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%'e study the scattering of light by longitudinal-acoustic phonons propagating along the axis of
an infinite superlattice. In contrast to previous works, we take into account not only the difference
between the acoustic and photoelastic parameters of the two media, but also the difFerence between
their refractive indexes. In this case the incident and scattered light in the superlattice are
represented by Bloch waves instead of plane waves. The scattering intensities, calculated in closed
form by using a transfer-matrix method, are then valid for any value of the scattering wave vector q
and not limited to q values small compared with the size of the Brillouin zone, m/D. The peak in-

tensities are discussed for GaAs-A1As superlattices as functions of the composition, period, and
photoelastic parameters. The results may show noticeable din'erences with those of the previous
works, especially for q near the boundaries of the successive Hrillouin zones.

I. INTRODUCTION

A great deal of work has been devoted to light scatter-
ing from acoustic phonons, since the 6rst observation of
folded-longitudinal-acoustic modes (FLA) by Colvard
et al. ' Several experimental studies have been reported
by Sapriel, Colvard, Jusserand, and their collaborators
in GaAs-Ga„Al& „As superlattices, and by Brugger,
Lockwood, and their co-workers in Si-oe„Si, „super-
lattices. The peak frequency of the folded acoustic modes
are well accounted for by both the elastic and linear
chain models. Yet, the agreement between theory and
experiment is less satisfactory when one considers the in-
tensities of the acoustic modes (Brillouin line) and the
FLA.

In Ref. 3, the distribution of scattered intensities in the
FLA was considered as mainly due to the periodical
square-wave modulation of the photoelastic constants in
the superlattice, while the acoustic mismatch between
GaAs and AlAs was totally neglected. Nevertheless this
simple model led to analytical expressions for the intensi-
ties of the Brillouin line and the FLA modes, which can
be considered as a correct 6rst approach to the problem.
One can still notice certain discrepancies with the experi-
ments since the model of Ref. 3 yields intensities which
are independent of the phonon wave vector and identical
for the two components of the FLA doublets.

In a calculation by Babiker et al. using a Green's-
function method the modulation of the acoustic proper-
ties was taken into account but the superlattice was con-
sidered as a homogeneous medium with regard to the op-
tic and photoelastic behavior. This model actuaBy un-
derestimates the intensities of the folded acoustic modes.
Later Jusserand et aI. calculated these intensities numer-

ically by including both the acoustic and photoelastic
modulations; they solved the elasticity equation of
motion by a Fourier series analysis and then obtained the
intensities as the square modulus of the Fourier trans-
form of the polarization. The asymmetry of the FLA
doublets and the phonon wave-vector dependence of the
intensity, observed in the experiments, were then ac-
counted for by this model. Yet, no mention has been
made of the unfolded acoustic modes in the superlattice.
In addition, the optical mismatch between the two media
was neglected, and the theoretical investigations of the
intensities of the FLA were limited to scattering wave
vectors q =k;+k, less than the size of the Brillouin zone,
n /D. Here k; and k, are the wave vectors of the incident
and scattered lights and D is the period of the superlat-
tice. The + signs correspond, respectively, to backward
and forward scattering.

%e present here an improved calculation including, in
addition to the elastic and photoelastic modulation, the
difFerence between the refractive indexes of the materials.
In this case, the incident and scattered lights are rejected
back and forth at the multiple interfaces, thus giving rise
to a complex interference phenomenon, which
significantly modifies the intensity values for q ~m. /D,
especially near the boundary of the successive Brillouin
zones. The intensity of the scattered light is obtained in
closed form, though its expression is rather complicated.
Sim.pier analytic expressions are obtained in the particu-
lar cases which correspond to the simplifying assump-
tions of previous works.

A new setup combining the advantages of both Raman
and Brillouin experiments has been constructed in the
laboratory and allowed the investigation of modes whose
frequency shift is as low as 1 cm '. Thus we were able to

Q~1988 The American Physical Society



THEORY QF LIGHT SCA'x-r ERING SY LONGITUDINAL-. . .

obtain the Brillouin line as well as the FLA on thc same
spectrum. The comparisons between the different peak
intensities have been performed in good experimental
conditions. Low-frequency phonons ( ~ 20 cm ') in
GaAs-A1As superlattices of period D larger than n. /q
have been investigated for the first time {the excitation
wave vector now exceeds the Brillouin-zone edge m/D).
The agreement between thc experimental data on GaAs-
AIAs superlattices and the novel theory of light scatter-
ing presented here will be examined in detail in the fol-
lowing paper.

In the present study, the phonons in the acoustic range
are treated as elastic waves propagating without attenua-
tion in an in6nite superlattice, with sharp and parallel in-
terfaces between the layers; thus the modifications of the
phonons due to the surface of the semi-infinite superlat-
tice have been neglected. We only consider the longitudi-
nal phonons propagating along the axis of the superlat-
tice. Although we also neglect the absorption of the
light, we assume that the polarization induced by the in-
cident light extends over the N first unit cells of the su-
perlattice from the surface; then we take the hmit N ~ oo

at the end of the calculation. The intensity of the scat-
tered light is obtained (Sec. II) for the backward scatter-
ing geometry, as in most of the experiments, but we also
qualitatively discuss the forward scattering which is of in-
terest for a superlattice bounded by air on both sides; this
last situation is of practical interest since it can be ob-
tained by removing the substrate (in the case of a GaAs-
A1As superlattice the substrate is GaAs, which is a par-
ticularly absorbing material} by chemical etching. We
also discuss a few limiting cases of our general formula in
which the superlattice behaves like an efFective homo-
geneous medium for the propagation of optic and/or
acoustic waves.

In Sec. III we present a few numerical applications of
our results to the GaAs-AlAs superlattices which are ex-
perimentally the most studied systems. %e investigate
the sensitivity of the mode intensities to the chemical
composition and to the ratio of the photoelastic constants
of the materials.

II. LIGHT SCATTERING BY
LONGITUDINAL-ACOUSTIC PHONONS

The superlattice is made of alternating layers of two
different cubic crystals having their [001] direction along
the axis of the superlattice. The period of the superlattice
is D =d, +dz where d, and di are the thicknesses of the
layers, respectively. %'e are interested in the scattering of

in medium p = 1 or 2. u
&

is the only nonzero component
of the displacement field u(x, t). The solution of Eq. (1)
takes the following general form:

—ik x'"'
u&(n, p x'"'t)=(a'"'e " ' +b„'"'e '" ' )e

(2)

where the subscript p refers to phonons, co~ is the fre-

quency of the phonon, and

(p=1 or 2), (3)

with U„=(C„/p„)' the velocity of (longitudinal) sound
in medium p; the index n indicates the unit cell of the su-

perlattice while x~3"" is a local variable in each unit cell
ranging from 0 to d„(p=l or 2) in medium p; the
coeScients a„'"' and b„'"' are two multiplicative constants.

The solutions given by Eq. (2) are subject to the bound-

ary conditions on the continuity of the displacement and
of the normal stress at the consecutive interfaces. These
relations may be written in matrix form at two successive
interfaces as

light from longitudinal-acoustic phonons propagating
along the x& axis; so we assume that all the electromag-
netic waves (incident, scattered, and polarization waves)
are polarized parallel to the x

&
axis and propagate along

x3. Under these assumptions, we can characterize each
medium (@= 1,2) in the superlattice by one elastic con-
stant C„(which means C»), the mass density p„, the
dielectric constant e„=n„(where n„ is the index of re-
fraction), and one photoelastic parameter p„=—e~
(p&ized is the usual photoelastic constant we need in this
calculation}.

The coupling of the incident light to the phonons gives
rise to a polarization in the superlattice through the pho-
toelastic effect, which in turn creates the scattered Seld.
Before dealing with this coupling mechanism, we briefiy
describe the necessary ingredients for the study of propa-
gation of the acoustic and the electromagnetic waves in
the superlattice; we use a transfer-matrix method which
has been developed in detail in previous works. '

A. Longitudinal elastic waves in the suyerlatiice

The equation of motion for a longitudinal elastic'wave
propagating along the axis of the superlattice (x, axis) is

and

'g (n}
2

b(n}
2

g ( + )

g(n+1)
1

gk Id(8
tk

I gf Ie
Zp

tk 2d2
8

Z p2 2
p8

—ik Idi8

—ik 2d28
—ik 242 (4b)
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with

Z—
C1k 1 P1U1

(4c)

cos(k D)=cos(k, d, )cos(k 2d2)

1 1

p zZ + sin(k~)d) )sin(k~2d2) . (9b)

(n+1)01
b(n+1) p

1

'g(n) '
91
g(n)

1

where T is a 2&2 transfer matrix de6ned by

Tp 11 Tp 22

ik Id i
cos(k~2d2)+ —Z + sin(k 2d2) e

2 P Z .

(6a)

Combining Eqs. (4a} and (4b) one can relate the
coeScients a 1" and b 1" in two successive unit cells

The dispersion curve is presented in Fig. 1 in an extended
Brillouin-zone scheme for a GaAs-A1As superlattice ex-
ample. The following parameters have been used:
u )

—4726 m/s, U2 ——5630 m/s, p) ——5.3149,p2 ——3.745, and
d)/D =0.26, where the indices 1 and 2, respectively,
refer to GaAs and AlAs; we have also used dimensionless
wave vector and frequency

kpD co DK=, 0=
2~c

(10)

where c is the velocity of the light in vacuum.
The curve in Fig. 1 can approximately be represented

by a straight line whose equation is

l —~k dT )2=T'2) =—Z — sin(k d22)eP P 2 P Z P
p

(6b) 0) =V Ik

where V is a mean acoustic velocity de6ned by
The determinant of the matrix T is equal to 1. In an
infinite superlattice, one can also use the Bloch theorem

'a(n +1)
ik D

s. (n +1)
c/1

'g (n) '
01
g(n)

1

kp is the wave vector associated to the phonon of fre-

quency 0)~ in the superlattice. Combining Eqs. (5) and

(7), one obtains

'g(n) '

ik D~
(Tp —e ~ I) ()

1
Q

where I is a 2X2 unit matrix. The dispersioo relation of
the acoustic waves in the superlattice is then given by

D d1
+

V u, U2

(13a)ik D
e ~ —T

Tp 12

This line approximately coincides with the true disper-
sion curve far from the boundaries of the Brillouin zones,
and goes through the gaps at these boundaries. Let us
also notice that the straight line becomes the true disper-
sion curve when there is no acoustic mismatch between
the two materials, i.e., p1U1

——p2U2 or Z = 1

The solution of Eq. (8) can be written as

(n) '

1 ink D 1

(n) = Ue
1

det(T —e ' I)=0,

which can be written in the well-known form'

(9a) (n)

where U is a multiplicative factor and ( ('„) ) can be ob-
2

tained from Eqs. (4a} and (13a):

(n) '

Q2

y(n)
ink D

e

i(k D —k )d() —ik 2d&e —e'
z,

i(k D —k (d() ik 2d2

zp

(13b)

The only remaining unknown is the coef6cient U, which can be deduced from the statistical energy associated to the
phonon of frequency co,

f p(~3)~p I ~3(~3 ')
I

'd~3 "~p In(~, )+-,'
I

(14)

where n (0) ) is the Bose-Einstein distribution function. Using the Bloch wave character of u3, the integration in Eq.
(14) can be limited to only one period of the superlattice. In the following we also take the high-temperature limit
(kT ~&fico~ }of the Bose-Einstein distribution. Then Eq. (14) becomes

(
I

g( )
I

2+
I

b(o)
I

2)D+ (a(0) b(0)(1 e
'

) a(0)b(0) (1 e
'

))P P P 2k P P 2
@=1&2 pp p
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T11 T22

f
skldlcos(k2d2)+ —Z+ —sin(k2d2) e

i —ik
1 ~l

Ti2 =Tzi =—Z — sin(kzdz )e
2 Z

(21)

0 1 1.5 2 2.5 3
K ( =kp 0/x)

FIG. 1. Dispersion curve of the longitudinal-acoustic phonon
in the extended Brillouin-zone scheme for a GaAs-A1As super-
lattice.

from which one can obtain U.

'g (n) '

1
iknD

(„3 ——Ee8 ] e —T))ikD (23a)

Finally the dispersion relation and the eigenvector associ-
ated to each wave can be deduced by transposition from
Eqs. (7)-(9) and (13):

cos(kD)=cos(kid ) )cos(kid2)
r

1 I

2
Z+ —sin(k, d, )sin(kid2), (22)

B E(xi, t)

Bx )

n„BE(xi, t) =0
c Bt

B. Propagation of the incident light in the snperlattice

The dispersion relation of an electromagnetic wave po-
larized parallel to the x, axis and propagating along the
axis of the superlattice can also be obtained by the
method presented in Sec. IIA. Indeed, the Maxwell
equations lead to the propagation equation

(n) '

IknDe
gg

{n3
2 12

1 1 i (kD —k ) d I 3 —ik2d2
e 2 2)

2 Z

i(kD —k(d)) ik2d21+— e '' —e2' Z

(23b)

in medium p= 1 or 2, where E stands for the x, com-
ponent of the electric field. The general solution of Eq.
(16) is

-ik x"
E(n )Lt x'"'t)=(A'"'e " ' +8'"'e " ' )e

Here c is the velocity of light in vacuum, to the frequency,
and

Here k is the wave vector of the Bloch wave in the super-
lattice, which is also defined in the extended Brillouin-
zone scheme as the phonon wave vector k .

In the following we shall use a subscript i or s in all the
quantities appearing in Eqs. (16)-(23) (E, 8, A„'"', 8„'"',
k„, k, co, Z, T) to refer to the incident electromagnetic
field or to the scattered field (outside the polarized re-
gion). For a semi-infinite superlattice, the amplitude E in
Eq. (20) can be related to the amplitude of the incident
electric field in the vacuum, which can be written as

E(x t)=C e (24)
COP1 p

(p, = 1 or 2) .

The magnetic Geld 8 associated to the electric field is
parallel to the x2 axj.s with

BE(xi,t)
8(x&,t)= ——

69 Bx3
(19)

The transfer matrix T& is then replaced by T such that

The boundary conditions at the interfaces on the con-
tinuity of E and 8 lead to equations similar to (4) with Z~
replaced by Z such that

k2 n2

with the transmission coeScient t,. given by

2k, oT; )2
I ik,.D

,T, ( 2;ko+k )+(e ' —T; „)(k,o —k;, )

(25b)

It is worthwhile to point out that the surface layer of the
superlat tice may have a composition or thickness
diferent from those in the bulk; in this case some
modifications arise in the transmission coefficient in (25b)
as mell as in the transmission of the scattered light from
the superlattice into the vacuum. However, these

with k;o=to;/C. Let us also assume that the free surface
of the superlattice is at x 3 ——0 in medium p = 1 in the unit
cell n =0. Then the surface boundary conditions lead to

(25a)
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modifications do not RS'ect the scattering process, and as
a consequence, do not play a role in the relative intensi-
ties of the folded acoustic modes at a given scattering
wave vector.

t)Q3(x 3, t)
P(xi,t)=p„E,(xi, t).

Bx3
(26)

in medium )(t. For Stokes polarization the Bu&lBx3 fac-
tor should be replaced by (Bu3/Bx &)*; however, the cal-
culation of the scattered field will be similar in both cases.
On the other hand, the factor n (cop)+ —,

' appearing in Eq.
(14) should be replaced by n (top )+1 or n (o) ) for Stokes
or anti-Stokes polarization, respectively; this difference

C. Intensity of the scattered light

The propagation of Rn acoustic wave excites periodic
variations of strain. In the presence of the incident elec-
tromagnetic wave, the photoelastic effect leads to a polar-
ization of the superlattice along the x, axis whose anti-

Stokes component is given by

does not play a role in the high-temperature limit of Eq.
(15).

We 6rst assume that the superlattice is semi-in5nite
and the polarized domain extends from the unit cell n =0
at the surface up to the ¹hunit cell. The radiation Seld
generated by the polarization propagates out of the polar-
ized region, into the vacuum on one side and inside the
superlattice on the other side. The solution for the scat-
tered 5eld inside the polarized region should then be
matched with a scattered Bloch wave propagating in the
rest of the superlattice and with a scattered plane wave
propagating in the vacuum far from the superlattice.
However, one can overcome the effects of refieciion and
transmission of the waves at the surface of the superlat-
tice by considering a more schematic situation where the
radiation Seld propagates in an infinite superlattice on
both sides of the polarized region.

Let us first obtain the general solution for the scattered
field in the polarized domain. The knowledge of tt &(x 3, t)
and E, (x3, t) enables one to write the (anti-Stokes) polar-
ization in each 6bn

ik x'"' —ik x'"'
p(n x(ss). t) &. k (+(0)& piP3 y(o) p)P3~ )( g (0)e i)s 3 +g(0)e i)P3 )e p & e P (27)

In the presence of this polarization field, the Maxwell equations lead to the following equation for the scattered electric
field E( x~t):

cPE,(x, t) n„B E,(x, t)

Bxi c Bt

a9 (x, , t)

Eoc Bt
(28)

in medium p, where so is the permittivity of the vacuum. The general solution in Eq. (28) contains two parts, a particu-
lar solution of the inhomogeneous equation and the general solution of the homogeneous equation. Defining the fre-
quency m, of the scattered light as

NS =COi +6)P

and the wave vectors

(29)

k,„= n„(p, =1,2), (30)

we obtain, in medium p belonging to the cell n,

ik ~(") s

E (n + x(n). t) [M(n}e siP3 +Q(ss}& s)P3 +S ( (x)s)se i+ p E ]&
s

The S„(x&"' ) which define the particular solution may be written

(31)

p k
(

(ss}
)

)s p)s

ie.o~'8,

—i(k k. x(")
(0) g (0) '( pis+ iis) 3 b(0}g(0)e ' pis+ ip}
P 'P P &P

k,'„—(k,„+k,„)'
(n) —k x("'

(0)g(0) '
p 3 g{0)g (o) pp p

fP P lP+ 2 Zk,„—(k „—k,„)
@=1,2

Every quantity is known in Eq. (32). The magnetic Seld 8 in each medium can be deduced from Eq. (19); it contains the
derivatives S„'(x3)of S„(x3). Using the continuity conditions of E and 8 at the interfaces, one can relate the fields in
two successive cells in the same way as in Sec. H 8:

'~(n +13 '

in (k +k,. )D
ar(n +1) Ts ~(n) + (33)
lv 1 1

L s
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In Eq. (33) the elements of the transfer matrix T, are given by Eqs. (21) where a subscript s should be added to each
quantity; the last term ( I. ) is due to the polarization field and may be written as a function of S„(0),S„(d„),and also
S„'(0)and S„'(d„)(}u=1 and 2);

1 l

V 2 l

SI(di ) —Si(0}e

k,
[Sz(di )—S', (0)e ' ' ]

cos(k, 2dz )+IZ, sin(k, zd2 ) I sin(k, 2di )+ Zgcos(k, idi }
+-'

cos(k, 2d2) —iZ, sin(k, id& ) i sin(k, id& )—Z, cos(k, zdi )

Si(di ) —Sp(0)

[SI (d i ) —S'I(0)]
k, 2

(34)

By repeating Eq. (33) several times one can relate the scattered field in the utmost layers of the polarized domain in the
superlattice, i.e., the layers n =0 and n =N. It is convenient to define the matrix Q which diagonalizes the transfer ma-

ik, D —ik, D
trix T, ; calling e ' and e ' the two eigenvalues of the matrix T, [k, is defined by Eq. (22}],one has

Ts 12
—ik, D

Ts 1]

ik D
Ts 11

(35)

and
ik, D

e

0
—ik DS

Then Eq. (33) leads to

i/k, D

0 e

0
iNk, D Q-

I

~(0) +Q
1

iN(k +k,. )D iNk,
e ' ' —e

i(k +k,. )D ik, D
e R —&

iN{k +k,. )D —i', D
e

i(k +k,. )D —ik, D
e ~ ' —e

(37)

(38)

with

k,o
——

C
(39)

The boundary conditions at the surface of the superlat-
~(0)

tice relate the column vector ( i0~) to 8, . Beyond the

¹hunit cell in the superlattice, one can write the electric
fiel of thc scattered light like R Bloch WRvc Rs iil Eq.
(17):

~(N)
i.e., a relation between the column vectors (,N, ) and
~(0)

(Ni'0) )~

I

Let us now introduce the scattered 6eld outside the
domain of polarization. In the vacuum side this is a
plane wave whose electric field may be written

ik r{") —ik, r ") i(nk, D —co t)
E(n, p.,xi'"', I)=(A,„e '" ' +B,„e *" ' )c

(40)

%ith these notations the wave vectors k, are assumed to
be positive, just as k, .

%'e recall that the coeScients A,z and B,„are known
quantities [Eqs. (23)] except for a multiplicative factor E,
as in Eqs. (23). Let us assume that the transition from the
nonpolarized to polarized region in the superlattice takes
place at the abscissa xi& ' ——0 in the medium p, = 1 of the
unit cell X. At this position there are continuity condi-
tions between the solutions on both sides given, respec-
tively, by Eqs. (31) and (40). This relates the column vec-

~{%)
toi' ( (N) ) to E& ~

1

In a final stage one can eliminate in Eq. (37) the
~(N) ~(0)

column vectors ( i'A~ ) and ( io~ ) as functions, respective-
1 1

ly, of E, and 6„ then, we are led to two equations with
two unknowns E, and 8, which become, after some alge-
bra,



iNk D
e 0, 1 —1

iN—k, D Q
8

1

k,o

ksi

with

&Ntk +k,. )D &Nk, D
P f

i{k +k,. )D ik, D
P f e s

—iNk DiN(k +k. )D
e ~ ' —e

i(k +k,, )D —k D
e ~ ' —e

X
Q

—i (41)

iX{k +k,. )DX 1 e

r 2 0

iNk, 8—e 0 1 —1

iN(k +k, )D iNk, D—Q
e ~ ' —e

S,(0)

sl
Si (0)

(42)

In the right-hand side of Eq. (41), the first term contains
the effect of the polarization of N unit ceBs in the super-
lattice, whereas the second term ( r ) is only related to the
utmost polarized layers. When the number N goes to
infinity, the latter term can be neglected with respect to
the former and the calculation will be simpliSed; indeed,
remembering that

eiNx 1
2

lim ~, =2m%5(x), (43)
N~ oo x'

one can see that the first term in Eq. (41) contributes to
the intensity of the scattered light by factors of the form
N5(k~+ k;kk, +2am /D), where nz is any integer, while

the term (zr ) does not give any contribution proportional
to ¹ Then, de6ning

iN
leak+ D

s ikD e +

ihk+D
e + —1

(45a)

iNhk D iN hk+ D
Es —ik De —1 ik D=e w+e rs —1

V

(45b)

(46a)

and taking the limit N~ oo, we obtain the amplitudes of
the scattered Selds

Eked ——k +k;kk, (44) and

—ikD ikD
e ' —e

—ik D
~S 11

2k, (T, )~
ik D

T, iz(k.o+I.i)+(e * —T. ii)(k.o
—k. i)

r

—ik D
Ts 12 Ts 12(kso+ksl)+(e Ts il)(kso ksl

—ik, D ik, D
e ' —T, ii T, iz(k, o+k»)+(e * —Ts ii)(kso —k~i)

(46b)

(46c)

and I;, and r, are, respectively, the coefBcients of
transmission and reAection of a Bloch wave at the surface
of the superlattice. In the limit n, =nz, these results be-
come

k. ~ k. l -k.o

k.o+k„' " k,o+k, l
'

which are the well-known transmission and refiection
cocfGcicnts for a plane %'ave.

Let us recall that in Eqs. (45) and (46) giving the ex-

pressions of the scattered fields, T„Q, and (i, ), are, re-
spectively, defined in Eqs. (21), (35), and (34), the indices i
and s refer to the incident and scattered lights; k;o and k,o
are the wave vectors of the plane waves associated to the
incident and scattered lights in the vacuum, k; and k, the
corresponding wave vectors of the Sloch waves in the su-
perlattice (with our notations all these wave vectors are
positive); k„=(co,/c)n, ; and k is the wave vector of the
phonon in the superlattice. I.et us also noti. ce that k„k;,
and k~ are deSned in the extended Brillouin-zone scheme.

Instead of Eq. (45a) it would be more interesting to
compare 8, to the amplitude 8, of the incident light in
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the vacuum. Using Eq. (25a) in (45a)

in!&+ D
skag +

=r tse l
l e —1

Thus the relative intensity of the backward scattered
light becomes

sin (N Ak+ D/2)
it t, u i'.

sin (6k+ D/2)

In the limit N~ ~, one obtains the wave-vector selection
r'ule

k +k, +k, + =0,

sume instead of (29)

Q)s

k, =k„k;„=k,„, k;c=k,c .

The, the relations (49) become, respectively,

k +2k;+ =02&Pl

(50a)

(50b)

(5 la)

(51b)

k +k, k, + —=0. (49b)

In the above formulas, we distjnguished between the fre-
quencies of the incident and the scattered fields. Howev-
er, in general, the frequency of the phonon is much small-
er than those of the lights; ci «co; or ci, . $o, one can as-

where m is an integer.
We see that, for a given scattering wave vector q

(=k, +k, ), a series of phonon modes are excited. The
frequencies of the excited phonon modes are determined
by Eq. (49a) and the dispersion relation (9b). Figure 2
shows the frequencies of the lowest modes for q ranging
from 0 to 3'/D. Actually it is obtained by folding the
dispersion curve (Fig. 1) into the successive Brillouin
zones. The LA is the direct longitudinal-acoustic model
(Briliouin line), corresponding to m =0. The folded
acoustic modes corresponding to m&0 are labeled as
(FLA) . It is worthwhile pointing out that the frequen-
cies of certain folded modes can be lower than the Bril-
louin mode when the scattering wave vector exceeds the
Arst Brillouin zone. This occurs w'th long-period super-
lattices as investigated in Ref. 9.

In the forward scattering, Eq. (45b) shows that, in ad-
dition to the peaks corresponding to Eq. (49a), one can
also observe the folded acoustic modes at the phonon
wave vector satisfying

The numerical calculations of $ec. III are carried out un-
der this hypothesis. As a matter of comparison it is also
worthwhile to calculate the scattered Seld intensity by as-
suming that the superlattice is infinite rather than semi-
in6nite; this means that the radiation generated by the
polarization propagates into an infinite superlattice on
both sides of the polarized region (which still extends
over the unit cell n =0 to n =N —1). In this case the
solution in (40) still remains valid beyond the ¹hunit
cell; on the other hand, the solution in (38), correspond-
ing to the region before the unit cell n =0, should be re-
placed by a Bloch wave propagating along the negative
x3 direction

ik x
E(n, iM, xi'"', t)=( A,„e

-ik, xi3" ~ —i(nk, a+a), tl
(52)

s
iN hk D—ik Dp

' l,k D

The coeScients A,„,B,„are known quantities, given by
Eqs. (23) where k, should be replaced by —k„except for
an amplitude E, .

Now, we write again the boundary conditions at the
limits of the polarized region; assuming again X&~1, we
find the following results for the amplitudes of the for-
ward and backward scattered 6elds in the superlattice:

iNhk D
s ik, Dg= —e i dLk D+

(53b)

where b,k~ are de5ned by Eq. (44). A simpler way to ob-
tain the results (53) is to make r, =0, t, =1 in Eqs. (4S).
The relative intensity of the scattered light can be ob-
tained as in (48),

sin (N 5k+ D/2) U (backward)
X '

sin2(gk+ D/2) tc (forward)

(S4a)

(54b)

FIG. 2. Frequenries of the excited phonon branches as a
function of the reduced scattering wave vector {Q=qD/s }.

and the wave-vector selection rules become

k~+ k;+k, + =0 (backward),
2&PPl

k~+k; —k, + =0 (forward) .2$"pl%

(55a)

(55b)
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The difference between the results in Eqs. (45}-(49) and
those in Eqs. (53)-(55) comes from the fact that in the
former case the scattered field in the polarized region un-

dergoes re6ection and refraction at the surface of the su-
perlattice, while in the latter case the superlattice is an
inflInite medium. The eftects of these wave re6ections and
transmissions are contained in the factors t„t, fEqs. (47)
and (48)] which al'ect the absolute intensities of the scat-
tered lights, but disappear if we are only interested in the
relative intensities of the folded acoustic phonons at a
given scattering wave vector k, kk, .

In the infinite superlattice, one can notice that the
backward (forward) scattered light presents peaks at the
folded acoustic modes corresponding to the phonon wave
vector given by Eq. (55a) [(55b}]. For a semi-infinite su-
perlattice, the light scattered backward into the vacuum
still shows peaks for wave vector satisfying the condition
(55a) or (49a); however, in the forward scattering there
are two series of peaks corresponding to both conditions,
Eqs. (55). A similar calculation in the case of a finite su-
perlattice, bounded by air on both sides, may enable one
to show that due to the refiection of the scattered light at
both ends of the superlattice, both the backward and for-
ward scattered fields contain the two series of peaks given
by Eqs. (55).

D. Discussioli, of a few limiting cases

In previous works ' the intensity of the scattered light
was calculated by taking into account the square-wave

modulation of photoelastic andlor elastic constants in
the superlattice, but assuming that the superlattice
behaves like a homogeneous medium as regards the prop-
agation of incident or scattered lights. The incident light
in the superlattice is then a plane wave

E;(x&,t)=E;e (56)

The scattering intensity can be written as the square
modulus of the Fourier transform of the polarization
held

+ co +lk X3I- dx3e * P( xi t) (57a)

or

+„;e„, Bu&(x3, t)I- dx&e 'p (x& )
oa axi

Here P(x&, t) is the polarization field as defined by Eq.
(26), p(x&) is the photoelastic constant, and q is the
scattering wave vector (q=k;kk, in our notation). Let
us also recall that we are dealing with anti-Stokes, rather
than Stokes polarization. Using Eq. (2) in Eq. (57b)

I-+5 k +q+
m

p)kp 1 k, +q —k, +q

u(0)(ei(k )+&)d) 1) l (0)(ei( —kP)+q)d( 1)

le )+e ppkp2
k~2+ q

Here the quantity inside the square modulus comes from
the integration in (57b} over one unit ceil, while the Dirac
function results from integration over N ~~1 unit cells.
In Ref. 8, the authors obtained the scattering intensity
from Eq. (57b) but they calculated the elastic displace-
ment field ui(x3, t) numerically rather than using its ana-
lytic expression (2) leading to the simple closed form rela-
tion (58}.

The result given by Eq. (58) can be obtained as a limit-
ing case of the general expression (54) by making the as-
sumptions that the two layers in the superlattice are opti-
cally identical and described by an elective dielectric
constant; in our geometry of scattering this effective
value is given by' '

d) &)+die2
&e= (59)

%'e do not present here the detail of this calculation,
which is straightforward.

In Sec. III, we give a numerical comparison of the ex-
act and approximate results. In the following we shall in-
troduce additional assumptions which lead to simpler ex-
pressions of the scattering intensity.

(a) Let us first assume that there is no acoustic
mismatch between the two layers in the superlattice; this
n1eans p)U) =p2Up or p]c) =p2c2. Kith this approxima-
tion, the dispersion curve of the phonons (Fig. 1) becomes
a straight line whose equation is given by (11) and (12).
After some algebra, one finds
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a i NId2I -sin . r

p&i 1 1 2am
D U2 U& D

where m is the folding index which relates the scattering
wave vector q to the phonon wave vector k by

q +k~+ 2mm /D =0 [Eq. (55a)]; the minus or plus sign is
to be used in Eq. (60) depending on whether k is positive
or negative for the corresponding mode.

This expression becomes even simpler if one assumes
that the two layers in the superlattice have the same
acoustic parameters: p, pt and u, =U2. Then, for
m +0, we directly obtain, from (60},

sin2(n m /D)
Pi P2-

(mm)
(6 la)

For m =0, the expression (60) gives, in the limit u, ~us,

rliPi+~2P2Io-
D

(61b)

In particular, the ratio of the folded acoustic modes to
the Brillouin line is given by

sinz(nm /D) (P i P2)—
(nm)' [(dtpt+d2pt)/D]t

(61c)

The expressions (61},first derived by Colvard et al. ,
3 are

clearly approximate, as they are not dependent upon the
wave vector of the phonon and they also lead to the same
intensity for the two components of the FLA doublets,
respectively labeled by the indices +m and —m. Besides
the necessity of having a scattering wave vector q smaller
than the size of the Briliouin zone, the approximate valid-
ity of the above results also requires that q be in a range
where the true dispersion curves (Fig. 1}are well approxi-
mated by straight lines.

(b) We now consider the limit of Eq. (58) where the
acoustic wavelengths become large compared to the
period D (k~D &&1, coID/u &&1) and the superlattice
behaves like an eff'ective homogeneous medium charac-
terized by efFective elastic, photoelastic, and dielectric
constants. The long-wavelength expansion of Eq. (58)
gives, for the intensity of the Brillouin line (which is the
only'peak in the limit considered),

Pe P] P2
D =d ) +6f2

e 1 2
(63b)

The general expressions of the eff'ective elastic, dielectric,
and photoelastic constants as functions of the parameters
of the two materials are given in Ref. 15. Equations (63)
are two of these relations containing the particular con-
stants we used in our geometry of scattering. Let us re-
call that the meanings of C and p are, respectively, Css
and eI g])33 ~

III. APPLICATIGN TO Gaks-AlAs
SUPERLAxxiCES AND GENERAL MSCUSSIONS

LA

O,

In this section me present examples of intensity calcu-
lations for the backward scattering in GaAs-A1As super-
lattices, using either the exact calculation or difFerent lev-
els of approximations. %e also investigate the behavior
of the scattering intensity as a function of the relative
photoelastic parameter and thickness of the layers.

In Fig. 3, the scattering intensities [Eq. (48)] from the
first few folded phonon branches are presented for a
GaAs-A1As superlattice, with dI,)I„/D =0.74, as func-
tions of the dimensionless scattering wave vector
Q =qD/m. The intensities show drastic variations, espe-
cially for Q close to integer values. The Brillouin line LA
is the most intense mode for large domains of Q values,
except near the boundaries of the successive Brillouin
zones. As we shall discuss later, these behaviors are due

2
Pe

C,
(62)

Lit ] 612
+

C, C] C2
(63a)

This is the expression for a homogeneous medium where
the two elective parameters p, and C, are de6ned by

0 0.5 I 't.5 2 2.5 3
Q

FIG. 3. Intensities of the Brillouin and of the 6rst few folded
modes [Eq. (49)] in a GaAs-A1As superlat tice with

dA~A, /D=0. 74, and p2/p& ——0. 15. The refractive indexes of
GaAs and AlAs are, respectively, n, =4.395 and n 2

——3.37 (cor-
responding to A, =4880 A). For Q close to the boundary to the
second Brillouin zone, several modes becomes very intense, as
shown in the inset.
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FIG. 4. Same as in Fig. 3 but neglecting the electromagnetic
mismatch between the two layers.

to the complex interferences resulting from the
reflections of the acoustic and electromagnetic waves at
the interfaces in the superlattice. Figure 4 gives the
scattering intensities from the folded modes as functions
of Q when one assumes that the refractive indices of the
two media in the superlattice are identical (n

& n2)——and
equal to an effective value n, [see Eq. (S9}];this means
that there is no ref(ection of the electromagnetic waves at
the interfaces. In comparison with Fig. 3, noticeable
differences occur for Q y 1, and more particularly near
Q =2, which corresponds to the Bragg condition for the
light. Thus for scattering wave vectors exceeding the first
Brillouin zone, the effect of the electromagnetic wave
reflections at the interfaces cannot be neglected.

In a further approximation one can also assume that
the two media have identical elastic parameters; this
means that the elastic waves in the superlattice are ap-
proximated by plane waves. The intensities of the
scattering light from the folded branches are then in-
dependent of the Q wave vector and identical for the
(FLA) and (FLA) branches [see Eqs. (61)]. Figure S
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gives a comparison of the (FLA)~, intensity in this ap-
proximation with the exact results; the intensities are cal-
culated with respect to that of the Brillouin bne, which is
normalized to one. The most important deviations be-
tween the two sets of results occur for Q close to integer
values.

To explain these behaviors, let us f][rst consider the case
~here the acoustic and electromagnetic waves in the su-
perlattice are approximated by plane waves, in other
words, the acoustic and optic parameters of the two
media are replaced by effective parameters. Thus the po-
larization produced by the photoelastic effect [see Eq.

i(k +k,. )x3
(26)] has a phase factor e .' ' ', while the phase factor
of the scattered light is e ' ' (for backward scattering).
From Eq. (49a} we can see that these two factors are
equal for the Brillouin mode (nt =0), thus the elementary
waves generated at difFerent points of the superlattice are
in phase and give rise to constructive interference. This
can also be seen from Eq. (S7a), where the phase factor in

i (k +k,. +k, )x3
the integrand e ' ' * ' becomes a constant (equal to
1). But for the folded mode (m &0), this phase factor be-

—i 2mrnr 3/D
comes e ' and the elementary waves generated in
difFerent points of a unit cell are not totally constructive

Ir

/t

Al

BI

I
I
I

I
I

I
I
I

I
I
I

I
I

/
i'

2 2.5 30,5 1.5
Q

FIG. 5. Comparison of the relative intensities

I((FLA}y~}jI(LA} obtained by our eaku}ation [—.—.—,
{FLA},; —"—,(FLA},] and from ref. 3 [———,(FLA}+,}.
The parameters of the superlattice are the same as in Fig. 3.

0 1 1.5 2 2.5 3
0. (=2k; D/x )

FIG. 6. Amplitudes of the acoustic (a) and incident elec-

tromagnetic (b) vraves in the GaAs layers. The solid and dashed
lines correspond, respectively, to the components of the wave

propagating in the positive and negative x3 direction. The am-

plitudes in the AlAs layers have similar behaviors. The parame-
ters of the superlattice are the same as in Fig. 3.
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(however, the ones generated in successive unit cells
remain constructive). Therefore the intensities of the
folded modes may be much smaller than that of the Bril-
louin mode and depend strongly on the structure of the
unit cell.

In a real superlattice, where the acoustic and optic pa-
rameters of the layers are diferent, the polarization in-
side each medium contains four terms [Eq. (27)):

(0) (0) I(k +k. )x3 (0) (0) i(k —kl )x3
QP IP 8 P QP IP 8

( —k „+k, &x3 (C~ (0~
—i(kpp+k )x

P l|M. p ip

instead of one in the case of plane waves, due to the
acoustic or electromagnetic wave re5ections at the inter-
faces. The moduli of the amplitudes a( ', b( '

( A,(+,8,( ')
in GaAs layers are represented in Fig. 6(a) [Fig. 6(b)) as a
function of K =kpD/Ir (Q =qD/Ir=2k;D/Ir}. One can
notice that, except near the Bragg condition kp lIr/D——
(k; =le/D), one of the two coeScients a( ', b' '

(A,.(0',8,.(0') is much smaller than the other; so only one
among the four terms appearing in the polarization plays
a dominant role. Furthermore, if the acoustic and optic
properties of the layers are close to one another, both
wave vectors k „(k,„)become comparable to k (k;) and
one recovers the approximation in which the Bloch waves
can be replaced by plane waves. However, for Q close to
Intc cf (cvcII 111'tcgcI') values, 'thc cocSclcnts u, lp

( A ',8 ') become of the same order; in this case two or
even all of the four terms in the polarization are impor-
tant and afFect the scattering intensity. The contribution
of the four terms to the scattered light can be construc-
tive or destructive, thus the intensities of the modes in-
crease or decrease drastically and certain modes becomes
more intense than the Brillouin line.

Figures 7 and 8 present the influence of the relative
thickness of the layers in the superlattice on the scatter-
ing intensities of the folded modes. In Fig. 7, the
thicknesses of the GaAs and A1As layers are assumed to
be the same. One can notice a difFerent behavior of the
(FLA.) intensities compared to those in Fig. 3; besides,
the folded branches with even order indices are less in-
tense. These last modes have vanishing intensities except

C~

CQ,
O~
*~
Q~e~„

lX ~

0 0.1 0.2 0.3 GJ 0.5 0,6 0.7 0.8 09 't

X

FIG, 8. Variations of the relative intensities
I{(FLA) )/I(LA) with the relative thickness of the layers
x =d&~+, /D. The period of the superlattice is D =186 A and
the vravelength of the 1ight A, =4880 A; the other parameters are
those of Fig. 3.

when Q is close to integer values; this is consistent with
the results of Colvard et al. [see Eqs. (61)] where, for
d (

——d I ——D /2, the intensities of the folding branches
with even indices are zero.

The dependence of the intensities on the relative thick-
ness of the layers is given in Fig. 8, where the period of
the superlattice is D =186 A and the wavelength of the
light A, =4880 k Here the intensity of the Brillouin line
is normalized to one. As the folding index

~

m
~

in-
creases, the curves show more oscillations while the gen-
eral' tendency for the intensities is to decrease. Let us
also notice that the intensities of (FLA)+I vanish at a
value of dI/O which is shghtly greater than —,

' (see the
discussion of the preceding paragraph}; this difference,
which is due to the deviations of the waves in the super-
lattice from plane waves, is a consequence of the modula-
tion of acoustic and optic properties of the superlattice.

Finally, the variations of the intensities of the (FLA)+(
modes compared to the Brillouin mode as a function of

LA
FLA )
FL+)„.. . . . . FLA 2
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FIG. 7. Same as in Fig. 3 but in a superlattice with

d& ——d2 ——D/2.

1(FLA () /1(F LA.„}
CO
C), ,

.9
Q LA,

Q

j(FLA,(}/1(LA)

B' I(FLA ()/I(LA}

O.N 0.08 0.12 0.16 0.20
P~Ip

FIG, 9. Variations of relative intensities I({FLA.)g, )/I (I.A. )

and I((FI-A. ) I)/1((FLA)~) as a function of the relative pho-
o

toelastic parameter. The other parameters are D =421 A,
dA]A&/D =0.73» and A, =4880 A.
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the relative photoelastic parameter pz/p, are sketched in

Fig. 9; here the period of the superlattice is D =421 A,
d2/D =0,73, and the wavelength of the light k=4880 A.
By increasing pz/p i from 0, the relative intensities
I{(FLA)~,)/I(LA) significantly decrease while the ratio
I((FLA), )/I((FLA)+, ) remains almost constant.
Thus the measurements of the folded mode intensities
with respect to the Brillouin lines are necessary to obtain
a good determination of the ratio P2/Pi. This intensity
behavior is exploited in Ref. 9 to characterize the photoe-
lastic properties of GaAs/AlAs.

IU. CQNCI. USIQNS

In this paper we have calculated the light scattering in-
tensity by longitudinal-acoustic phonons propagating
along the axis of a superlattice. An analytic approach
has been used and the results of the previous works
which contain some simplifying assumptions have also
been derived. To calculate the intensities of the Brillouin
and the folded modes exactly and to determine their

dependence on the scattering wave vector, we showed
that it is necessary to take into account the modulation
not only of photoelastic and acoustic but also of optic
properties of the superlattice, especially for a scattering
wave vector q greater than the size n. /D of the Brillouin
zone. The measurements of these intensities and in par-
ticular the ratios of the FLA intensities to the Brillouin
intensity enable one to obtain useful information about
the relative thickness and the photoelastic parameter of
the layers.

The calculation was carried out by assuming that the
number of polarized layers which contribute to the radia-
tion field goes to infinity. If this number if not very large,
the peaks in the scattered field are broadened instead of
being delta functions. This effect is superimposed on oth-
er contributions to the broadening of the peaks, resulting
from acoustic or optic absorption and the presence of de-
fects. ' Finally let us point out that our calculation can be
extended to problems where different me'chanisms of cou-
pling between the light and the phonons or other excita-
tions are involved.
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