantum mechanically do not commute. This
ambiguity results since R only speci6es the location of
the particle to within a magnetic length, and there is no
reason a orion to favor any of the class of functions V,I
of the form V,ir(R, R„)=V(R'), where

I
R' —R

I

& l.
Only a careful study of which function V,s produces the
propagator corresponding to the desired operator order-
ing can resolve this ambiguity. %e have not yet derived a
prescription for determining the correct choice in gen-
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eial, but have found in all the examples we have con-
sidered to date that the "correct" results are obtained if
we average the above prescriptions:

V, (X, Y)=-,'[V(R}+(R~ V
~
R)] . (15}

These are nothing but the familiar (from classical elec-
trodynamics) equations of motion (in imaginary time) of a
massless particle in the presence of a magnetic field. It is
immediately obvious from these equations that in general
one must allow an analytic continuation of X,~

and Y,i to
complex space (unlike in analogous problems without
magnetic field' }. This is not too disturbing because, as
we mentioned earher, Eq. (9) holds even for complex R.
A more serious drawback, however, is that there are four
boundary conditions and only two 6rst-order di8'erential
equations, which means that Eq. (16) does not in general
have solutions connecting two arbitrary points in the
two-dimensional space. This can be remedied by keeping
%co, finite in Eq. (5), so that there are two second-order
differential equations, and taking the limit Ace, ~ oo only
in the end. Fortunately, we shall not need to do that be-
cause we shall be interested only in paths joining two
equipotential points for which Eqs. (16) do allow solu-
tions. That the classical paths lie along equipotential
contours is physically obvious as the kinetic energy is
frozen, and can also be easily seen from Eqs. (16},which
lead to

V,e(X,i, Y,i ) =0 . (17}

If we define Vdr(X;, Y, ) = Vdr(Xf, Yf )=0, then according
to Eq. (17)

V,e(X,i, Y,i ) =0 .

This equation greatly simpli6es the calculations. From
Eq. (10), the contribution of a classical path to the action
is then

S„=—i f Y„dx„,f (19)

which can be trivially evaluated by solving Eq. (18) for
Y„. Thus one does not need to actually solve Eqs. (16) to
get ihe classical action.

This ambiguity in the definition of V,& is clearly one of
the di%culties in the determination of the prefactor.
(There are other comphcations that we shall come to in
Sec. VIII.} We also find, surprisingly, that different
choices of V,e yield phases of the path integral that are
different even in the limit I ~0.

Now we come to the classical paths R„(t) (also called
stationary paths, or extremal paths) which are saddle
points of the action functional, given by
5S/5R(t)R R ——0. According to Eq. (10) these paths

cl

satisfy the equations of motion

V.e
aY

(16)

~V.niF )=- x

S,&
is in general complex. The imaginary part of S,&

is
the Aharonov-Bohm phase for the tunneling path. Note
that there may also be a phase coming from the prefac-
tor, or, in other words, from the fluctuations around the
classical path. %hen there is more than one path, the to-
tal amplitude is obtained by summing the contributions
of all diFerent paths. DiFerent phases from the paths
produce interference e6'ects, as we shall see later.

IV. ASYMMETRIC SINGLE %KLL

Expressing V in terms of z and z ',

V= [(z'+z")(1 E)+2z—z "(1+X)],

and then projecting it onto the LLL, we get

Vo
P

8 8z'+4, (1 E)+4 —z(1+K)
Bz

(21)

Equation (2) yields the following difference equation for
the coefficients a„ofEq. (2b):

(1—K)a„&+4(1—SC)(n +2)(n + 1)a„+z

+[4(1+X)(n +1)—4E/Vo]a„=0 . (22)

Even and odd n's are decoupled. Starting from the
boundary conditions ao ——1, a 2

——0 or from a& ——1,
a

&

——0 one can calculate a„ for even and odd wave func-
tions, respectively for a given E. It is then straightfor-
ward to calculate numerically the energy eigenvalues fol-
lowing the procedure sketched in Sec. II. %e typically
determine the eigenvalues to four or five significant
6gures.

B. SeIniclassicaI treatment

The path integral is given by

f2)Xf2)Y exp —f dr[ iXY+ V,e(X—, Y)] (23)

where V,e is calculated according to Eq. (15) and is given
by

V„(X,Y) = V,(X'+EY')+ (1+K ) .

The only classical path is the trivial one, X (~}= Y(~)=0,
this leaves us with the fluctuation determinant, which is
also given by Eq. (23) [but, of course, with difFerent
boundary conditions: X (0)=X(P)= Y(0)= Y(P)=0].
%e evaluate it in the following manner. First, write Eq.
(23) as

The harmonic oscillator is the mandatory first example
in any path-integral study. In this section we consider an
electron in the asymmetric harmonic well potential:

V= Vo(x +Ey ) .

p. Numerical solution
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exp —P (1+K) I . . ff g)X;SY;.
Vo

X exp —e g [—iX; F, + Vo(X,'+KF,') ]

classical paths going around the hill, whereas for large
values of EC we expect only a single path going through
the origin. (This statement will be made precise later. )

The potential near either well is that of an asymmetric
single well studied in the previous section.

and do the F; integral to obtain

~o
exp —P (1+K) IXlX

2

X'
Xexp — + VaX2

a 4VaE

Now the integral corresponds to the fiuctuation deter-
minant of a one-dimensional harmonic oscillator of mass
1/(2VoK) and frequency 2Vo~E. So the integral in the
above equation is equal to the partition function

exp[ —P(m+ —,')2Vo~E] of a one-dimensional har-
monic osnllator. Thus the total energy spectrum is

E = (1+v K ) +m2Vo&E,m

A. Numerical solution

can be easily solved with the result

f =z

E~ = Vo[4(m +2)(m + 1)—4ro(m + 1)+ro] .
(26)

For E&0, however, an analytic solution is not possible
and one must get the eigenvalues numerically. The pro-
jected potential is now

For I( =0 the potential is circularly symmetric, and the
eigenvalue problem

Vo 4 2z 4ro z+ "o Im =~ll IZ 2~ 4

az2 z

~Oy lp2ye ~ ~ ~ (24)
8 z g 8 4 K i 8 8

0 4 z —4~0 z+ro ——z +4 —4 z
BZ2 Bz 8 gz2 Bz

This is in exact agreement uz'th our numerical calcula
tions. %e speculate that it is, in fact, exact.

This gives the first indication of why we made the
specific cllolce of V e(X, F) given by Eq. (15); any other
choice would give a wrong value for the ground-state en-
ergy Eo, even though the spacing between levels would be
correctly predicted by any reasonable choice of V,ff.

It is worth pointing out that for a symmetric well
(E = 1) the eigenenergies are given by

Es)lmm (~ + 1 }2V

which can also be seen from the fact that they satisfy the
eigenvalue equation

ysymmz m E symmz m
Nl

with

ysymm 2 yp 0 z

V. SYMMETRIC DOUBLE VVELL

which leads to the eigenvalue equation

a„Vo[4(n +2)(n +1) 4(n +—1)ro+ro4] E—
+—(n +1) ——[a„2+a„+24(n +2)(n + 1)]=0 .E E

(27)

Even and odd n's are decoupled; starting with boundary
conditions ao=1, a 2

——0 one gets the even wave func-
tions, and with a, =1, a, =0 one gets the odd eigen-
functions.

As promised earlier, we now discuss in detail how we
extract the energy eigenvalues from the difference equa-
tion (27). Let us first consider the asymptotic behavior of
(27}and obtain the condition for which the wave function
is normalizable. For very large n the diS'erence equation
(27) reduces to

4(n+2)(n+1}a„= [4(n+2)(n+l)a„+&+a„z] .K
Vo

(28)

Vfe choose the model potential

V= Vo(x +y —ro) + ,'Ey— (25}

On the right-hand side either a„+2 or a„2 may dom-
inate. To be speci6c we shall consider even n.

Case 1. If a„+2 dominates then

%ithout the term —,'Ey this potential would be circularly
symmetric, but for nonzero E it has two minima at
(+ro, 0). For K=0 there is a hill at the origin and the
electron has two paths along the circle x +y =ro (one
clockwise, one counterclockwise) that it takes from one
mimmum to the other. As E is increased, the hiH at the
origin becomes less and less prominent, and f][naHy for
E & 4vaT'0 there is not a hill but a saddle point at the ori-
gin. Thus for small values of E, we expect to have two

E
n Sy Pl+2

0

whose solution is (for n =2m)

8Vo
aim= ao . (29)

For these coeScients the series in Eq. (3) is clearly diver-
gent and the wave function is not normalizable.
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Case 2. Ifa„2dominates then we have

(n +2)(n + 1)a„= -a„z,E
0

variance. The final result states that the tunnel splitting
5 is proportional to the one instanton contribution,
which is also called the "barrier penetration factor":

with the solution
b, = VO +Me

'r exp( —Sd ), (32)

E
0 2~ —2Q0 (2m+2)! ' (30)

for which the wave function is normalizable. Thus the
energy eigenvalues are those values of E for which the
asymptotic form of the coefficients is given by Eq. (30}.

A general asymptotic solution can be written as a com-
bination of the growing and shrinking solutions of (29)
and (30)

a2 ——A(E) E
(31)

8. Classical action

The tunnel splitting can be obtained from the partition
function, which is the trace of

and the eigenvalue is obtained when 8 (E)=0. For large
I, the first term on the right-hand side is very small, so
that the eigenvalue condition becomes lim „a2 ——0.
Thus the recipe to obtain the eigenvalues is simple:
change E gradually in Eq. (27) and calculate numerically

a„with su%ciently large n. An eigenvalue is obtained
whenever a„changes sign.

We shall mainly be interested in the splitting of the
lowest energy levels due to tunneling. This is given by
the difference of the lowest eigenvalues of the even and
odd wave functions which are even and odd combinations
of the wave functions in the individual potential well.
For large ro, the tunnel splitting is very small and to get
reasonably accurate information about it we often need to
calculate the eigenvalues correct up to twenty or more
significant figures. Also, in order to make sure that we
are in the tunneling regime, we consider only ground-
state energies that lie below the smallest potential barrier
along the y axis, i.e., below Vor40 (when there is a saddle
point at the origin) or —,'E(ro —K/SVO) (when there is a
hill at the origin).

V« ——V, [(X + F2 1)2+—4A, Fi], (34)

where

(ro) =ra —2,2 2

Vi ——Vo(ro)

A, =K /8 Vo(ra )

(35)

and X, F are expressed in units of r0. Notice that
(r 0 ) =r 0 —2 arises due to the prescription in Eq. (15);
Eq. (14} or (11) would have given ( r 0 }i= r 20 or
(ro) =ra —4, respectively, leaving the rest of the V«un-
changed except for the constant terms.

The classical action is given by

(36)

(37)

other

S,) —— i—I Fd dX, ) . (33)

well

The sum in (32) represents the sum over all the classical
paths. Me'~ is the prefactor associated with the classic-
al path and is proportional to D'[R,~]/D where D'
refers to the fluctuation determinant of
&other well

~
e ~

~

one wells without the contribution
of the zero mode, and D is the fluctuation determinant
of the trivial path. %e have defined M to be real and pos-
itive and y is the phase associated with the prefactor.
Validity of the semiclassical approach would demand
that the rapid variations be described by exp( —S,~

) and

the prefactor M be a slowly varying function of the
different parameters.

The V«corresponding to the potential in (25) that ap-
pears in the definition of the path integral is given by (ig-
noring the constant terms)

over all R. The classical paths are (i} the trivial path, in
which the electron stays at the bottom of one well, and
(ii) the instanton paths, in which it goes to the bottom of
the other well and comes back an arbitrary number of
times. It is clear that one must consider the paths in (ii)
in order to get the sphtting of the energy levels; keeping
only the trivial path would reproduce the results of the
previous section. Wc refer the reader to literature where
the contributions from an arbitrary number of instan-
tons ' at arbitrary times have been summed up in the di-
lute instanton gas approximation to derive the splitting of
the ground-state energy. %e only want to mention here
that this has to be done in a careful manner because of
the appearance of zero mode due to time translation in-

One can learn something about the nature of the classi-
cal paths without solving Eqs. (16). From Eqs. (37) and
(16) it is clear that if (X,&(v},Y',&(r) ) is a classical path, so
is (X,;(r), —1';,(v)). For A, ~ 1, (X„+A.—1)'~ is always
real for real X,&

and therefore the classical path is such
that X,l is purely real and F,l is purely imaginary
throughout the path. Therefore there is only one path.
On the other hand, for A, & 1, both Xd(r) and F,~(~) are
in general complex giving rise to two distinct paths in the
complex space related by (X,'i", F,',")=(X,'i" —F,'f" ).
Also, from Eq. (36) it can be seen that the classical ac-
tions for these paths are complex conjugates of each oth-
er.

For A, & 1 the integral in Eq. (36} can be easily per-
formed with the result



J. K. JOIN AND STEVEN KIVEI.SON

which can be analytically continued to A, g 1 to give

S„=(ro) &A, —(A, —1) ln
/A, —1/

+8(1—A, )i—(1—A, )
2

K=M)e (39a)

where the phase of the prefactor must be nm because S,~

is real. For A, ~ 1 we must sum the contributions from the
two difFerent paths:

5=M2e'~e ' +Mme '~e

=2M& cos(y —ImS, i ) exp( —ReS,i )

=2M2 cos y (ro) —(1——A, ) exp( —ReS,i) . (39b)

Here we have used the fact that the prefactors from the
two classical paths must be complex conjugates of each
other so as to produce a rea1 h. As argued earlier, M&
and M2 are expected to be slowly varying functions of
(r 0 ) and A, for A. sufliciently far from unity.

Thus, for fixed k, the exponential behavior of 5 is
given by exp( —ro)&constant). The oscillatory behavior
is predicted to have the property that if 6 is zero for
some particular value of ro, then the next zero will occur
at r 0+ 2/(1 —A, ). We have not obtained a general analyt-
ic expression for the prefactors (see Sec. VII) and we
must extract the information about y from a comparison
between Eq. (39) and the numerical results. The value of
y (modulus 2n) can be determined by determining the
zeros of 5 from the exact numerical calculations. In

Here one can explicitly see that the actions of the two
classical paths for A, &1 are complex conjugate of each
other. For A, g 1, we have also done the integral (36) nu-
merically by numerically solving the equations of motion
for the classical paths, and confirmed the validity of the
analytic continuation to values of A, below 1.

Thus we obtain an analytical expression for the classi-
cal action. Fluctuations about this path determine the
value of the prefactor M in Eq. (32). Although we do not
calculate M, we are able to say something about it using
physical arguments. At A, = 1 all the three paths are clas-
sically available to the electron and the fluctuations will
be large. For A, close to unity, the electron is, in a
manner of speaking, not absolutely sure which path to
choose, making fluctuations important. But for A,

sufliciently far from unity the fluctuations about the clas-
sical path(s} should not be important and M ought to be a
slowly varying function of (ro), which here plays the
role analogous to 1/A' of usual path integrals. Also, the
method of steepest descent is valid only for large values
of (ro) .

For A, & 1, the tunnel splitting is given by

TABLE I. The values of ro are given for the double-well po-
tential for which the tunnel splitting is found to be zero by nu-

merical methods. The difkrence between two successive values
of ro agrees with the semiclassical prediction of 2/(1 —A, ). The
geometrical phase y is found to be m/2 for all A, using Eq. (391).

ro for which 5=0

0.01
0.1

0.2
0.4

6.040, 8.060, 10.808, . . .
6."~4, 8.666, 10.888, . . .
7.000, 9.SOOO, 12.000, . . .
8.666, 11.999, 15.332, . . .

2.020
2.222
2.500
3.333

m/2
m/2
m/2
m'/2

Table I we tabulate for some values of A, (less than unity}
and ro for which b, =O. These have an uncertainty of +1
in their last digit. Clearly, the spacing between succes-
sive values of ro is exactly 2/(1 —A, ) as predicted by the
semiclassical theory. Moreover, the phase y coming
from the prefactor is independent of A, and is m/2. Thus,
the total phase factor of a loop (in which the electron
goes from one well to another by one path and comes
back by the other) is —1. This result apparently depends
only on the geometry but not on the specific parameters
(ro, A, , etc.) of the system. We conjecture that to any gen-

eral closed path is associated a geometrical phase +m. In
the next section we shall test this for a quadrupole well.

The value of y is independent of whether we use Eq.
(11), (14), or (15) to define V,s, which can be verified from
numerical calculations.

Given that y is a geometrical factor, a heuristic calcu-
lation of its value can be performed by considering the
problem with A, =O (when there is no tunneling). The ex-
act eigenenergies can be obtained analytically from Eq.
(27}with E =0:

E„=[4(n +2)(n +1)—4(n +1)ra+ra]VO,

and degeneracies occur (b =0) when E„=E„+,. This
occurs whenever r02 ——2m, m =2,3, . . . , which is con-
sistent with the semiclassical expression in Eq. (39b) with
A, =O (K =0) provided y=m/2. Thus, to the extent that

y is truly independent of parameters, it can be computed
by comparison with an exactly soluble case.

Finally we consider the exponential behavior of the
amplitude. For certain values of A, greater than unity we

+S )plot the prefactor he " in Fig. 1 as a function of ro,
where 6 is the numerical value of the tunnel splitting.
%e find that it is a very slowly varying function of ro. In

RcS
)Fig. 1 we also plot he ' /sin(ImS„) for certain values

of A, less than unity and again come to the same con-
clusion. %e also see that, as expected, the variation in
these quantities is less when A, is farther away from 1. In
Figs. 2 and 3 we plot the same quantities as a function of
A. for some large values of ro. Again, there is a rapid vari-
ation at A, close to unity. The X's in Figs. 1 and 2 show
the values of r 0 or A, for which b, vanishes; these oscilla-
tions are exactly described by the term sin(ImS„) in Eq.
(39b). Also, in Fig. 1 the tunnel splitting changes typical-
ly by 16 orders of magnitude over the range of ra shown,
while the prefactor changes by merely a factor of 2. Thus
we see that the semiclassical path-integral method accu-
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rately predicts the exponential and the oscillatory behav-

iors of the tunnel splitting for the symmetric double-well

problem under consideration.
The tunnel splitting decreases as ro is increased, and

increases as A, is increased. Thus in Fig. 1 there is only a
limited range of ro at fixed A, that we can study, because
for very small ro the ground-state energy goes above the
potential barrier and is not in the tunneling regime, while
for very large r 0 the tunnel splitting is too small

(6 & 10 '
V, ) to allow an accurate numerical deter-

mination. An analogous situation is true for Figs. 2 and
3.

00
l

50
I

I00
VI. THE PHASE

r,
'

FIG. 1. The prefactor [defined as lkexp(Sd) for A, ~ 1 and

bexp(ReS, i)/sin(lmS, i) for A, & I] plotted as a function of re
For A, g1, the g's show the values of r02 for which the tunnel

splitting 6 [or sin(ImS, i )j is zero.

30

Now that we believe the oscillatory behavior predicted
by the semiclassical approach, we are in a position to
define the Aharanov-Bohm phase of a tunneling path.
From Eq. (32), the imaginary part of the classical action

ImS, i
———I ( Fi dX i

—F2 dXz ),
where (Xi, I'i ) and (X2, Fz ) are the real and imaginary
parts of R,i. This implies that for a closed loop the
Aharonov-Bohm phase is given by

20-
A,g8

((t~ii =2~
00

(40)

IO-

0
0

I I

0.5
X

5-

I

30
1

I0
l

0 20
X

FIG. 3. The prefactor, hexp(S, &), plotted as a function of A,.
%'e cannot go to very small values of A, because the tunnel split-
ting 4 becomes smaller than the numerical accuracy we can ob-
tain.

40

FIG. 2. The prefactor hexp(ReSd}/sin(ImS, &) plotted as a
function of A, for two difFerent values of r02. The g's show the
values of A, for which the tunnel splitting 6 is zero.

where the eff'ective area ( A,ir) is the projected area of the
complex loop on the real plane minus its projected area
on the imaginary plane. For a path lying completely in
the real space this coincides with the usual definition.
Thus in order to compute the Aharonov-Bohm phase as-
sociated with a closed tunneling path one needs to deter-
mine the classical paths of the particle in complex space.

Notice that ImS,
&

is nothing but the Berry's "phase"
of a particle in the coherent state (7) taken adiabatically
around the classical path. It is not real because of the
overcompleteness of the basis. As a matter of fact, for
tunneling problems in high magnetic 6elds it necessarily
has an imaginary part because the classical path must
foray into complex space in order to find equipotential
contours,

As we have mentioned before, besides the Aharonov-
Bohm phase, which arises from the classical path, there is
another phase contribution which comes from Auctua-
tions around the classical path. The Aharanov-Bohin
phase is dependent on the parameters that control the
shape of the potential, but the phase of the fluctuation
prefactor is independent of these parameters, and hence
we call it the geometrical phase. Moreover, in the
double-well problem we find that it contributes a phase
factor —1 for a closed loop. %e postulate this to be gen-
erally true for any closed tunneling path, and test it for
the quadrupole-mell potential in the following section.
Incidentally, we point out that the knowledge of phase
also settles the problem of which of the even and odd par-
ity states has the lower energy. The tunnel splitting in
Eqs. (39) is defined as b, =E,ds E,„,„,and it is clear tha—t
5 is positive for A, & 1, whereas for A, ~ 1 the sign of b, is



37

the same as the sign of sin(ImS„). Thus as long as there
is only one classical path connecting the two wells, the
usual rule (E~d & E,„,„)holds. On the other hand, with

multiple classical paths, the interference between
different paths complicates the issue, but the correct
answer can still be found using semiclassical methods.

V = Vo{x'+y' —ro')+ (x' —y

This has four minima at

(x,y) =(+ro/v'2, +ro/v'2)

and maxima at

(41)

VH. QUADRUPLE WELL

In the last section we found in the two-well problem
that when there are two classical paths going from the
bottom of one well to the other, the electron sufFers in ad-
dition to the Aharonov-Bohm phase another phase
change of +m in going around the loop. This led us to
speculate that to every closed tunneling path is associated
a universal phase factor —1 in addition to the phase fac-
tor arising from the Aharonov-Bohm effect. To test the
validity of this conjecture, we now consider a quadruple-
well potential with four minima around a ring. This po-
tential allows closed paths in which the electron goes
around the ring. The potential we choose is

4Vo
(0,0), 0, pro

and

4Vo*"'
K, +4V. ,0

J

At the minima this potential is zero, at the origin Voro,
and at other maxima VoIC, ro/(4Vo+K, ). In order to
make sure that one is in the tunneling regime one must
only consider energy levels below VoK, ro/(4Vo+K, ).

The eigenvalue equation is given by the foHowing
difference equations:

a„ I Vo[4(n +2)(n +1) 4ro(n +1—)+ro]+ —,'Ki(n +2)(n +1) E]—
E1+ [16a„+4(n +4)(n +3)(n +2)(n +1)+a„4]=0. (42)

This equation couples every fourth coefFicient leading to
four wave functions with different symmetry under rota-
tion, given by

00
4n+ —iz

~
/4

n=0
(43}

V,s(X, I')= Vi (X + I' —1)~+—(Xi—Ir2)2

V, = Vo(ro), K =K, /Vo, (ro) =ro —2 ——,
and X and F are measured in units of ro. The minima are
now at (X, F)=(+I/&2, +I/&2), and the energy levels
below K, (r o ) /(K +4) are in the tunnehng regime.

The tunneling can occur along the sides [e.g., from

which can be obtained starting froin four different bound-
ary conditions, The energy eigenvalues are obtained as in
the double well, i.e., when a„„changes sign as a func-
tion of E. The four lowest eigenenergies correspond to
four nonequivalent combinations of the wave functions in
the separate wells. In particular, the wave function with

p =»n Eq. (43) corresponds to a symmetric combina-
tion, because z is invariant under a rotation of the axes
by 90', i.e., under the transformation x,y ~y, —x.

Now we come to the semiclassical treatment. %e
evaluate V,tr(X, F) according to Eq. (15):

1 —[1 (i/2)&K ]X—„
1+(i /)v2' K

(47)

The integral can be performed without difficulty (al-
though one must be careful about the branch cut} and
yields

(ro)' i &K+4 2+i &K-
Sd —— ln&K+4 i&K+4+2 iv K—

(ro)' 4&K+4 . ~ (ro)'
ln +E&K+4 4+(&K+4 ~i)' 2 &K+4

( —1/v 2, I/&2) to (1/&2, 1/&2)] or along the diagonal
[e.g., from ( —1/&2, 1/&2) to (+1/v 2, —1/&2)]. If ro
is very large then only the tunnehng along the sides will
be important because the tunneling matrix elements de-
cay exponentially with the square of the distance. For
the sake of simplicity, we shall only consider large ro
(which is anyway a requirement for the validity of the
semiclassical approach) and neglect completely the ex-
ponentially smaH contribution of the tunneling through
the origin.

The classical action for tunneling along the sides is
given by

1/+2
Sd —— i (ro } — I,)dX,—1/+2
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H = y(Tc„'c„,+T*CJ„c„), (49)

Thus we see that the semiclassical path-integral method
again provides an analytical solution for the classical ac-
tion.

Again we sum over instantons in the dilute gas approx-
imation. The result is a spectrum for the tunnel splitting
which can be obtained from a tight binding model with
the Hamiltonian

These imply the following properties for the energy ei-
genvalues for large ro (.i) The eigenvalues occur in dou-
blets; i.e., if they are measured from their average, then
they occur in pairs with energies equal in magnitude but
opposite in sign. (ii) Since

(ro)rm„=—
2 &@+4

where the site index n = 1,2, 3,4 (n =5 is identified with
n =1). Ct and C are the creation and destruction opera-
tors, respectively, and T is the tunneling matrix element.
We have defined the zero of energy such that in the ab-
sence of tunneling the ground-state energy is zero. The
Hamiltonian can be diagonahzed by Fourier transform:

H = g (Te'—+T'e ' )CtC„,1

k 4

where

(50)

C„=— e Ck,' k =0,+—,m .ikn
n 2 k&

The energy eigenvalues are

Ek ———,'Re(Te'") .

The tunneling matrix element is written as

T=2T 8 ~80

(51)

(52)

where y is the phase coming from the fluctuation prefac-
tor and To is real and positive. Then

—ReS (Ek ——Toe ' cos(y +k —ImS, i ) .

From Eq. (50) it is clear that k =0 corresponds to a com-
pletely symmetric combination of the wave functions of
the individual wells, with energy eigenvalue

if one specific wave function (say, the symmetric one) has
zero eigenvalue at some ro then the next zero will be at
ra+2&K+4. Thus the separation between two succes-
sive zeros is 2&EC +4. (iii) The magnitude of the energy
splitting is governed by the factor exp( —ReS„).

We checked these predictions by numerical deterrnina-
tion of the eigenvalues. In Table II we give the four
ground-state energies for three different values of r02 for
E =2.25. It is clear that for each ro, there are two pairs
of energies with opposite sign. The two energies of a
doublet are not exactly equal in magnitude, which is due
to the fact that the prediction of their equality involves
the assumption of the neglect of any diagonal tunneling.
This approximation becomes more and more accurate as
ro increases and, indeed, in Table II, we And that for
larger ro, the energies of the doublets are much closer in
magnitude. (This serves as a measure of how good the
approximation of ignoring the diagonal tunneling is for a
given ro. ) Let us now look for ro for which E,„=O.
These are: 10.984, 16.459, 21.256, 26.330, 31.307, 36.314,
41.312, 46.313, 51.312, 56.313, . . . . These values of ro
are accurate with an uncertainty of +1 in the last digit.
Clearly for large ro, the di8'erence between two successive
values is 5.0, which is exactly equal to 2v'X+4 with
E =2.25. The same is true for any other I(, as we show
in Table III for a few values of K, where some of the
values of r~0 for which E,„=Oare shown.

As before, we determine the value of the phase contrib-
uted by the prefactor by comparing those values of ro for
which E,„=Ogiven in Table III with the semiclassical
expression

Esymm =Toe cos(y I~ci )

The other eigenvalues are

(53)

2
m "o n 2+EC/4
2 &X+4 2 v'x+4 (55)

—ReS„—Toe
' cos( y —ImS„),

—ReS
)+Toe "sin(y —ImS, i ) .

(54) This allows us to determine y, which we also tabulate in
the table. We find that it is independent of the parame-
ters (i.e., K, ro, Vo) and is equal to ,'n Thus th—e p.hase of

TABLE II. For the quadruple-ee11 potential the four ground-state eigenvalues are given for three
difFerent values of ro.

~symm

30
40
SD

—3.101 S3 g 10
—1.758 S0~ 10-'
—1.00748 X 10-'

—3.3S177x 10-'
—1.902 17x 10-'
—1.089 88 x 10-'

3.098 18~ 10-4
1.7S8 34' 10-'
1.007 48 g 10-'

3.3SS 11'10-'
1.902 33~ 10-'
1.089 89 ~ 10-'
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TABLE III. For the quadruple-well potential the values of ro are given for which Egy~~ is found to
be zero by numerical methods. The diIerence between two successive values of ro agrees with the semi-
classical prediction of 2&K+4. The geometrical phase y is found to be 5ml4 for a11 @using Eq. (55).

0.2
1.0

2.0

r02, where E,„=O
. . ., 103.495„107.593, . . .

. . ., 36.902, 41.384, 45.852, 50.326, 54.797 . . .
. . ., 40.466, 45.366, 50.265, . . .

. . . , 36.314, 41.312„46.313, 51.312, . . .
. . ., 37.750, 43.750, 49.750, . . .

4.472

5.000

6.000

—m'S

5-m'
4

5
4

-fr5
4

an electron going around the loop is 5m, which contrib-
utes a phase factor e' "=—l. (This is in addition to the
Aharonov-Bohm phase. ) This is in agreement with our
conjecture.

We must mention that there is a certain amount of am-
biguity in the phase y, having to do with the choice of
the specific form of V,N given in Eq. (15}. If we chose ei-
ther Eq. (11) or Eq, (14) to define V,s, we would get a
different value of y which would be shape (K) dependent
and would not agree with our conjectured value. Howev-
er, only the choice of V,s in Eq. (15) gives a parameter-
independent value of y, which we consider an appealing
additional reason to believe that Eq. (15) is the correct
choice for V,ff.

Now we come to the exponential behavior of the tun-
nel splitting. %'e choose K =2.25 so that changing ro by
10.0 does not change the cosine in Eq. (53). Then we plot
in Fig. 4 the prefactor E,„exp(+S„)as a function of
r02 for r02= ion, where n is an integer. Clearly this is a
very slowly varying function of ro, even though E,
changes (in units of V, } from 0.1 at ro2=10 to 10 ' at
ro'=

From Eqs. (53) and (54), if we know the E,„ for some
ro, then we can calculate the other energies. For ro =50
this short exercise yields the values +1.007485X10
and —l.089 89 X 10 for the other three energies, which
are again in excellent agreement with the other eigenval-
ues given in the table.

Quadruple Nell

K =2.P5

0 ~ 0 0

VIII. THE PREFACTOR

Prefactor calculations are always different and in the
present case they involve all the subtleties of a sum over
discontinuous paths. ~4 6 (Recall that most paths are
discontinuous due to the overcompleteness of the basis
set; even the classical paths are typically discontinuous
due to the overspecification of the boundary conditions
for the semiclassical equations of motion. ) Fortunately,
the prefactor rarely has interesting dependences on the
parameters (and whenever it does, they can often be de-
duced without actuaBy evaluating it). Indeed, as we have
discussed, this has been the case in the present model
problems where the prefactors have typically varied by a
factor of 2 while the tunnel splitting has varied by 17 or-
ders of magnitude. Thus for practical applications, the
magnitude of the prefactor is rarely important. However,
for completeness, in this section we discuss the results of
some preliminary investigations of the prefactor. To be
specific we shall talk about the prefactor in the context of
the double-well problem; the prefactor for the asym-
metric single well has already been evaluated in Sec. IV.

The 6rst source of difBculty in the determination of the
prefactor is the ambiguity in the defInition of V,ff.
Different possible choices of V,ff produce different con-
stant terms (which we did not write explicitly}, which do
not afFect the classical paths whatsoever, but appear in
the prefactor. In the double-well problem the constant
terms implicit in Eq. (34) would contribute a term

2 2
exp — 1+A, +

(ro) (ro)

which multiplies the factor coming from the fluctuations
around the classical path. Fortunately, this contribution
tends to unity for very large (ro) . The same is true for
other choices of V,s. Thus for (ro} ~00 (which is the
regime in which the semiclassical approximation holds)
there is no ambiguity in the prefactor arising from the
ambiguity in defining V,ff, and it is given by

ro 2

FIG. 4. The prefactor, E,„exp(S,& ), plotted as a function of
ro for the quadruple-mell problem.

(56)
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where g and g are fluctuations in X and F from the classi-
cal path (Xd, F,i };

+ V,s(x, F)] (57)

with

V,s(x, F}= Vi [(X —F —1) 4AF—],
gives rise to the prefactor

r

CXp —
~

f' fo 'g —'g +'g el

+g Vg+2qgv'~)] (58)

with

V",I ———8 VOX,i Y,],
Ves =4VO(3X,)

—F,i —1),
V~~s ———4VO(x, )

—3F,) —I+2k, ) .

(59)

Notice that all terms in {59)are real. The expression in
the large parentheses of Eq. (58}can be written as

r h

(ri g)R
'9

(60a)

with

i(ro) i

i (ro)2 i — ~ V",is.
1"

xxV.I =
2 ~.N

Bx (&d, &d )

etc.; and we have retained only up to quadratic terms in
the Suctuations.

We first consider the case of A, & 1 where F,&
is purely

imaginary and X,
&

is purely real. We can then make the
substitution Y~i Y so that the new path integral

f2)Xf SFexp —fdr[ ,'(r—o){XF—Fx)
I~

As usual, this is a result of the time translational invari-
ance of the problem. So long as this is the only zero
mode, it does not lead to a divergence of the prefactor (as
one would naively think} because it has already been ac-
counted for while summing up over an arbitrary number
of instantons at arbitrary times, and the final formula for
the tunnel splitting involves a product of all eigenvalues
of R excluding the zero eigenvalue. Let us now consider
in detail the wave function associated with the zero mode
as a function of X,&

shown in Fig. 5. The forms are intui-
tively understandable: F,&

starts from zero at ~= —00 (or
X,~

———1) and ends at zero at ~= ao (Xd ——1), which
means that the "velocity" Y,&

must change sign at least
once during this interval; X,~

on the other hand does not
need to change sign at all. As A, goes toward unity from
above, the velocity Xd at the origin becomes smaller and
smaller and at A, =1 it vanishes. This happens due to the
incipient appearance of a hill at the origin rather than a
saddle point for A, ~ 1. For A, = 1 there is a second zero
mode (il„g, )=(gosgn(x„), qo). Thus, we expect that the
prefactor will diverge as A,~ 1 from above. This can be
seen in Fig. 3.

When A, is less than one, X,, and F,~
are both in gen-

eral complex and it is not straightforward to write the ac-
tion in a form analogous to Eq. (60) with a Hermitian R.
However, Eq. (61) still gives the zero modes for the two
classical paths that go around the hill at the origin. It is
physically transparent that near }t,= 1, when the classical
path bifurcates, large fluctuations are possible because
there exist nearby paths that are almost classical. When
A. is just below unity, there is a very small hill at the ori-
gin and although the paths with the least action go
around it, the paths going through the hill will not have a
large action either. Thus, we also expect the prefactor to
diverge as A,~ 1 from below, as seen in Fig. 2.

Let us now consider the limit A, ~ oo where an analytic
solution for the prefactor can be obtained. This is made
possible because in the potential V,&, the X and Ydepen-
dent terms decouple for large A, :

V,s ——Vi[(X —1) +4AF], ,

(60b)

Here R is a Hermitian operator. Thus, as usual, ~'3 evalu-
ation of the prefactor boils down to calculating the 6uc-
tuation determinant which is the product of the eigenval-
ues of the operator E. There is no conceptual dif6culty,
but we have not been able to do this analytically except in
the limit A,~ 00 which we shall come to later. However,
one can explicitly show with the help of Eq. {16) that
there exists a zero eigenvalue which corresponds to the
eigenvector

X I

)p 2.0
-o.s /

I.O

r

no

fo

[~A,—(X2, +A, —I }'~z]{Xz,+A, —I }'~z

—[v Z —(X,', +X—1)'"]X„
{61)

FIG. 5. The zero mode (X,), F,) ) for the double-mell problem
for two different values of A,.
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X= 60

%=36== b,rc 2 (r(i)

y g1/4
(66)

I

l00
I

200

where we obtain 6 numerically. It is clear that for large
A,, a is only very weakly dependent on }(, and rc. More-
over, its value is approximately 16 in the range of rQ

shown in the figure, which is in reasonable agreement
with 16&2/n = 12.77 as predicted by Eq. (65}in the limit
A, ~Dc and rc~oo. Unfortunately, we cannot go to
larger rc due to numerical restrictions (i.e., very small b, )

where we expect an improved agreement as a is slowly
decreasing with increasing r&& (Fig. 6).

FIG. 6. Numerical curves for a [defined in Eq. (65)] plotted
as a function of ro~ for various values of A, . The horizontal
straight line is at o;=16&2/m =12.77, which is the theoretical
value of o. in the limit A,, r02 —+00.

(r(i) X + Vi(X —1)
1

(63)

Now as in Sec. IV, we integrate out the Fdegrees of free-
dom to get

S„=I dr (re) X +Vi(X —1)

which after some rescaling becomes

w —,'X +—,'a) X —1 (64)

With

QSXV,

(i(i)

ri) =8Vi .

Thus the problem of an electron in a two-dimensional
double-well potential in the presence of extremely high
magnetic field reduces to the simple problem of an elec-
tron in a one-dimensional double-well potential
V(X)= —,'co (X —1), whose solution is well known.
The result for the tunnel splitting for Eq. (64) is

1/2 y
~ = 16 —,A,

'~ exp
2 1

P'Q

2(ri))
3&%

The classical action [Eq. (38)] in the A, ~oo limit is
2(rii) /3&A„which explains the exponential term. To
check the prefactor, we plot in Fig. 6 the empirical value
of a, defined as

where X, 7' are expressed, as in Eq. (34), in units of r&.
With this simplified potential the classical Euclidean ac-
tion is given by

iX(ro)S= I dr 4kVi I'—

IX. CONCLUSION

%e have studied the tunneling of an electron through a
smooth potential in two dimensions in the presence of an
extremely high transverse magnetic field. %e have taken
three difFerent kinds of model potentials for which exact
numerical solutions for the energy eigenvalues are possi-
ble. The semiclassical expression for the tunnel splitting
contains a slowly varying factor (the prefactor), a rapidly
varying function (the exponential}, and sometimes an os-
cillatory factor. We do not obtain a general analytic
form for the prefactor but calculate it by comparing the
semiclassical expression with the numerical solution. It
is in general unspectacular in its dependence on di(ferent
parameters. %e find that the semiclassical approach ex-
actly describes the rapid (exponential and oscillatory}
variations of the tunneling matrix elements, which estab-
lishes the validity of this approach in similar problems'
beyond any reasonable doubt. There are two diff'erent

types of phase associated with a classical path. One is
analogous to the Aharanov-Bohm phase, and must be
calculated by tracing out the classical path in the com-
plex space. The second is a geometrical phase coming
from the fluctuation prefactor. We empirically find that
the geometrical phase factor of a closed loop is indepen-
dent of the shape of the potential and is e*' = —1. Al-
though we have shown this only for symmetric double
and quadruple wells, we propose that it is true in general.
In Ref. 1 it was necessary to assume the existence of such
a phase factor in order that cooperative ring exchanges
lo~er the ground-state energy of a collection of fermions.
Our results thus lend support to this assumption.
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