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The distant-pair model describes electron-hole recombination in a disordered semiconductor. An
analytic method is presented for the derivation of the power series of the distribution of recombina-
tion distances in a dilute distant-pair system. Results are presented for the one-, two-, and three-
dimensional systems, and show that previous approximate methods underestimate the density of
metastable carriers. An exact sum of the power series is proposed for the one-dimensional case
which reproduces results of previous Monte Carlo studies.

I. DISTANT-PAIR MODKI.

The distant-pair model describes electron-hole recom-
bination in crystalline' and amorphous semiconductors.
The model uses as its initial state a distribution of equal
numbers of electrons and holes, localized at fixed random
positions in space, and interacting only by tunneling
recombination. All competing processes, such as thermal
detrapping, are excluded from the model. The problem
can be examined in two limiting cases. If the average in-
tercarrier distance is large compared with the tunneling
range, then because the tunneling rate r ', often ex-
pressed as

'(r) =rc ' exp( ar),—

is such a strongly decreasing function of tunneling dis-
tance, the carriers which are closest to each other will
necessarily recombine 6rst. As recombination proceeds,
the average intercarrier distance will increase, and the
tunneling rate will decrease rapidly. The decay is there-
fore strongly nonexponential. The problem is completely
deterministic, being given by the particular initial distri-
bution of immobile carriers, and by the expression for the
tunneling rate. The distribution of recombination dis-
tances is determined by the statistics of the pairing of
random positions in space. The time dependence of the
population density is then simply calculated from the
recombination distance distribution and the tunneling
rate dependence on recombination distance.

If on the other hand, the carrier density is suSciently
large, then the carriers will not necessarily recombine
with the closest partner, but can easily tunnel much fur-
ther away. In this case, the form of the dependence of
the tunneling rate on the recombination distance becomes
important, and the time dependence of the recombination
must be calculated probabilistically. The pair separation
distribution of the dilute case would no longer apply. In
this paper, we discuss only the dilute case.

One might think that the distribution of recombina-
tion distances for the dilute distant-pair system is just the
nearest-neighbor (NN) distribution. For an n
dimensional system this is given by

PNN „(r)=pnu„r" ' exp( pu„r"), —

where p is the density of carriers and U„ is the volume of
the unit n-dimensional sphere,

n/2

I"(n /2+ 1)

This distribution is not appropriate, however, because the
nearest-neighbor relation that it describes is not commu-
tative, i.e., a carrier is not necessarily the nearest neigh-
bor of its nearest neighbor. Recombination, however, is
commutative, for if electron A recombines with hole 8,
then hole 8 necessarily recombines with electron A. The
nearest-neighbor distribution therefore cannot describe
the commutative recombination process.

The correct distribution for the description of
distant-pair recombination is the nearest-available-
neighbor (NAN) distribution, PNAN(r). In this pairing
scheme, each carrier must recombine with the nearest
carrier that is available to it. The definition of availabili-
ty can be cast in several ways, each of which implies a
method for finding the NAN of a particular carrier. One
de6nition of availability rejects the time dependence of
the physical process which is being modeled: a carrier A
is available at distance r if it still exists at a time r(r).
This de6nition is useful for the Monte Carlo calculation
of PNAN(r), but unnecessarily brings in the time depen-
dence of the recombination to describe a spatial relation
between carriers.

A second definition of availability, and one which will
be used for the calculations in the next section, is a recur-
sive one: a carrier A is available to a carrier of opposite
sign D at distance r if there is no carrier of the opposite
sign 8 at distance r & r, which is itself available at dis-
tance r'. The recursion rejects the competition for the
nearest available neighbor involved in the NAN pairing
scheme.

A third de6nition of availability is embodied in another
algorithm for the Monte Carlo calculation of the NAN
recombination distance distribution, recently performed
by Bishop and Searle. In this calculation, any carrier
pair which is mutually nearest neighbor is removed, and
its separation is noted. As carrier pairs are removed, oth-
er carrier pairs which previously were not mutually
nearest neighbors will become so, and thus become candi-
dates for removal. It makes no difFerence what order the
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carriers are removed; time is not directly modeled. This
process is essentially the recursive de6nition run back-
wards.

Regardless of how one considers the de6nition of
availability, the NAN pairing process is unique when the
carriers are positioned at random and equidistance is not
a problem. It is easy to see that for suf6ciently small r,
the NAN competition is unimportant, and one may write

PD„(r)=pnu„r" '
1 —I PD„(r')dr'

This equation can be solved by elementary methods, and
defining in general the complementary cumulative distri-
bution function

Q(r)= I P(r')dr',

PN~N, n("}=p"unr
we get
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which just expresses how many carriers exist at distance r
in n-dimensional space.

Several examples of NAN pairing are shown in Fig. 1.
In Fig. 1(a), carrier A is available to carrier D of opposite
sign at distance r, as no other carriers are nearby. In Fig.
l(b), carrier A is no longer available at distance r, be-
cause carrier 8 is paired with A at distance r' g r. In Fig.
1(c), carrier A is now available at distance r, because, al-
though 8 exists at distance r' ~ r, it is paired with carrier
C at distance b g r', and is thus not available at distance
r'. In Fig. 1(d} is depicted a group of six NAN pairs, the
pairing indicated by lines, and the relative order of
recombination distances indicated by numbers.
Verification of the correctness of the pairing is left to the
reader.

An ansatz used by Dunstan to derive an analytic form
PD „(r) for the NAN distribution is based on standard
geometric probability. In this method, generalized else-
where6 to n dimensions, the probability of a carrier A
finding a NAN at distance r is the product of three condi-
tional probabihties: the probability pnu„r" that there is a
carrier 8 of opposite sign at r, the chance [1—fOPn „(r'}dr'j that A has not found a NAN nearer
than r (i.e., that A is available at distance r), and a simi-
lar chance that 8 in turn has not found a NAN nearer
than r. Thus PD is written

where x =p'~"r is the normalized pair separation. For
small x, this result predicts the power series

QD „(x)=1—u„x"+u„x'"—u„'x'"+

whereas for large x it gives

Qu „(x)—u„'x (9)

The one-dimensional case of this relation is shown in Fig.
2 as a dashed line.

Unfortunately, the Dunstan ansatz for the NAN distri-
bution has been shown to be based on the inaccurate ap-
proximation of uncorrelated conditional probabilities,
and deviates signi6cantly from results of Monte Carlo
analyses. The Monte Carlo results in one dimension are
reproduced in Fig. 2 as a dotted line. Another analytic
method for the determination of the NAN distribution
must be sought.

An estimate of the asymptotic dependence of the NAN
distribution has been proposed by Searle and Bishop,
who have hypothesized that the average density of
remaining carriers in a distant-pair system should be
determined by the large-scale fluctuations from neutrality
of the original system. These Auctuations are proportion-
al to the square root of the expected number of carriers in
a chosen volume, or if normalized to the original density,
to the inverse square root, implying that the asymptotic
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FIG. 1. NAN pairing schemes. (a) Carriers A and D are
NAN*s. (b) Carriers A and D are not NAN's because of the ex-
istence of 8. (c) Carriers A and B are NAN's because 8 is
paired saith C. (d) A group of six NAN pairs numbered in order
of increasing pair separation.
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FIG. 2. NAN distributions in one dimension. Dunstan ap-
proximation (dashed), Monte Carlo calculation (dotted), and
proposed exact sum (solid).
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behavior of the NAN distribution should be Q (r) -r
for large r. This approach succeeds in reproducing the
exponent of the power law dependence of the Monte Car-
lo NAN distribution relatively well in one, two, and
three dimensions in the most extensive calculations
made.

A second method for the investigation of the distant-
pair model is the direct calculation of the time decay of
the recombining system. In this paper we introduce the
kinetic analysis only in order to help find the NAN distri-
bution for the dilute distant-pair model. The decay of the
distant-pair system was treated in the Hartree approxi-
mation by Hoogenstraaten and by Thomas et a/. The
Hartree approximation is expected to be vahd only at
short times, where the carrier populations are virtually
undepleted, and thus should not be expected to provide
accurate results for the NAN distribution at large recom-
bination distances.

Another calculation of the distant-pair time decay was
given by Dunstan, who wrote the probability of a carrier
at the origin of recombining at time t with another car-
rier of opposite valence at distance r as

(10). One would expect that

PD„r, t dt =I'&„r

Q@ „(r)= f Qn „(8)I„ i(8,z)d8a"

Q„r
m=0

(16)

Q„= „ f QD „(8), I„,(8,z)d 8

in the hmit of low density (or equivalently short tunneling
range). If we work with the quantity Q (r) as defined pre-
viously, it is in fact possible to test this relation. We
write

Qz„(r)= f dt f dr'PD„(r', t}

as the deffnition of the recombination distance distribu-
tion derived from the Dunstan ansatz for the distant-pair
decay. This becomes

PD „(r,t) =nu„r" 'pQD „(t)~ '(r) exp[ —t/~(r) j . (10) (17)

This expression, as Dunstan's ansatz for Pn „(r), is com-
posed of the product of various probabilities: the chance
nu„r" 'p of finding a carrier at distance r, the chance

QD „(t}that this carrier has not yet recombined by the
time t, the chance QD „(t) that the carrier at the origin
has also not yet recombined, and the recombination rate
between two carriers r '(r) exp[ tie(r)], wh—ere ~(r) is
the inverse recombination rate given in Eq. (1). This an-
satz may be solved for the time dependence of the carrier
density Q(t)= J,"dt' 1 u

dr P(r, t') to give

Qn„(8)= 1+ 8I„(8)

where 8=t lr The funct. ion I„(8)is given by the integral

I„(8)=f z"e 'exp( —8e '}dz .
0

Some of the properties of this function are discussed in
the Appendix.

In addition to the assumption of independent condi-
tional probabilities, this ansatz uses a time-dependent ex-
pression for the recombination rate between two carriers,
in addition to the explicit inclusion of the survival proba-
bilities of each of the carriers. It has been suggested that
the inclusion of the additional time dependence of the
recombination rate expresses a correlation between the
survival factors of the two carriers under consideration.
No derivation for this correlation has been given. Fur-
therrnore, Monte Carlo calculations of the time decay of
the distant-pair system in one dimension show significant
deviations from the behavior predicted by Eq. (11).

Despite these objects, it is interesting to consider a
comparison of the two Dunstan ansatzes, Eqs. (5) and

and z =ar The in. complete decay functions I„(8,z) are
discussed in the Appendix. Because QD„(8) appears in

this expression as a squared term, the coefficients Q„
are difficult to evaluate, but a few can be found exactly in
the limit as a goes to infinity:

Q„=O if rn&pn, p integer,

Qz „(x)=1—u„x "+—,'u„x "—
(18)

II. PERTURBATION EXPANSION METHOD

It has been shown that PD„(r) and PD„(r, t) do not
agree with Monte Carlo results or the Searle and Bishop
prediction, and do not agree with each other in their pre-
diction of the distant-pair recombination distance distri-

where x"=pr". The coefficient of the xt" term disagrees
with that in the expansion for QD „(x) in Eq. (8) by a fac-
tor of 2. This term is determined by the contribution of
the nearest neighbors, and does not reffect the competi-
tion of the NAN pairing scheme. On this level of sophis-
tication, one would expect that the NAN distribution
should look like the NN distribution until competition
starts to take place. This intuitive approach will be
justified below. In this case, it is expected that the ex-
pression for Qz „(r) is the one in error. The second Dun-
stan ansatz does not correctly account for nearest-
neighbor interactions.

It is possible to compare the results of the two Monte
Carlo calculations as well. Searle and Bishop have used
an analytic form fitted to the Monte Carlo PN„N, (r) and
have calculated from it the time decay of a one-
dirnensional distant-pair system. In their work, the result
coincides reasonably well with the direct Monte Carlo re-
sult for the time decay.
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bution. It would be desirable to find a way to calculate
the NAN distribution analytically, to amplify on the
Monte Carlo results. To develop such a method for the
NAN problem is dif6cult, for it must account for the
infinitude of pairing competition inherent in the distant-
pair system. %'e will now discuss a method which is able
to provide a power series for the NAN distribution.

The basic approach is to use the recursive definition of
availability given in Sec. I, and to approximate the NAN
distribution by considering successively deeper levels of
recursion. To do so, we introduce the concept of an iso-
lated cluster of carriers about a central carrier pair. An
isolated cluster is, loosely speaking, composed of all the
carriers which have any causative effect on the recom-
bination of the central carrier pair. These are all the car-
riers which are considered when using the recursive
definition of availability given in Sec. I. For any central
carrier pair, the isolated cluster is uniquely defined by the
positions of all the carriers in the ensemble. Associated
with any particular isolated cluster is a set of spheres
about each paired carrier in the cluster. Each sphere of
influence has the valence of the carrier about which it is
centered (i.e., positive or negative). The sphere of
influence of a carrier A paired with another carrier 8 at
distance r is the sphere of radius r centered at A, and has
the valence of A. The spheres of influence of the paired
carriers are depicted in Fig. 1. Within a sphere of
inhuence of valence A and radius r, there can be no car-
rier of valence 8 at a radius a ~r, unless that carrier is
paired at a distance b g a. The spheres of influence deter-
mine when carriers are part of an isolated cluster. In Fig.
1(c), for example, if the carrier pair AD is being con-
sidered as the central carrier pair, the isolated cluster
contains carriers A, 8, C, and D, whereas the isolated
cluster about the central carrier pair 8C contains only
the carriers 8 and C.

We may now define an isolated cluster to be a finit
group of carriers paired ofF in the NAN scheme, where at
least one carrier from each carrier pair except the central
carrier pair is in the sphere of influence of another carrier
of the opposite valence in the cluster. An isolated cluster
must include by definition an equal number of electrons
and holes. If there were an unequal number, then after
the pairing scheme there would be one or more carriers
of the same valence left. Because of the arguments in the
previous paragraph, these remaining carriers then cannot
lie in any sphere of inAuence and thus do not belong to
the isolated cluster. As one considers the contributions
of isolated clusters containing successively more carrier
pairs, more of the possible pairing schemes will be includ-
ed, and the true nearest-available-neighbor distribution
will be more closely approximated.

We form the probability of an isolated duster with a
finite number of carrier pairs, and therefore its contribu-
tion to the complete distribution of PNAN, by writing the
probability for the cluster with a particular set of carrier
positions, and averaging over the carrier positions, hold-
ing the separation r of the central carrier pair constant,
and keeping one of the central pair at the origin. In view
of the known density scaling law for I'NA&, we can use
the scaled positions x=p "r in n dimensions, and then

This is to be averaged over the carrier positions that give
rise to the particular pairing.

An infinite number of types of isolated clusters is re-
quired to calculate PN„N to arbitrary accuracy. One can
learn something from choosing a finite number of cluster
types, however. Because a cluster of 2N carriers is aver-
aged over (2X —1) positions, holding one distance con-
stant, the contribution of a cluster must scale at least as
x"' " '. Thus by taking successively more carriers
into consideration, a power series for P&AN can be con-
structed.

Consider first the case N = 1, or just one carrier pair in
the isolated cluster. Here the volumes of the spheres of
infiuence are easy to write down, they are V„z ——U„x".
Averaging over the angular position of the carrier at dis-
tance r gives

P„,(x)=nu„x " ' exp( —2u„x") (21)

for the contribution of the one-pair isolated clusters in n

dimensions. This is just the set of carriers which are the
nearest neighbor of their nearest neighbors. These ac-
count for half of all recombinations in the NAN model.
To this approximation, the power series for the NAN dis-
tribution function is thus

P~t N „(x)=nu„x" ' —2nu„x " (22)

So far the expansion accounts only for nearest-neighbor
efFects, not for any NAN competition for availability.
This is already suScient to exclude the recombination
distance distribution calculated from PD „(r, t ), however,
and it justifies the intuitive approach given in Sec. I.

It is possible to write down the expressions for the Ã-
pair contributions to the NAN distribution, but the com-
plete integrals are analytically intractable except in one
dimension. In one dimension, it is possible to construct
and solve the terms for an arbitrary number of pairs in an
isolated cluster. For calculational purposes, the N-pair
contributions are separated into particular pairing
configurations. In Tables I and II is presented a list of
pairing configurations with one-, two-, and three-pair

TABLE I. Summary of WAN isolated clusters: one- and
two-pair con6gurations.

Con5luraf ion Notation
Density

(ppm)

do-o i
d o-o L ~z4

35 714

41 666

10417

31 250

need not explicitly include the carrier density. Let V~
and Vz be the total nonoverlapping volumes of spheres of
influence of valence A and 8 (electrons and holes), re-
spectively. Then the probability of a cluster is

P„„„„=exp(—V„—V ) .
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clusters in one dimension. The number of pairs, the
configuration, notation, snd density for each NAN
con6guration are listed. Each configuration consists of a
placement of the pairs in the one-dimensional space in a
particular order. The symbols in the schematic
con5guration diagrams indicate the carrier type: open
and filled symbols indicate the two vslences, and the
square symbols indicate the central carrier pair. The
lines indicate the NAN pairing. The notation is chosen
in arbitrary order. The density represents the number of
carriers expected to be paired in the manner of the cen-
tral carrier in each con6guration. Certain symmetries
have been used to simplify the problem. Reflection sym-
metry has been used to reduce the number of pairing
configurations by a factor of 2. Charge inversion symme-
try, where the valences of the carriers are inverted,
reduces the problem by nearly another factor of 2 (some
of the conflgurations map onto themselves under charge
inversion followed by reflection).

A computer program was written in a symbolic manip-
ulation language to perform the large number of relative-
ly simple but recursively defined integrations required.
The calculation of the contribution of a particular
configuration is performed by finding the nonoverlapping
volumes of the spheres of influence of each valence as a
function of the position of the carriers, and integrating
the exponentials of the volumes over the allowed posi-
tions of the carriers. The integration region for each
configuration is bounded by the requirements that the
carriers indeed pair ss the configuration dictates, that at
least one carrier of each carrier pair except the central
one be inside a sphere of influence of another carrier pair,
and that the carriers recombine in such an order that the
central carrier pair recombines last. For this one-
dimensional problem, these requirements can be ex-
pressed as a set of linear inequalities bounding the region
of integration. These inequalities were incorporated into
the integrand by converting them into Heaviside step
functions

0, x~0
H( )='l (23)

In addition to the step functions expressing the limits of
integration, the expressions for the nonoverlapping
volumes of the spheres of influence also contain step
functions. The integral was then performed using the re-
lation (assuming a (b)

Pairs Con5guration Notation
Density

(ppm)

1620

1424

6 e-o e-o I
6 e-o o-e k

~de-ol
tI d o-e 1 si

hde-olsi
6 o-e 1 o-e

o-ad ~ J
6 ~ III ~
o-a 4 e-o d

3 4 o-e d si

6 e-o k o-e

6 e-o 1 e-o

o-a 4 o-e d

5 I e-o d ii

(b o-e o-e J

366

1880

206

1953

10290

620

12442

1158

3430

2396

5766

386

3412

3472

1302

TABLE II. Summary of WAN isolated clusters: three-pair
con 6gurations.

r

b
H(CO+C2X2 +C3X$+ . ) g dX, if C, =0

0H(c +0ci+x icy+xp3 c$+x)g dxi H( ) J b
d H( )H(b ) J b

a xo

where xo is the root of the equation co+e&xo+c2xz+c3x3+ =0, and g can be a function of all of the x's. Bemuse
this procedure nearly doubles the number of integrals for each inequality so resolved, a powerful automated procedure
for performing the integrsls wss developed.

This integration procedure was applied to all possible configurations involving two- and three-pair clusters. The
two-pair cluster in one dixnension gives the result

p ( ) ( 4x +4x 3) —x+ ge —14x/3+ —bx+ &
—sx

3 5 S
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The three-pair cluster in one dimension gives

P (x) (
4 x4+ 8x3+2x2 6x + 1o)e —4x+( 22x2+ 168x 1623 )e

—14x/3+ 625e —24x/5+ 729e —44x/9
15 3 63 15 25 1000 216 272

—5x 3125 —26x/5~ 1917 —16x/3+( 4 2+ 1o + 34 )
—6x+ io33 —20x/3~ 225 792 ~ 1400 3" 3" 27 4400

+( 2 2+ 124 1
)

—sx+ 1881 —26x/3+ 83 —10x+ 7 —12x
5 225 500 11 900 1050 900

(26)

%'hen these expressions are combined with the result for
P, , (x), the power-series expansion for PN„N, becomes,
exact to fifth order in x,

PNAN i(X)=2—8X + &
X —+X + 45 X

calculation of the first truly NAN term can be found ex-
actly~ %'h11e the two-dlmensiona1 case reduces to a single
integral which must be done numerically. The power
series resulting from this calculation are

102592~ 5+
675

This is equivalent to

QNAN 1(X) 1 2X +4X X + X

(27)
QNAN 2(x)= 1 —77x +5r x —(0.409 936 74)il' x +

g9)
QNAN 3(x )= 1 —T7Tx + —,7T x —8» 5r x +2 6 7S0S 3 9

Both of these series disagree with previous analytic ap-
proximations to the NAN distribution. '

3952~ 5+ 51296~ 6
225 2025

(28) III. PROPOSED EXACT SUM

The carriers contained in clusters of up to three carrier
pairs correspond to about 68% of the total carrier densi-

ty. These carriers have an average recombination dis-
tance of about 40% of the inverse density, and therefore
reflect the behavior of the early stages of recombination.
A more detailed analysis of the calculations performed to
arrive at these results shows that with only a little more
work, one may account for a larger fraction of the car-
riers (74%). This method, however, does not give more
terms in the expansion for QNAN, (x), and will not be
presented here.

Including the two- and three-pair clusters is important
in the NAN calculation, because the one-pair cluster
alone is not indicative of NAN behavior. Indeed, the
zeroth-order term in the expansion of QN„N, (x), the x
term, shows only the normalization of the distribution.
The first-order term gives the contribution of the neigh-
bors, or the linear density effect. The second-order term
reflects the nearest-neighbor nature of the NAN scheme.
It is only in the third-order term in QNAN, (x), the x
term, that the NAN competition starts to take efFect.
This first truly NAN term disagrees with both of the
Dunstan ansatz solutions.

The higher order terms disagree progressively more
with the Dunstan ansatz for Q(x). The result of this
disagreement is that the distributions are similar only for
small x, and diverge increasingly for larger x. This be-
havior is exactly that seen in previous Monte Carlo re-
sults. '

In two and three dimensions, the expansion method
fails to provide exact results because the integrals are in-
tractable, and ordering schemes such as used for the one-
dimensional case do not. apply. One may recover some
information, however, by calculating only the first term
in the expansion for the two-pair clusters. In this case,
the exponentials given in Eq. (20) may be replaced by
their zeroth-order expansion, namely unity. This
simpli6es the calculation to the derivation of the volume
of the 2n-dimensional volume available for the two-pair
NAN clusters. With this method, the three-dimensional

= —2I11(4x) . (31)

Solution of the resulting differential equation gives

Q(x) =exp[ —2xI, (4X)] . (32)

This relation is shown in Fig. 2 as a solid curve. This ex-
pression has by construction the correct power series ex-
pansion to the number of terms given in Eq. (28), and has
the asymptotic dependence

g(x)--'e-'"x-'" .
2

The power-law asymptotic dependence matches exactly
the result of Monte Carlo calculations in both exponent
and prefactor, indicating that the proposed power series
may in fact be the correct one. Indeed, stringent lower
bounds to higher-order terms in the power series for
QNAN 1, produced by partial sums of the four-pair clus-
ters, correspond nearly exactly to the higher terms in the
expansion of Eq. (32). It is interesting to compare the
differential equation. implied by this method to the one
used by Dunstan. A simple attempt to generalize this

Because so many terms in the expansion of QN„N, are
available, it is tempting to look for a pattern and a sum of
the series. We assert that we have found a simple pattern
which can be summed exactly, and which provides an
asymptotic solution predicted by previous Monte Carlo
calculations. If one takes the logarithmic derivative of
the partial power series given in Eq. (28), the result is

d lng 16 2 16 3 64 ~ 128

dx
= —2+4x ——x +—x ——x +—x—

3 3 15 45

(30)

This series matches the simple pattern, which, when ex-
trapolated to in6nite terms, gives

d lng ~
( 1)k+122k+1 x"= (e "—1)

dx „0 (k +1)! 2x
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solution to higher dimensions, by replacing 2x~U„x,
following the hypothesis of Searle and Bishop for the
asymptotic dependence, fails here to reproduce the
known low-order terms in the NAN power series given in
Eq. (29).

For n =0 this simpli6es to

Io(8)=—(1—e ),1 0

8

and for n = 1 it becomes

I, (8)= —[lnH+y+E, (8)],1

8

(AS)

(A6)

The recombination distance distribution in the
distant-pair model has been investigated. The distant-
pair model has proven to be a remarkably dificult model
to solve analytically. The solutions given in the literature
are shown to be based on inaccurate approximations. An
analytic method for the derivation of the power series for
the nearest-available-neighbor distribution has proven
successful in the one-dimensional case, and has provided
some results in two and three dimensions. A proposed
exact sum of the one-dimensional power series gives ex-
cellent agreement with previous Monte Carlo results. All
of the results demonstrate that previous analytic methods
underestimate the mean recombination distance and
hence the number of metastable carriers in the distant-
pair model.
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APPKNMX' DECAY FUNCTIONS

M„(8) can eventually be written as

8k on —k!
where the coeScients I'k are given by

I (1—P)= g I"kP"
k=0

and can be calculated from the recursion relations"

(A 10)

(A 1 1)

1. The decl, y function I„(8)

The decay function I„(8)introduced in the calculation
of the distant-pair decay is given as

I„(8)=J z"e 'exp( —He '}dz . (A 1)
0

Onsager and Stewart' have given some properties of
K{8)=——,'HIi(8). In this appendix„we present the gen-
eralization of their results to arbitrary dimension n, and
give some further properties of I„(8) and of the incom-
plete decay integral I„(H,z).

The differential and integral properties of I„(8) are
easily deduced from its defjInition using integration by
parts.

Io——1,
I)——y,

k

k+ i g Sm + 1~k —m+ m=0

Si =f
s =g(m) when m )1,

where g(m ) is the Riemann zeta function.
For N„(8) one obtains

(A12)

(A13)

(A14)

(A1S)

(A16)

oo b„
N 8= ' —1"+' fl, tel

0 8(8+1)(8+2} . (8+m)

I„(8)=8 '[nI„,(8)—I„(8)] (n )0), (A2)
where the b„are all integers and are defined by

(A17)

I I„(8')dH'=HI„+, (8)/(n +1) . {A3)

ce
( 8)k —i

I„(8)=n!g k k e

By expanding the exponential in the integrand in Eq.
(Al), an infinite series for I„(8)valid for small 8 may be
written:

tel PPf

nba, m= & k bn ikbim k, , -
k=o

bi, m+1 g um, k
k=0

b)O ——0,

(A18)

(A19}
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a~, l =~am —i, k
—«m —],k —] ~

Qo o 1

a k
——0 when m ~0or k ~0.

(A22)

(A23}

I„(o)= ' f [nz" '+(m —1)z]
CT P1 0

X e' "(1+o e') ™dz, (A30)

A table of the integers b„ for n = 1, 2„3, and 4 and n,
up to 15 is given in Table III.

The Laplace transform properties of I„(8)may be cal-
culated simply. %'e have

I„(o)=XII„(8)I= f e I„(8)d8 . (A24)

Using the definition of I„(8) and performing the 8 in-

tegration, this becomes

I„(cr)= f dz =n! g ( —1)"+'
a o-e'+1, , k" +'g'

(A25)

The inverse Laplace transformation of I„(8) may be
directly deduced from Eq. (A 1) by using the substitution

—zCO=e

I„o(cr ) =I„(cr),
I (cr ) =(m —1)![cr —(1+cr)™],
Ioo(o )=ln(1+o. ) .

(A32)

(A33)

(A34)

2. The incomylete decay function I„(8,s)

which gives the recurrence relation

I„(cr) =o'[.nI„, , (cr )+ (m —1)I„ i(o ) ]

(A31)

The recurrence terminates when n =0 or m =0. For
these cases, we get

II„(8)=f ln" —e "dco,
0 N

(A26)

To calculate the recombination distance distribution in
certain models, it is useful to de6ne an incomplete decay
function analogous to the incomplete gamma function.
Let

whereupon

ln"(1/co) when Ogcog 1

0 when ~~1,

I„(8,z)= f x "e "exp( —8e ")dx
z

(A27) be the incomplete decay function. Then

(A35)

(A28)

by inspection.
%e also require the generalized Laplace transform

I„(o) = f "
e ' 8 I„(8)d8 .

This function has the differential property

I„(8,0)=I„(8) . (A36}

The differential and integral properties of I„(8,z) are

I„(8,z) =—[nI„ i(8,z) I„(8,z)]-a

I„(o)= I„+,(o ) .— (A29)
+z "e 'exp( —8e '}, (A37)

After some integration, the expression for I„becomes I„(8,z) = —z "e 'exp( —8e '),
c}z " (A38)

TABLE III. Coef5cients b„ in the expansion of N„(8).

1

2
3

5

6
7
8

9
10
11
12
13
14
15

1

0
I

8
26

194
1142
9736

81384
823 392

8 738016
104 336 880

1 328 270 880
18419 317968

0
1

0

5

S8
217

2035
13470

134 164
1 243 770

14 129410
164 244 808

2 151 576620
29 671 566 836

0
0
1

0
10
15

238
1008

11 611
85 410

983 059
10021 671

127 015018
1 607 649 134

23 003 592 532

0
0
0
1

0
20
35

728
3444

47 815
387 090

5 099 204
S6 743 687

797 684160
10934 343 875
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I I„(8',z)18'=
0

8 I„+,(8,z)n+I "+'
&n+1

[1—exp( —8e ')] .n+ j.

n n
I„(8,z)=M„(8)+e ' g k z"X„k(8e '),

k=o . .
(A41)

Alternatively one may set u =8e "in Eq. (A35) so that

ao
( 8)k —1

I„(8,z)= g I (n+l, kz) .
k "k! (A40)

For small 8 one may expand the exponential in Eq. (A35)
to get where M„(8) and N„(8) are defined as before. An

equivalent expression could also be obtained from Eq.
(A35) using the definition of the incomplete gamma func-
tion.
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