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Self-consistent weighted-density approximation for the electron gas.
I. Bulk properties
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The weighted-density approximation provides a direct link between the electron-electron pair
distribution function and the response function of a homogeneous electron gas. Here we propose
to use this relation as a closure for the fluctuation-dissipation equations to obtain in a closed form
all the bulk properties of the system. The results are compared with previous theories and com-
puter simulations.

I. INTRODUCTION

In the density functional formalism (DFF} of Hohen-
berg„Kohn, and Sham, ' all ground-state properties of a
paramagnetic electron gas, in the presence of an external
potential V,„,(r), can be expressed as functionals of the
electron density n(r). The total energy is usually writ-
ten as

E[n (r)]=fdr V,„,(r}n(r)+To[n(r)]
I

+ ,' ff—,dr dr'+Exc[n (r)], (1.1)

where To[n (r)] is, by definition, the kinetic energy of a
system of noninteracting electrons. The third term in
(1.1) is the Hartree energy due to the electron-electron
interaction in a mean-6eld approximation, which
neglects any electron-electron correlation. The last
term, Exc[n (r }],is defined as the difFerence between the
exact E[n(r)] and the first three terms in Eq. (1.1).
Atomic units nt, =e =R= 1, are used throughout this
work. The theorem proved by Hohenberg and Kohn'
establishes that, for a given external potential, the
ground-state density of electrons n (r) minimizes
E [n (r)] and this miniinum value is the ground-state en-
ergy Eo. Thus one can reduce the many-body problem
of N interacting electrons to a variational principle

5E [n (r)]
5n (r)

nxc(r, r'}
Exc[n (r)]=—,

' fdr n (r)fdr'

where the exchange-correlation hole nxc is defined as

(1.3)

for the total density of particles. The problem in DFF is
our ignorance of the explicit form of Exc[n] as a func-
tion of n(r). The construction of approximations for
Exc is a topic of central importance in the application
of OFF to inhomogeneous electron systems. A con-
venient starting point is provided by the exact expres-
sion

nxc(r, r')=n(r') f [g„(,i(r, r', y) —1)dy
0

n(r—')6 (r, r') (1.4)

This exchange-correlation hole verifies (1.5) because the
sum rule is satisfied by the homogeneous system
g (r, n, y }. Usually the LDA is written as

Exc[n(r)]= fdrn(r)exc(n(r)), (1.7)

where

, nxc(r, r')
exc(n(r))=-,' fdr'

ir —r'i

is the exchange-correlation (XC) energy per electron in a
homogeneous system of density n (r). In fact, the LDA
does not need explicit knowledge of the pair distribution
function. exc(n) is the only information required and in
practice it is obtained w ithout reference to Eqs.
(1.3)—(1.6). This crude approximation has been applied
to many systems and the results have been more accu-
rate than there was any reason to expect. In the last

and must obey the charge conservation rule

fdrnxc(r, r')= —1 .

In Eq. (1.4) g„~,i(r, r', y} is the pair correlation function
of a system with density n (r}and pair interaction poten-
tial y/i r r'

i
.—The density n(r) is evaluated for the

physical value y=1. For homogeneous systems, n(r)
=n, the function g„~,i(r, r', y) =g(

i
r —r' i,n, y) may be

obtained from difFerent theoretical approaches and com-
puter simulations, but very little is known about it for
inhomogeneous systems. It is then necessary to make
some approximations in Eq. (1.3) before it can be used.
The first attempt, and the most usual, is the so-called
local-density approximation (LDA), which uses at each
point the pair correlation function of a homogeneous
electron liquid with density n (r):

ng(r, r')=n(r) f dy[g( i
r —r' i, n(r), y) —1] .

0

(1.6)
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years several nonlocal approximations to the XC energy
functional have been developed in attempts to find a
justi6cation for the I.DA and to improve it. The 5rst at-
tempt was based on the expansion of Exc[n(r)] in
powers of the gradient of n(r) up to second order. 4

Later on, Langreth and Perdew ' developed the nonlo-
cal wave-vector analysis which involves a decomposition
of the surface XC energy oxc in contributions oxc(k)
from density fluctuations of wave vector k. Langreth
and Mehl' have constructed a modi5ed gradient expan-
sion based on the wave-vector analysis.

Gunnarsson et a/. have developed two nonlocal
schemes based on Eq. (1.3},where nxc depends on some
average of the surrounding electron density, instead of
the local density as in the LDA. The average density
approximation (ADA) replaces the prefactor n (r') in
(1.4) by an averaged density n(r) at which the pair
correlation function is also evaluated:

1
ii~xcD" (r r')=@r) f, dy[g( Ir —r'

I
@r»y)—1]

(1.9)

with

n(r)= fdr'w(
~

r —1"~;e(r')}n(r'),

where w(r, n) is a weight function to be determined. In
the ADA the XC energy functional becomes

5E [n]
5n (r)5n (r')

=Eo(r,r')+, + Uxc(r, r'),

where Eo and Uxc are, respectively, the second func-
tional derivatives of To[n(r)] and Exc[n(r)]. In a
homogeneous system the Fourier transform of
Uxc(

~

r —r
( ) i.s

4m
Uxc(q &)=—,Gxc(q &) * (1.13)

Exc[n(r)]= fn(r)e xc(n(r) }dr .

The ADA also satisfies the charge conservation rule
(1.5) by construction, and it does not require knowledge
of g(r, n, y}, since exc(n) may be obtained independently
of Eq. (1.9). The weight function, w(r, n), is chosen to
recover the hmit of the weakly inhomogeneous electron
liquid or, which is equivalent, the response function of
the system given by the second functional derivative of
the total energy E [n (r}]

proaches used to evaluate Gxc(q, n). This leads to an
uncertainty in the evaluation of surface properties within
this scheme.

The second theory of Gunnarsson et a/. is the
weighted-density approximation (WDA} which also re-
places the pair correlation function in (1.4) for that of a
homogeneous electron gas, the main di8'erence with the
ADA being that it keeps the proper density prefactor in
(1.4):

1
nxwco(r, r')=n(r') dy[g(

~
r —r' ~, n(r), y) 1]—.

0

(1.14)

This implies a new procedure to determine the average
density n(r) so that (1.14) verifies the sum rule (1.5).
Thus the only input required by the WDA is the pair
distribution function of the homogeneous electron gas,
integrated over the coupling parameter and as a function
of the density. The first calculation with the WDA (Ref.
3) used the random-phase approximation (RPA) g(r,
n, y ). Afterwards, a simple parametrized expression was
introduced by Gunnarsson and Jones, ' in an attempt to
reproduce the image potential outside a metal surface.
Unfortunately, this very simple empirical form has been
extensively used by other authors, ' ' without a
thoughtful study of the efFects of this choice on the eval-
uated properties. We have found that the results for the
surface energy are strongly biased by the choice of
g(r, n, y ) and, moreover, the position of the image plane
given by the WDA with this prescription is unphysical.

On the other hand, from the input of the pair distribu-
tion function, the WDA gives a prescription for the XC
energy and the response function of the system. Thus
contrary to other density-functional models, like LDA
and ADA, it provides a nontrivial link between bulk
properties like the structure factor, S(q, n), and
Gxc(q, n). What we propose here is to use this WDA
relationship, together with the fluctuation-dissipation
theorem, to obtain a self-consistent evaluation of all the
bulk properties of the electron liquid. The result, which
we caB the "self-consistent weighted-density approxima-
tion" (SC-WDA), is the first density functional model for
Exc[n (r )] which does not require any external input
from independent theories for the bulk properties. The
work is presented in two articles. This first one develops
the self-consistency scheme to obtain the bulk properties
of the electron liquid within the SC-WDA. These are
compared with the existent results for exc(n), g(r, n, y),
and Gxc(q, n), from both other theories and computer
simulations. In the second paper of the series we apply
the SC-WDA to the study of metal surfaces, within the
jellium model, and compare them with the previous re-
sults.

where Gxc(q, n) is the so-called static local-6eld correc-
tion to the dielectric function and describes the contribu-
tion of Exc[n(r)] to the response function of the sys-
tem. To use the ADA we need to know exc(n) and
Gxc(q, n) for a homogeneous system. Unfortunately
there are large discrepancies between the several ap-

II. THEORY: SC-VVDA

The second functional derivative of Exc[n (r)] evalu-
ated at a homogeneous system with density n (r)=n is
easily obtained from (1.3) and (1.14):
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&Exc[n]
5n (r)5n (r') „(,)

I

—n'6( ir —r')), n) fdr,
fr —r'f '

dn

6(ri, n)

6( ~r —r, ),n)—n'fdr, 6(
~

r' —r, ~, n)
dn fr —ri[

+Y~n
2 f dry

dn 2

6(ri, n) fdr, G(
~

r —r, [,n)6(
~
r, —r' ~, n)r

6(r2, n)
+—,'n dr2 ni dr, G(

(
r —r, ),n)6( [r,—r' ),n)

dn ri dn

where 6 (r, n) is defined from (1.4) for bulk systems. By taking the Fourier transform of (2.1) we get

(2.1)

exc{n}
Uxc{q,n) =S'(q, n) —2n

dn n

dF(q, n) i d exc(n)
nG(q, n) —n

' nG(q, n)+n i [nG(q, n)]
n dn

exc{n)
+2n

dn n
nG(q, n)n [nG(q, n)],d

(2.2)

and

6(q, n)= fdr e''i'6(r, n)

F(q, n)= fdre'&'; ., 6(r, n}
r

6{r,n, y }=—f d f{g(r,n, g) 1), '—
0

(2.6)

and we assume that this function has the scaled form

6(r, n, y) to describe the correlation in a system with
density n and coupling parameter y:

1+u (q)Gxc(q, n)Xo(q, ~)
e(q, a)) 1 —u(q)[l —Gxc(q, n)Po(q, co)

(2.4)

where Xo(q, co ) is the Lindhard polarizability and
u (q) =4m/q is the Fou. rier-transformed Coulomb poten-
tial.

According to the 6uctuation-dissipation theorem,
S (q, n) can be calculated from e(q, co) as

S(q, n)= — f dcolm
mnu(q) o e(q, co)

(2.5)

Thus, the three equations (2.4), (2.5), and (2.2) link the
three functions S(q, n}Gxc(q, n), S(q, n), and e(q, su), and
can be solved self-consistently on the computer. The
main diSculty in order to close the procedure is the in-
tegration over the coupling constant y in Eq. (2.3). Here
we will simplify the calculation by means of a scaling ap-
proximation. %e start by defining the function

Equation (2.2) relates the static local-field correction
Gxc(q, n) to 6(q, n) which is the integral over the cou-
pling constant of the static structure factor S(q, n, y ):

G(q, n)= f dy[S(q, n, y) —1] . (2.3)
0

Following Singwi et al. ,
' a combination of this equa-

tion with the Quctuation-dissipation theorem leads to a
self-consistent formulation which may be solved numeri-
cally by an iterative method. This procedure starts in
the generalized RPA expression for the dielectric func-
tion and approximates the XC contribution by the static
Gxc{q n):

r2kF(n)
6(r, n, y )=C(r„y)6

A, rsvp
(2.7)

(r„y),
exc{r,.}')=r2C{;} }

4k'(r, )

where

(2.9)

and

—1/Az ——fdy C{y) .

It is known' that the XC energy of a system with

with the usual definition of the Fermi wave vector kF.
Thus the single variable function 6(y) gives the shape of
6 (r, n, y ) and the functions C (r„y) and s{(r„y) d, efine
the scales as functions of the density [n =3/(4nr, )] and
the coupling y. This kind of scaled form of 6(r, n, y)
has been previously used in %DA and it seems to be in
fair agreement with the existing results for g(r, n, y) (at
y= 1) in the metallic range of r, 'The .dependence of
the functions C (r„y ) and A,(r„y ) may be simplified by
the use of the normalization condition (1.5) and the eval-
uation of the XC energy per particle in a homogeneous
system from (1.3) at each value of n and y. That gives

A,(r„y )
nC(r„y )

&
——Az, (2.8)

[2kF(r, )]

and
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coupling constant y is exactly y times the XC energy of
a system with the full Coulomb interaction (y = 1), but a
different density (r,'=yr, ):

g(r, n) 1—=G(r, n)[1 —38 (r, )]—R(r, )C(r, )y
dC(y)

e (r„y)=y e (yr„y= 1) . (2.10) (2.13)

This may be compared with (2.9) to obtain
'

]. /3
I

A(r„y ) = =A(yr, ),
4 A

&
r, ezc(y r„y = 1 )

where

r, dA(r, )

A(r, ) dr,

(2.11
The Fourier transform of (2.13) is equal to

where from here onwards we omit the dependence on y
for y=1.

It is now easy to obtain a relation between G(r, n, y)
and g (r, n, y ). For this, we differentiate (2.6) with
respect to y

g (r, n) 1= —(yG (r, n, y ))
dy

dC(yr, }
=G(r, n)+

dy

S(q, n) —1=24m Az G(r/)+R (r, )r/
2 dG(g)

where

C(r/)= fdy6(y)e'"'"

qA, (r, )

2k'(r, )

(2.14)

dA, (yr, )—C(r, )
dy A(r, ) dy

(2.12)

where y =r2kF/A, (r, ). Making use of the relations
(2.12) and Q. l 1) we obtain

Equation (2.13) gives the relation, within the scaled
theory, between the integrated exchange and correlation
hole G(r, n) and the real exchange and correlation hole
at each density and coupling constant y= l. %ith this
relation we may close the self-consistent procedure.
Equation (2.2) is now written in a very simple form

Uxc(q, n)=2pA, P(r/) —2p'A2C(7J) —2A]A~ p'P(r/) —p 1+ r/P'(r/) C(r/)

+ A ~@"6(r/)~ —2A 22p' 1+ 6(g)r/6 '(r/), (2.15)

where

&xc("), dp „dpp=, , p =tl, p
n dn

and

P(r/)= Jdy C(y)/y e'"'" .

The set of equations (2.4), (2.5), (2.14), and (2.15) may be
solved numerically by an iterative method and wi11 pro-
duce all physical magnitudes for a homogeneous electron
gas. Before making the self-consistent determination it
is necessary to point out that the scaling hypothesis (2.7)
gives some problems. The 5rst is in the limit q~ ~ of
[q (1—S(q, n))], which from Eq. (2.13) is written as

while Eq. (2.19) gives

lim U„c(q,n)= lim 2pA]P(r/)

= lim v(q)C(r, )G(y =0) .

Substituting this value in (2.4) and integrating with
respect to co (2.5}, we obtain a different limit for the
structure factor form S(q, n),

8kF
lim q (1 S(q, n))—= [1 C(r, )6—(y =0)] . (2.17)

q —+ oo 3'fT

Both Eqs. (2.17) and (2.18) can be equal only if the con-
dition

lim q (1—S(q, n)) 2k~
[1—4R (r, )]= =const

/1,(r, )
'

G '(& =0)
(2.18}

(2.16)

is satisfied. The second problem comes for q~0. It is
known that in this limit the static structure factor is ful-
ly determined by the plasmon frequency mz.
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FIG. 1. Comparison between the exact frequency of the
plasmon (2.19) (solid line) and that obtained using (2.20) (solid
circles). The units are 10' Hz.

(2.19)

In our theory it is very easy to show, from {2.14), that
this limit is equal to

k(r, )
lim S(q, n)=12m A2G "(rl=0) [1+2R (r, )]q
q o

'
2k~

(2.20)

so that both equations will have the same dependence
with respect to r, only if

'2

r, [1+2R (r, }]=const .
A,(r, )

(2.21)

Equations (2.18) and (2.21) impose constraints on
ex&(r, ), through R {r,) and A,(r, ), so that each one could
in principle be satisfied separately, but not both of them
together. In fact, realistic descriptions of exc do not
satisfy either of them. This indicates that our present
results are not fully consistent. However, despite the
diFerent dependence of the plasmon frequency on r,
given by (2.20), the numerical values obtained in the me-
tallic density range are close enough to the exact results
(see Fig. 1), so that the inconsistency associated to the
scaling approximation (2.7) is not very important in
practice.

IH. NUMERICAL RESULTS

In this section we present the results of the self-
consistent evaluation of the pair correlation function
g(r, n), the correlation energies„and Gxc(q, ri) in the me-
tallic density range. %e have solved the integro-dif-
ferential equation (2.15} in an approximative way by

(3.2)

means of parametrized trial functions for C(y}:
2 3 2

6(y) =e r g c,y'+e ~ g d,y' (3.1)
i =0 i=0

[co=1 is fixed so as not to be redundant with the scaling
form {2.7)] and the XC energy

ex&(r, )=e„(r,)+e, (r, )

0.916 Ry e&
+

rs 1+e2r, +e3P$ /2

which is used to determine A, in (2.11). The form (3.1) is
taken to have exponential decay as y~ao, and to be
analytical everywhere, so that the structure factor
S(q, n) has a well-behaved limit at q-+0 which is essen-
tial to reproduce the plasmon behavior. [Notice that
this is not achieved with the empirical G(r, n) fixed to
obtain the image potential. ' ] We start the iteration
scheme with the parameters fixed by the best fit to the
Hartree-Fock structure factor, SH„(q,n), with limited
accuracy because of the qualitative differences between
SHi:(q, n) and our parametrized form. From the fit to
S(q, n) we obtain the analytical expression for Gxc(q, n)
given by the WDA (2.15) and this is used in the numeri-
cal integration over ei (2.5) to obtain the new structure
factor. A new set of parameters is now fixed to fit the
new S(q, n), taking special care of the decay at large q.
The new parameters are used to obtain again Gxc(q)
and the procedure is repeated until convergence is
achieved apd the relative change of the parameters is
less than 0.001. The parametrized forms (3.1) and (3.2)
provide a fairly good agreement between the final S(q)
coming from the numerical integration on co and its best
fit. We must point out here the importance of a careful
fit at each step of the iteration which may sometimes be
diScult to achieve due to the large number of parame-
ters used. As we have said before, our scaling hy-
pothesis (2.7} is not fully consistent with the result of the
integration (2.5), so that the set of parameters resulting
from the iteration scheme would depend slightly on the
value of r, at which it is performed. %e have done a
global 6t to several values of r, within the metallic densi-
ty range, from r, =1 to 6. In Table I we give the values
obtained for the parameters.

In Fig. 2 we show the results obtained for the correla-
tion energy compared with the Monte Carlo simulation
of Ceperley and Alder, ' the variational Fermi hypernet-
ted chain (FHN) theory of Lantto, ' and also with the
results of Singwi et aI. ' ' Our results are very close to
the Ceperley-Alder simulation data' and are indistin-
guishable from the original result of Singwi et al. ,

'

with a theory which does not verify the compressibility
sum rule. The modi6cation by Vashista and Singwi' to
approximate this sum rule 1eads to a slightly worse
e,C(r, ) which is also shown in Fig. 2.

TABLE I. Values of the parameters used in Eqs. (3.1) and (3.2) for the best fit of G(y) and e,C (r, ).
The parameter e& is given in Ry and the others are dimensionless.

CI Cp C3 do e3

—0.61040 0.323 23 —0.349 36 3.442 90 0.256 90 0.121 33 5.1368 —0.477 01 2.31320 0.471 90
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FIG. 2. Correlation energy e,(r, ) (Ry) vs r, . The solid
curve represents the values obtained in the present theory.
The dashed curve refers to Vashista and Sinai (Ref. 19). The
solid circles are the simulation results of Ceperley and Alder
(Ref. 18), and the crosses the variational calculation of L~ntto
(Ref. 16).

In Fig. 3 we compare the radial distribution function
we obtain with the results of Lantto, 's for r, =3 and 5.
The SC-WDA gives very good global agreement in all
the metallic range and only for large r, (greater than 5}g
(r =O, n }may become slightly negative as a remanent of
the problems with the scaled form (2.7). Nevertheless,
the results obtained in the proposed self-consistent pro-
cedure are as good as any previous theory.

In Fig. 4 we compare the function Gzz(q)/q for

r, =4 obtained with dilerent theories There are two
significant points in our result: the curvature at q=O is
small but positive and it has a rather sharp drop around

q =2k~. Both results are in agreement with that ob-
tained by Geldart-Taylor~ with a diagrammatic pertur-
bation theory, and by Toigo and Woodruf2' with a
theory based on the equation of motion for Green's func-

1,0

q/kF

FIG. 4. The function G„,(q)/q vs q/kz for r, =4, for the
present theory {SC),and the results of Geldart and Taylor (GT)
(Ref. 20), Vashista and Sinai (VS) (Ref. 19), Utsumi and

Ichimaru (UI) (Ref. 22), and Toigo and %oodruN' (T%) {Ref.
21).

tions and involving decoupling approximations guided
by the conservation of the momentum. Our result is in
contrast with that obtained by Singwi et al. ' using a
self-consistent procedure similar to ours Acle. ar advan-

tage of the SC-WDA as a theory for bulk properties is
that it satisfies by construction the compressibility sum

rule, which is not achieved by Singwi et al. ' and only
approximately by Vashista and Singwi. ' Utsumi and
Ichimaru have also developed a self-consistent theory
but they spht Gz&(q, n) into an exchange part G„(q,n),
which is Sxed to satisfy several limits, and the remainder

G,(q, n) for which the self-consistency is done. Our ex-

perience is that the self-consistency procedure is quite
"soft" in the sense that the initial functions used may
partially control some aspects of the final results. In the
case of Utsunu and Ichimaru the final Gzz(q, n) seem to
be very close to the function G„(q,n) fixed ad Iioc, while

the SC-WDA does not require any external input at all.

IV. CONCLUSIONS

00

0
2

FIG. 3. Pair-correlation function g(r, n) vs kyar for r, =3
and 5. Dashed curve, present theory; solid curve, variational
calculation of I.antto (Ref. 16). The dotted curve represents
the function G(r, n)+ 1, i.e., the pair-correlation function in-

tegrated over the coupling constant.

The VVDA originally proposed by Gunnarsson et al.
as a density functional model for the exchange and
correlation energy of inhomogeneous electron systems,
provides a direct link between electron-electron correla-
tion function, the XC energy per electron, and the
response function of a homogeneous system. Here we

propose to use these relationships as a closure for the
ft.uctuation-dissipation equations which connect the
structure factor, S(q, n), and the static local field correc-
tion to the RPA, G„,(q, n), so that all the bulk properties
of the electron liquid may be obtained in a self-consistent
way without any external input. This is equivalent to
the method of Singe&i et al. ' but the closure they used,
based on the equation of motion for the screening
charge, is substituted by the density functional relation
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given by the WDA. The main approximation done by
the WDA is the use of a correlation hole with spherical
symmetry even if the system has nonhomogeneous densi-
ty distribution. This may be a serious misrepresentation
for strongly inhomogeneous systems, but it seems to be a
quite sensible approximation in the evaluation of the
response function from a homogeneous bulk. The main
diSculty in the use of this scheme is the need to perform
the integration of the structure factor with respect to the
coupling parameters, which depends on the Coulomb in-
teractions. In this paper we have simpliSed the problem
by means of the scaling relation (2.7), which is not exact
but seems to provide a good starting point.

The results obtained with the SC-WDA implemented
with the scaling relation are quite satisfactory. The
correlation energy per electron, as a function of the den-
sity, is very close to the results of computer simulations
and comparable with the best theories at the present.
Moreover, the compressibility sum rule which relates the
derivatives of axe(n) to the q ~0 limit of Gxc(q)/q, is
exactly satisfied in our theory, which is not the case for
the results of Singwi et al. ' The shape of the XC hole
given by the SC-WDA is also in very good agreement
with the FHN results of I.antto. '

It is more diScult to analyze the results for the XC
contribution to the response function, Uxc(q), because
there are no simulation results for this function, and ear-
lier theories are spread over a wide range. However, it

is worthwhile to point out that, contrary to some previ-
ous self-consistent calculations, ' ' our Uxc(q) has pos-
itive curvature at q =0 and a sharp decay around

q =2k~.
The calculations presented here have been done in an

approximate variational way, with a parametrized trial
function for the XC hole. We believe that the accuracy
obtained with this method is good enough and it has the
practical advantage of making our results very easy to
use. In this respect the theory presented here is the first
selfwonsistent evaluation for the properties of the bulk
electron liquid, with a natural extension to the study of
inhomogeneous systems, for which the use of a
parametrized g(r, n) may be of practical interest. Work
is in progress now to solve the SC-WDA equations
without the scaling relation (2.8). This will remove the
inconsistency (2.17)-(2.21), which nevertheless does not
seem to be very important for the evaluation of the more
relevant properties.
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