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%e consider the propagation of a wave in a quasiperiodic medium whose refractive index exhibits
5-hke peaks of equal amplitudes and which are located on quasiperiodic sites. Two speci5c models
of site distributions are investigated. In the Srst one, we Snd "quasilocalized states" with a very
critical de5nition in energy. In the second model, a particular type of intermittency and a
phenomenon of "noise localization" appear. The properties of the two models are based on the ex-
istence of a slow variable for particular energy values. Experimental applications of the observed
resonances are suggested.

INTRODUCTION

%e study here the propagation of a classical wave
(acoustic or electromagnetic} in a one-dimensional medi-
um whose refractive index v(x) exhibits a set of 5-like
peaks with equal amplitudes and located on quasiperiodic
sites. This problem is mathematically equivalent to solv-

ing a Schrodinger equation where the potential is propor-
tional to v(x). A complementary class of problems has
already been investigated, namely those in which the po-
tential peaks are regularly spaced with quasiperiodic am-
plitudes (an extensive review is to be found in Sokoloff's
paper').

We show that interesting things happen, noticeably lo-
calization, when the phase shifts experienced by the wave
in successive interpeaks intervals can be characterized by
a slow variable; and this situation occurs at definite
values of the energy (or wave frequency).

Our method will consist of studying the dynamics of
the phase shift between forward and backward waves.
We are thus led to iterate a non autonomous mapping on
the circle. One of the advantages of this method is that it
permits a simple and clear cut distinction between a lo-
calized and a stop-band state. %e show that localization
takes place in the pass bands, or equivalently is associated
with irrational rotation numbers of the circle map. Actu-
ally our solutions are not I. integrable, and therefore not
localized in the conventional sense. But they contain a
vanishing stored energy by unit length; moreover some of
them exhibit no recurrent behavior. We call these solu-
tions "quasilocalized. "

In the 6rst part of this paper we define the two particu-
lar v(x } fields which will be studied, and we call A and 8
the associated models. Then we derive the above men-
tioned angular mapping, and give some general proper-
ties concerning the eigenvalue problem and the rotation
numbers. Finally we study separately models A and 8,
whose properties are substantially diferent. In model A
localized states are obtained, with one or several peaks
and a very critical definition in energy. In model 8 we

describe a particular type of intermittency, and the phe-
nomena of noise localization and antilocalization.

The models: General yroyerties

We consider a one-dimensional medium whose refrac-
tive index is uniform, except on a countable set of sites
("barriers" ) where identical 5-like variations takes place.
The barriers are distributed almost periodically according
to specific laws which will be given below. Each such
variation can be described (Fig. 1) as the limit of a finite
domain of width a and wave number k, when k/ko~ oo

and kayo, s being finite and arbitrary. The frontier
abcissas x„are distributed almost periodically according
to specific law's which will be given below. Such a field of
refractive indexes reads v(x )=s+„5(x —x„).

Let Y+e'"" and Y e ' be the amplitudes of forward
and backward waves (Fig. 2). Writing the continuity of
the field and its derivative through a barrier imposes a
matricial relation between the 2-vectors Y= I

I'+, F
and Y' on each side of the barrier: Y'= TY, where

r

1+lF +EK
T= —ie, 1 —~c

It can be shown that a transfer matrix of the above form
is also a good approximation for a barrier of finite width
provided k/ko is close to unity and the phase shift
through the barrier is small. Transfer matrices of this
form are also found in the propagation of a surface acous-

FIG. 1. Representation of a barrier.
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FIG. 2. Inward and forward amplitudes around a barrier.

tlc wave on a grooved array.
Let us now define the transfer matrix which relates am-

plitude vectors YJ and Y +, on the left of two successive
barriers (Fig. 3):

We shall write interpeak phase shifts in the form

4J =(E/2g', ,

where gj ——xj+, —xi is the dimensionless length of the jth
1nterval, and E =2ko/ has the meaning of the energy pa-
rameter of the equivalent Schrodinger equation, I being a
characteristic length scale of our propagating medium.
%e shall take I =1 in the following. %e shall now de6ne
the distribution of the xj's (or gj's) in the two models we
have considered.

YJ + ] A J YJ

ip
e

i/)e

AJ
T pg

J
(2)

Let P and Q be two relatively prime numbers. The
model is de6ned by the fact that the positions x of the
barriers are any multiples of P and Q. Equivalently v(x)
is of the form

v{x)= e g 5(x rnP—)+ g 5(x nQ—)
m

P~ =kolj being the phase shift experienced by the wave
along interval l, Let us put

ip. i@.a =e '(1+is),and P =iceJ J (3)

Let us now introduce U = F++F, which is the total
wave's amplitude at the jth frontier. From relation (1)
we deduce the following real recurrence relation obeyed
by UJ.

UJ+~/sing + U &/sing

—[sin(Pi+/, )/(sing sing, —2e]U, =0 . (4)

As could be expected, this relation has the same form as
those obeyed by a solution of a stationary Schrodinger
equation containing a potential V(x)=v(x) (and with
P„=x„—x„,). This relation may be found for instance
in Sokolo8's review paper' [Eq. (32)]. When the 5 peaks
are regularly spaced {x„=na) and e is periodically depen-
dent on n with a period incommensurate with a, the
problem is reducible to the Aubry and Andri model
(linear chain of atoms submitted to the action of an exter-
nal potential whose period is incommensurate with in-
teratomic distance). In our case (e constant and P„quasi-
periodic}, Eq. (4) does not possess the self-duality proper-
ty of corresponding equations in Aubry and Andre or
Ostlund and Pandits models. Therefore we cannot apply
to our problem the argument based on self-duality and on
the use of Thouless exponent —an argument which shows
the existence of a locaHzation transition for a de6nite
value of the model parameters. %'e shall see below that
there is good evidence for thinking that such a transition
does not exist in our model.

J+Q

FIG. 3. Invvard and forward amplitudes on the left of two
successive barriers.

The set of intervals I g ) is periodic with period
M=P+Q —1 if p is rational, aperiodic in the opposite
case. The only aperiodic case considered here will corre-
spond to p=o =(&5—1)/2 (golden mean), and the ra-
tional values ofp will be the set of the successive approxi-
mants of O' F~/F~+„ IF~ ] being the set of Fibonacci
numbers (defined iteratively as F„=F„,+F„2 for
n &3, with F, =1 and F2 ——2). For given N, the spatial
period (in unit length l) is L =PQ and goes to infinity
when p~o.

An important property of this model is that, for p ra-
tional, the barriers (and therefore the intervals) are
symmetrically distributed inside a period around its
center L/2; that is, we have v(x)=v(L —x). Intervals gj
take all integer values in [1,P]. Each interval appears two
times (on symmetrical sites with respect to the period
center), except for interval P, which is found many times
[its average rate of occurrence for large E is approxi-
mately (1 —p)/(1+p)].

Model 8 is defined by

g =(pj)[mod(1)] . (8)

Transfer matrices and angular Inayying

Iterating matrix relation (1} up to j=n, we obtain
Y„=A„YO, where A„=gj.=", A and we call "orbit of
Yo" the set I Y„ I of the successive iterates of Yo. In our
nondissipative model, the conservation of field energy im-

Again p will be either o or FN/F~+, . The set Ig~ ) con-
tains all the multiples of 1/Q; that is, g is of the form
m(j)/Q with integer m(j) verifying 1(m(j) &Q —l. If
p is rational there are M =P +Q —1 intervals g. and the
spatial period is given by L =(Q —1)/2.
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S„=[(1+is)8 „+l6]/( 1 —l e —l elV» ) .

We see that if
I Wo I

=1, then
I So I

=1 and

I S„ I

=
I W„ I

=1 Vn &0. Initial states verifying

I IVO I
=1 will be said to belong to "class IV" and we

shall essentially study them in the following. This may
seem quite restrictive. However, we observe that any
initial-state vector Y can be projected over two indepen-
dent vectors u, , u2 belonging to class 8', and the orbit of
Y is a linear combination of u, and u2 orbits. We shall
have to examine how the properties of a general solution
can be derived from those of class- W'orbits.

An equivalent angular mapping is obtained by consid-
ering the variable

Z — " '(r+/r+ ) (10)

Z„obeys the following recurrence formula:

Z„+,——1+ie+e " (1 i e 1/Z—„)—.
—2i P„

Now putting
V„=Z„—(1+ie),

we see that V+, is related to former W„by
V +&='e/W» Therefore

I IV.
I
=»mphes

I
V

Assuming therefore that

i8„V„=ce (13)

we obtain the following recurrence relation obeyed by 8„:

8„+,=8„—2$„,—2P„,

P„=arctan[s( 1+sine„ ) /( 1+e cose„)] .
(14)

(15)

Relations (14) and (15) have a simple geometrical inter-
pretation, as shown in Fig. 4. The circle (Q, e) is invari-
ant under the transformation, and V„ is the image of
complex number Z„ in a reference frame centered at Q.

poses that A„has the same structure as A„, namely

a„b„
bn ~n

with det(A„)=
I a„ I

—
I b„ I

=1. In the case of a
periodic system (p rational), where the period contains M
iterations of the above application, one may define the
stop bands of the system through the eigenvalues sl 2 of
A~(E, e) which are the roots of the characteristic equa-
tion s —2Re(a )s +1=0. These roots, whose product is
equal to unity, are either real or of the form e*'~
[p=arccos( Re a~)].

The real range of s, (E,e) defines in the (E,s) plane the
set of the stop bands. The eigenvector orbits are nothing
but the two fundamental Floquet solutions of the prob-
lem.

Let us now turn to the angular map. %e put

w„= r„+/r„
2tf

and use recurrence relation (1) to obtain ~„
with

lost =s

FIG. 4. Geometrical interpretation of the angular mapping.

Equations (14) and (15) define an n-dependent, non-
linear mapping on the circle which is equivalent to the
original linear matrix transformation on CC. Relations
(10)-(13) permit one to evaluate r„ in terms of initial
value ro+ and of the set of 8, successive values:

r„+=ro+ g e ' '(1+is+ac '),iP ) . i8.

j=l
(16)

=ID g [1+2ecosej+2e (1+sin8 )] .

An important property of the nonautonomous map-
ping on the circle is that its Jacobian is always different
from zero. Indeed

ae„„/ae„=[(1+ecose„)'+e'(1+slue„) ] +0,
Ve, E,8„.

Therefore transformation 8„~8„+,does not exhibit any
critical point, whatever the E and e values are. This fact
constitutes a strong presumption against the existence of
a localization transition.

Stop bands, v{x)Fourier transform, and rotation numbers

In the limit s~O, the energy spectrum of the stop
bands becomes punctual, and we shall show that it is then
identical to the Fourier-transform of v(x). Indeed, in this
limit, the angular mapping reduces to

8 +, =8) Eg/—
Therefore 8„= Eg~:",g, = —Ex„(taking for —simpli-

city e, =o).
Now a Floquet state in a stop band is associated with a

growth rate I over one period (I'=I„+~/I„) different
from unity. Let us put

(18)

Using relation (17) and the above expression for 8„, I
reads in the limit of small F:

M
I =1+2@g cos(2~pxj/I. ) .

j=l

from which we obtain the expression for the wave intensi-
ty:

I„= I
r+

I

'+
I
r I'=2-I r+

I

'
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This expression is proportional, for integer p, to the real
part of the v(x) Fourier transform. Therefore the stop
bands in the limit c~O are associated to integer values of
p, (E/(2m }E[0,1]). However, some of the Fourier com-
ponents may vanish. In the case of model A, Fourier
components v, have the remarkably simple form
v, =Qg 5, &+Pg 5, i, with p and q integers. There-
fore p=PP and p=qQ are the stop-band energy values
such that (I —1)/s does not vanish in the limit s~O.
For e small but finite, all stop bands give a nonzero
(I —1)/s, while their energy is shifted by an amount pro-
portional to a and they acquire a finite width hp,
{hp,=s ). However, numerical calculations show that the
stop bands whose p, is near PP or qQ have much larger
growth rates than the other ones. We call them "dom-
inant stop bands. " Therefore a remarkable property of
model A is that, for s~O, the set of dominant stop bands
is identical {in p, units) to those of v, . Since the supports
of v(x) and v, are themselves identical, the property can
be stated in the following way: In the limit s~O, the en-
ergy spectrum Ipk I of dominant stop bands is identical
to the set Ixj I of refractive index peaks.

A quantity is invariant inside a stop band, namely the
rotation number W. It will be defined as

W'= lim
~
8„—80~ /(2nn) (for p=cr) .

When p is rational and E belongs to a stop band, any
state vector Fo can be decomposed over the two eigen-
vectors of A~, therefore its orbit can be written as the
sum of two Floquet solutions in the form

Fk~+„—as" F(n)—+bs " 6 (n) (p rational), (20)
0

s and s ' being the Floquet exponents (i.e., the A ei-
genvalues}, F~ and 6 being periodic functions of period
M. Asymptotically {klarge) the second term in the above
expression goes to zero and we get

Zk „e " 'F+(n)/F (n —1),
which is a periodic function of n with period M. There-
fore the asymptotic orbit of any initial point in the angu-
lar mapping is itself periodic and contains M points.
Then 8'may be written as

8'= lim
~ 8„+~—8„( /(2m'M) .

In the limit c,~O, we have seen that
~ 8„+it—8„~ =Zirpxsr /L, where x L. Therefore-—
@'(E,s~0)=p, /M =E/(2m). As was expected, rational
values of W are associated to the stop bands, and two
neighboring stop bands correspond to rotation numbers
differing by 1/M. These properties survive for finite s.

Symmetry, pass bands, and localization

The following considerations have only a qualitative
interest and are given in order to provide a physical intui-
tion of' the phenomena. Roughly speaking, a localized
state is such thai its energy is localized around one or

several peaks inside the system. On the contrary, the en-
ergy of a state in a stop band is essentially concentrated
near one of the boundaries (exponential behavior of the
orbits). In the following (unless difFerently stated), we
shall consider a system" (propagative medium) which
contains one period L of v(x ).

Now an important property of model A is the syrnme-
try of refractive-index field with respect to the period
center L/2. As a consequence, the orbits A, z(x) of the
two eigenvectors in a pass band [associated to imaginary
eigenvalues of Asr(E, s)] have the same norm, which is
symmetric with respect to L /2:

IIAi(»ll = ll&z«) II
= II& « —L}Il

(see Appendix A). Let us call H„, and H„«, respectively,
the entire system and left half-system. Generically, the
stop bands of H„, do not coincide with those of Hi ft.
Therefore the pass bands of H«, and the stop bands of
H&,«generally overlap. For large X some pass bands be-
come vanishingly small (as we shall see), making this
overlapping highly efficient. Figure 5 shows a numerical
example where a narrow pass band of 0„, is immersed
into a large stop band of H),~, .

Let us choose an energy value falling in a pass band of
H to, and in a stop band of H&,& and consider an eigenvec-
tor u of H„,. u can be projected over eigenvectors v„v2
of Hi,' its orbit A will be a linear combination of the or-
bits V, and Vi of vi and vz. Assume now that the eigen-
value associated with v, is very large and the norm of V,
is concentrated near L/2 (this actually happens: see
below). Then A is very close to V„and, due to the sym-

I

l

l

l
~QR

1

\

FIG. 5. Stop bands of H~, f; and H„,. They are characterized

bp the discriminant D(p, s) of the eigenvalue equation of
A~(p, s) (D=[Re(a)] —1), —1(D (0 inside a pass band,
D ~ 0 inside a stop band. D& and D& are respectively associated
with H~,q, and H„,. The smallest pass band of H„, (later called
"fundamental pass band") is located around @=67838.038:
point A of the graphics. It is so narrow (he =0.0078) that it al-
most reduces to a vertical line around point A. A is located in-
side a large stop band of H&,q. As expected, aside from the large
stop bands surrounding A, the spacing of secondary stop bands
of H] ft is twice those associated with H„,. The numerical pa-
rameter values are N = 13 and a =0.01.
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metry of ~[A~( around x =L /2, we expect that A is

peaked around this point and therefore localized.
This argument leads us to look for localized states in

small pass bands, surrounded by dominant stop bands. It
also emphasizes the role played by symmetry in the local-
ization process.

The fundamentai localization

According to the preceding considerations let us look
for small pass bands. We have shown that, in the limit
e~O, the set of dominant stop band (SB) energies is the
same as the set [xj I of barriers positions. Therefore the
set of energy intervals between dominant stop bands is
the same as the set I g~ I of interpeaks intervals. Now the
two smallest g, intervals are equal to unity and they are
located symmetricaBy with respect to the period center.
For a given value N of the Fibonacci-approximant
(pN =EN/EN+1), they cori'espofld, respectively, to p, 111-

«rva» [EN+iEN 2ENFN —1] «=&—')»d [E'N ENEN+1]
(E =o ). We call these energy bands the fundamental pass
bands. We shall consider the first one, and put

p) ——F~F~ ( and p2 ——I'~+)F~ 2. %'e have0 0

logistic map).
Let us denote (1) [(2) ] the sequence (1) [(2)], whose

first interval following I' is m. It is easy to determine the
variation of m in the three transitions (2)
~(l), (1) ~(1), and (1) ~(2) . Putting
5m =m' —m, for transitions (2)~ ~(1) ., we have
Sin =Q 2P—; for transitions (1) ~(1) ~ and
(1) ~(2), we have 5m =2Q 3P—. Now a set of (1),(2)
sequences induces a set of intervals m &,m2, . . . . I,et aJ.
be the phase shift produced by interval m in Eq. (14):
aj =24(iiiJ )=2m@m, /(FNFN+, ). We shaB evaluate the
increments 5a associated with the above 5m, taking into
account the fact that the aj's must be taken mod(2n).

Let us first consider the case p, E[tu„pz] (correspond-
ing to e&1/FN). We put

, /(FNFN+1) FN 2/FN ——C l(FNFN+1)

=FN 1/FN+—1+(1 c)l(FN—FN+1),

with 0 g c g 1, and assume even ¹

Now transitions (1) ~(1),and (1) ~(2) ~ give

5aj(2m )=(2FN+1 3EN)Pl—(FNFN+1)

b,P =Pz I21 FN+—1FN
——

z FNFN 1
———( —1)0 0 0 (21) =2FN+1[FN, /FN+, + ( 1 c)l(FN FN—+1}]

sequence(2}: P, mk, P —m„,
where m and mk are integers such that

1 & I1 & 2P —Q & m1, & Q P. —(22)

Sequences alternate according to the following rules: (1)

(2) is necessarily followed by [1],and (ii) (1) may be fol-
lowing either by (1) or by (2) but there are at most two
successive (1) sequences. Therefore a typical Ig„ I se-

quence will be of the form

(1)(2)(1)(1)(2)(1)(2)(1)(1)(2).

(it is exactly the type of kneading sequences observed at
the crltlcal po1nt for periodMoub116g bifurcations, ln the

(superscript "0" refers to the limit s~O}. The above re-
cursion relation between the F 's follows from a well-

known property of the Fibonacci numbers, namely that
two consecutive approximants of o, FN /FN+, and

FN, /FN, are "Farey neighbors" (that is

~ FN+,EN, FN2
~

=1).—Expression (21) is an immediate
consequence of the fundamental relation EN FN-—
+FN 2, defining the Fibonacci numbers. Remark that
bp, jpi goes to 0 as o for large N. The above funda-

mental pass band is delimited by F.-independent rotation
numbers W, =FN,FN/M, Wz FN+,FN z——/M, whose
distance is b, &=I/M. For small enough s (a&1/EN),
pass band [8', , Wz] corresponds to pC[y, „pz]. This is

no longer true for s »1/FN.
We now came to the slow variable entering the prob-

lem. A preliminary observation, speciSc to model A, is
that the ordered sequence of g„ intervals contains two
types of subsequences, called sequences (1) and (2). Their
structures are, respectively,

sequence(1): P, mj, P —mj, Q P+mj, 2P——Q rnj;—

5a =2m [2/FN —Xs(2/p —3)],
5a' = 2m. [1/FN +Xs(2—1/p )], (26)

where mod(2m) has been dropped. For.Xs»FN we see
that 5a and 5o," now have opposite signs. Therefore
a.mod(2m) is no longer a monotonic sequence. Now it
may be shown that, in the limit of large X, intervals m.
and mk are uniformly distributed over the two intervals
appearing in inequalities (22), whose lengths are 2P —Q
and 2Q 3P. We are therefor—e led to assign to sequences

3FN [FN —2 /FN C I(FNFN + 1 ) ]

from which, since the FJ's are integers

5a=2m[2(1 c)/FN+—3y/FN ~, ] [mod(2m)] . (23)

In the same way, one Suds for transition (1) —+(2)

5a'=2m[(1 c)/FN+2y /EN—+1] [mod(22r)] . (24)

From here forward a will be understood as mod(2n). We
see that 5a and 5a' are both positive (negative, for odd
N}. Therefore the sequence of successive a 's is mono-
tonic (growing for even N, decreasing for odd N}. More-
over the a 's vary very slowly in the limit of large N
[remember that FN =(1+o ) ].

In the case 1!FN« e «1,p fK [IMi,pz] but is chosen so
that W still belongs to [W„S'2]. Again we define

pj(FNFN+1) in the vicinity of Farey neighbors FN z/FN
»d EN 1/EN+1 by-

Iz l(FNFN+1) =FN z/FN Xs/FN—
=EN 1/FN +1 Xs/EN—+ 1j—(EN FN +1 }

where X is a flite arbitrary real.
Relations (23) and (24) are then replaced by
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(1),(2) probability weights ~„co2 proportional to the mea-

sure of these intervals. We thus obtain cubi
——(2p —1)/

(1—p) and co&
—(2—3p)/(1 —p). Averaging over a large

number of sequences, we obtain

&5a}=co, 5a+ru 5a'=( —1) (2m./F, ), (27)

where the ( —1) factor has been added to make the for-
mula valid when X is odd. Let NI and X2 be the total
number of sequences (1) and (2) over one period. We
have, in the limit of large N, N, /co, =%2/co&. Moreover,
since sequences (1) and (2) are respectively produced by
five and three mapping iterations, we have:

5&i+3&2 =~=~w+~N+ i
—& =~~++a+ i

from which E, =(2p —1)F~+„Nz ——(2 —3p)F&+„and
the total number of sequences is N, =N, +Nz
=(1 p)FN+—, . Finally, we find for the total variation of
the averaged a over one period:

Therefore we obtain at this order

f, (8)=8+2m(3Xe )—2e[5+3sin(8) +2sin(8 —a )],
fz(8) =8+2m(2Xe) —2e[3+2sin(8)+sin(8 —a)] .

The coarse-graining procedure will consist of adding and
averaging over p sequences (1) and 5p sequences (2), 5 be-
ing the probability ratio co2/coi and P being chosen such
that 1«P «1/e. We shall neglect the a fiuctuations
(being of the order of s) around their average value & aj ).
Therefore, in the following, 0,

&
will have the meaning

&ai ) in the expressions for f, 2(8J). Moreover, the

&aj )'s and 8J's varying very slowly in the course of the
averaging process, we shall neglect their variation during
the iteration over the above set of (1) and (2) sequences
(which induces a relative error 58/8 of the order of s).
We obtain in this way the unique mapping

8, +i F(8,——) =8, +2m(3+25)PXs

&(& &)=N, &5 &=( —1)"(2 ) . (28) —2p a[5+35+(3+25)sin8, .

We conclude that, for large N, small s and
W6 [W„H'2], a, mod(2n. ) is a very slowly varying angle,
always close to its averaged value & a },except for small
fiuctuations of the order of e. Our idea is to replace the
exact angular mapping by a "coarse-grained" approxima-
tion of it, in which will only enters &aj ). This will be
done in the following way.

Let us write down the five iterations of angular map-

ping (14) associated with a sequence (1). At first order in

z we obtain

8, =8—2rrpP 2s(1+sin8—),
82 —8i —a —2s(1+ sin8, ),
83=8i (2~pP —tt ) ——2s( 1+sin82),

84 =8,—{2m)L4(Q —P)+a ) —2e(1+sin8i),

8'=8,—(24'(2P —g) —~x) —2a(1+sin8, ) .

Adding up these relations gives

8'=f i (8)=8—2n)M(3P) —2s(5+sin8+sin8, +sin8z

+sin8i+ sin84) .

Similarly the three iterations associated with a sequence
(2) yield

8' =fz (8 ) =8—2n p( 2P }—2s( 3+sin8+ sin8, +sin82 ) .

We have therefore to iterate a sequence of mappings

f, (8) and fz(8), corresponding to the ordered set of
subsequences (1) and (2). We shaH now assume

1/F~ &&e &&1 (it is the case where strong localizations
are expected) and evaluate f, 2(8) at first order in e. We
have the following approximations:

pP= —Xe+O(1/F~) [mod(1)],

8, =8i =8+0(e),
8,=84=8—a+0(e)

—(2+5)sin(a —8 )],
or

81+,——8, +e'[y+sin(a —8 ) —(1/p)sin8 ], (29)

The last step will be, in the limit of large N, to treat 8 and
u as continuous variables. Replacing (a, ,8 j by Ia, 8j
in Eq. (25), and multiplying this equation by k/2n yields,
for N ~ 00, the following di8'erential equation:

d 8/da = A [@+sin(a—8)—(1+i' )sin8] (N even),

(30)

with

A =Me'/(2')=eF~+ilm . (31)

We shall first consider systems containing only one spa-
tial period of the refractive index field; that is, a C [0,2m ].

In the case of odd N, the differential equation takes the
same form, provided I a, 8 j is replaced by
Ia'= —a, 8'= —8j, and y by —y. As expected the
coarse-graining parameter p no longer appears in Eq.
(30).

%'e are now in a position to investigate localized solu-
tions. Let us first come back to expression (17}giving the
energy of a solution as a function of the number of itera-

where

5=(2—3p)/{2p —1) (5~cr for X~00),
y =[24r(3+25)X—2(5+ 35)]/[2(2+ 5)],
a, =( —1)"(2~Jm),
g=(1 p)Fr+i/—[p(1+5)] (N~F~+i/p for N~ao),
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tions. Using the coarse-graining approximation, this ex-

pression reads

I„= ff (1+2ecos8 )P' + '[1+2scos(8, —a, )]~' + ' .

Since aJ varies monotonically in [0,2m], we see that a
solution peaked around ihe center of the system will be
obtained if there exists a solution I8 ] of the angular

mapping (29) which is monotonic in [O, n]
Numerical iteration of original mapping (14) (which is

free of the coarse-graining approximation} shows that
such solutions do exist, and their shape, for rational p, is
sketched in Fig. 6. This graph contains three branches,
one of them very close to the 6rst diagonal, the two oth-
ers close to the second diagonal. The iterated points are
found alternatively on the three branches: Those near
the Srst diagonal correspond to angles Hj in the coarse-
grained mapping, while the other ones correspond to
8J —a . Obviously such an angular graph yields a local-
ized state peaked around the center of the system; we call
it the "fundamental localization. " Finally, numerical
iteration of the mapping over several periods suggests
that point (a =2m, 8=m }is homoclinic.

At energy values where numerical integration of the
angular mapping showed the fundamental localization,
we have calculated the orbits of the eigenvectors of
Asr(E, e) by matrix multiplications. We have actually
obtained intensities I„which are symmetrical and peaked
around the period's center. The width of localized states
decreases with N, while the energy band where those
states are found becomes exceedingly small at large N (for
N =15, b,1=10 ' ). Some numerical results are
sketched in Fig. 7. Finally let us mention that these re-
sults are in excellent agreement with those obtained with
the help of the coarse-grained Eq. (29).

We shall now show how these various properties
proceed from the study of the coarse-grained mapping
(29) or of the difFerential equation (30). Let us first con-
sider mapping (29}. It may be considered as an auto-
nomous mapping depending on the slowly varying pa-
raroeter a. For given a, its Sxed points are given by

FIG. 6. Iteration of angular mapping {4)for a particular en-

ergy value giving the fundamental localization N =12, a=0.01,
and @=33550. 18.

FIG. 7. The fundamental localization. Graphs of I„as a
function of n, obtained by numerical iteration of the matrix
transformation. {a) N =12, @=0.01, JM, =33550.18. {b) N =15,
c=0.01, JM, =602063.155.

H (8)=y+ sin(a —8)—(1+cr )sin8=0 .

(in the limit 1/p —+ I+cr). There are in general two fixed
points 8, and 8z, one stable (dH/88, &0), the other one
unstable (BH /882 & 0). It is easily seen that, for
a E [0,2m], these fixed points do exist Va if y & o. For
y ~ o there exists an interval [ai,az] where they vanish;

8,=82 when a is equal to a, or a2. For y=tT, a, =az=1T
and 8, =82——m /2. Figure g shows the graph (A ) of H (8)
for y=o and a particular value of a (a=m/2) and the
graph 8 (a) of the minima of H (8) for y=a. Br(a)
does not intersect the a axis for y & 0, and there are two
intersection points for y ~ o.

%'e see that, for a=m, A touches the 8 axis. When

y &o., A always intersects the axis. For y &o, I stays
above the axis when a E [ai,az]. Let us first consider the
case y &o. Starting with an arbitrary 8 initial value at
a =0, the iteration of the mapping rapidly leads towards
stable 6xed point 8&. Then we follow the 6xed point as a
is increased. This one attains a maximum value smaller
than m/2, then goes back to zero. For y &sr we again
follow 8, when a is increased up to a&. Then the fixed
points disappear, and iterating the mapping makes the
point escape towards larger values so that it is found
beyond the fixed points when they later reappear (for
a =a2).
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with gG [—ir, n.].
A localized solution y(g) of the type obtained in nu-

merical calculations would be such that (i) y{0)=0 and
(ii) y variation is of the order of m when g goes from n- .
to n. Condition (i) being satisfied, we remark that the
graph of y(g} is symmetrical with respect to point (0,0),
as it should be.

Satisfying condition (ii) in the limit of large X clearly
imphes that q&(j) must be close to a solution g(g) of the
following equation:

y+ cos(g —tP) —( 1+o )cosg =0 . (34)

FIG. 8. Curve (A): graph of H /2(8) for y=o. Curve (8):
graph of 8 (a) giving the minima of0 (8, y =a). 8~(a) is ob-
tained from 8 (a) by a translation parallel to the vertical axis.

Condition y(0) =0 implying that g(0) =0, we must
choose y =o (y = —o for odd N). There exist two solu-
tions gi 2(g) of Eq. (34) for y =o, which are conveniently
defined through their inverses. They read around the ori-
gin

dip/dg= A [y+cos(g —y) —(1+o )cos(p] (33)

FIG. 9. Iteration of the angular mapping in the neighbor-
hood of a=~, and for y slightly larger than 0. The three
curves ( Ao), ( A

& },and ( A2 }give the behavior of 8+0 (8) for
ao—5a, ao+5a&, and ao+5a2 (ao being the value where
8+8(8) touches the diagonal, and 5a&~5a&). The solution
point M moves right following stable fixed point P(ao 5 ),
then the 6xed points disappear (ao+5a& ). %'hen they reappear
{ao+5ai}, M has shghtiy overtaken unstable fixed point Q.
Henceforth Q "pushes forward" point M as a increases.

In the two above cases the obtained solutions are not of
the localized type. The only way of interpreting the nu-
merical results above is that the orbit first follows stable
fixed point 8, (up to a=ir) then sticks to the unstable
point 82 (the explanation of this rather surprising situa-
tion will be found below). Such a "fixed point exchange"
could a priori take place for y =cr (at a =n, 8=m /2), the
choice between 8, and Hz being a priori undecided. How-
ever, we shall see below that for large but finite N, the "Hi
solution" is chosen provided y is taken to be slightly
larger than a. In this case we may understand that dur-
ing the tiny interval [a„ai],a few iterations of the map-

ping makes the solution overtake the later-born unstable
fixed point (see Pig. 9). Things will be made more pre-
cise by studying the differential equation. Let us first in-
troduce the new variables g=x —ir, i'd= 8

—ir/2, in terms
of which Eq. (30) reads

P+P(i}'j) (g & 0),
P—P(g) (g &0),

p(p) =arccos[(1+cr )cosf cr ], —

fi(g) and f&(g) being defined by their derivative at /=0:

g+ u =y+ arccos[{1+cr }cosip—a'] =6(p)

[G(g;)=pi =1,2], (35)

As far as fundamental localization is concerned„we need
only consider gi and gz for 8&[ m, n]—How.ever, we
shall later consider larger intervals. Then we must use
the analytic continuation of the above function beyond
the g values where (1+cr )cosg —cr =21. We thus obtain,
on unbounded supports, that f, and lf &

are periodic func-
tions of f with period 4ir. The graphs C, and Cz of P,(g)
and $2(g) are sketched in Fig. 10.

We have the following properties: (i)

serve that for gF [ m, n ],P, varies —almost linearly in g,
and is approximately given by g, (g}=(—,

' —Ho/ir)g, with

Ho=arcsin(2cr —1). (iv) C, and Cz are contained in the
angular band [ (n/2+ 80), ( n/—2+.80)]. (v) .The set

Ig;(g)I (i =1,2;k CZ} of all the solutions of Eq. (34) is
defined by P, (g)=f;(g) +k( 2i)r, their graphs C,

" being
obtained from C; by k (2n ) translation along the 8 axis.

%e shall not give here the proof of the existence of
solutions q), 2(g) in the vicinity of P, 2(g). We shall in-

stead show that one can construct without any contradic-
tion a perturbative expansion of such solutions. %e in-
troduce a function u (g} defined through its inverse ac-
cording to



37 %'AVE PROPAGATION IN A ONP DIMENSIONAL. . .

and the parameter v =y —o. We now expand y, u, v as

0'=4+%i+0'z+ ' ' '

Q=Qi+Qg+ '

v=v)+v2+

the above formula yields the following expression of
ln(I/Io) in terms of y:

in[I(p)/I(0)]=(2A/o )[F(q) I'—( —q )],

where the p. , u. ,v are of the order of A i. Equation
(32) can be rewritten as

cos(g+u —y) —cos(g —q)=v —(1/A)dy/dg . (36)

and

F(u) =cosu+2cos(u /2)[cos (u /2) —cr ]'

=arccos(2cr —1) .
At first order in 1/A, Eq. (36) gives
u

~ (g)= [(1/A )dy/d g —vi ]/sin(g —f;), and u, is made
regular at the origin by choosing v, ——(1/A)dg, /dg.
Then Eq. (35) yields at first order y, (g)=u, (g)/G'(P;),
an expression which is regular in [—m, n]. The successive
terms of the expansion are obtained in the same way from
Eqs. (35) and (36), and they are not singular in [ n, m]—
This has been made possible because G(g) and all its
derivatives are regular and do not vanish in this interval.
Moreover, this perturbative expansion yields a unique
solution of Eq. (33) in the vicinity of each g;. Numerical
integration of the difFerential equation confirms the ex-
istence of such solutions, even in the extended interval
[—2ir, 2m]. Let us note that, in the frame of this expan-
sion we obtain that y =o +0(l/A), a value which is as-
sociated with X=2/m +0 (1/A ); if N is odd the corre-
sponding values are y = —o and X=2( 3 —4cr )/
m+O(1/A) terms.

The localized solution corresponds to arc AS of Fig.
10. It extends over an interval 68=A —2arcsin(2o —1).
Therefore the associated rotation number is irrational
and the fundamental localization takes place, for a finite
system, in a pass band. Let us determine the intensity
profile of the localized solution. Taking the logarithm of
relation (32), and going to the limit of continuous vari-
ables, we get

1n[I(g')/Il0)]

sin —f + a+1 sing

Choosing where the normalization constant Io has been
chosen in such a way that I(0}=1(maximum value). g
and p being related through relation (34) (with y=iti),

We obtain around y =/ =0

I((}=exp[—Agzi(2vo)] .

Moreover we have, in the limit of large ¹

f I(q&)dq= f I(g)dg= A

and, therefore, these integrals go to zero as L
(remember that A =F)vs, and L =lENF&+1). Now g' is
related to spatial variable x through g/(2n ) =x /L.
Therefore

f I(x)dx =[L/(2n)] f I(g')dg=L ~

for larger. Then J&I(x)dx~ao asL~oo, and we can-
not qualify q&(g) as a localized solution (according to the
usual de6nition}. Defining the sojourn time" T~ in a
box A as being proportional to the ratio (energy stored in
A)/(energy Aux), one easily finds that T„~00 when
L ~00. Since a Floquet solution can be constructed by
adding up two independent class-W solutions enjoying
the above properties, we conclude that the energy of such
a solution belongs to the singular continuous part of the
energy spectrum. We also remark that the average stored
energy (1/L) foI(x)dx, or the relative width hx/L of
the solution support, goes to zero like L ' for large L.
In this limit, y(g) looks strongly peaked around /=0 [see
Fig. 6(b)], that this is localized is common sense for the
physicist. For this reason, we shall call y(g) a "quasilo-
calized" solution. We also observe that this solution ex-
hibits no recurrent behavior. This is in contradistinction
with the solutions of a class of Schrodinger equations
whose potential is the sum of equidistant .peaks with
quasiperiodic amplitude (cf. the Delyon and Petritis
theorem s).

The above arguments justify the existence of solutions
q, z(g) of the differential equation in the neighborhood of
g, z(g). Now it is important to study the stability of
these solutions with respect to a variation of the initial
condition and of y. We shall show that the g & 0 (g &0)
b~~n~h of 4i (|('z) is stable, while the symmetric branch is
unstable.

Linearizing Eq. (32) around y, (g) (i =1,2), we obtain

FIG. 10. Graphs of C, and Cz of f~(8) and fz(8).

Id jdg —A[sin(g —q&;)+(1+o )sing, . ]Iy;=A5y, (37)

where 5y is the deviation of y from the above exact value
(o +v}. At lowest order with respect to 1/A, p;(g) will
be replaced by g;(g) and this equation reduces to

Id/de —A sin(g —g; }/(dg; jdg)]y; = A5y . (38)
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We first ignore the deviation 5y (i.e., we take 5@=0 in
the equation), and only consider the efFect of a deviation
y,. from initial value q&;( —m). Then the solution of Eq.
(37) reads

r

y;(g)=y; exp I sin[/' —f;(g')]/(df;/dg')dg

We see that, for i =1, the integrand is negative (positive}
for g &0 (g & 0). This shows that the negative branch of
p, (g) is stable with respect to initial conditions (attractive
branch), while the positive branch is unstable. Opposite
conclusions are valid for i =2.

As a consequence, the orbit of any initial state is local-
ized. The fundamental localized solution, in terms of an-
gular variable, is the orbit of initial value
p( n) =n —/2 —8O (point 3 of Fig. 8); it corresponds to
arc AB of curve C, . Now any initial point in the

t 8„~8„+,I coarse-grained graph will be rapidly attract-
ed towards the C1 curve, then will stick to it up to the
end of the period. Therefore any state Y belonging to
class 8' has a localized orbit. In the general case of a
state not belonging to 8' it can be projected over two in-
dependent class-8' states and its orbit is therefore local-
1zed.

Solving Eq. (38) yields more detailed and important in-
formation. Since P, (g) is symmetrical with respect to the
origin, y; is an even function of g. Using the approximate
linear expression for P, (g},y, is given by

y, (g) =y, exp( —3 Icos[(1+280/m )g/2]+sin80] ) (39)

with

A =42 /[1 —(280/m ) ] .

The orbit of any initial point ( —po, —go) stays in the
neighborhood of (C, ) up to g'= go. Therefore, for
(K[0,(0], the orbit point "follows" the unstable fixed
point.

Let us now investigate the sensitivity of the localized
solution versus an energy shift 5y. Integrating Eq. (38)
with y1 ——0 as the initial value and using again the linear
approximation for f,(g), we obtain the following devia-
tion:

yi(g)=A5y I exp(A I
—cos[(1+280/n)g/2]

+cos[(1+280/m )g'/2]] )d f' .

One may consider a flnite propagative system (associated
with a given value of X) as a resonator, whose resonant
frequency belongs to the fundamental pass band. One
can assign to this resonator the quality factor Q =5y,'„.
Remembering that A is proportional to eE&+~ -e&L (L
denotes the spatial extension of system's period), we see
that Q =a'~ L'~ e",a being a numerical coeflicient.
This suggests that propagative mediuxns with modulated
refractive index of model A type could be interesting can-
didates for realizing high-resolution frequency Qters.

A last consequence of the above results is the follow-
ing. Remember that for large but finite N, the graph
8„~8„+,is aperiodic, since the energy has been chosen
inside a pass band. Iterating over several periods of the
system (that is, considering g& m in the difFerential equa-
tion), we see that the instability of p, (g) for g & n exphuns
the homoclinic behavior of point (m, m ) in the above map-
ping. Concerning the solution of Eq. (33) for g&m, two
possible behaviors are expected when energy is slightly
varied: (i) The orbit leaves Ci at point B (see Fig. 11),
and falls on C2 in A i, or (ii) the orbit runs along BA '„
passing from C, to C2. such a trajectory goes through
the "forbidden angular gap" [n/2+80, 3n/2 —80] be-
tween C; and C .

The further trajectory will be either arc A, B, on Cz
[case (i)], or arc A ',B', on C2 [case (ii)]. The parameters
controlling the choice between the two solutions are obvi-
ously the energy and the initial phase. Around g=a, de-
viation y(g) from P,(g) becomes quite large and is the
sum of the two contributions, (39) and (40), representing,
respectively, the efFect of the initial condition and of the
energy shift. We see that the sign of y is determined by
those of y i and 5y, and also, if y, 5y & 0, by the relative
weight ofyoand

~
5y I

~A.
Considering now a system containing an arbitrary

number of periods, say rn, we see that the orbit of a given
initial state will be the union of m successive arcs AI, Bk
belonging to C; curves. How are these arcs distributed
over the set of C; 's? Answering this question amounts to
finding the set I k I of corresponding integers. Determin-
ing the dependen e of tk] o" paramet rs yo a d 5y
could seem a priori a diScult problem. Indeed the suc-
cessive finite juxnps from a C; curve to the next one can-

This reduces in the linut of large A and for g & 0, to

A f 1 —cosI (1+280/~g'/2] I

y, =5yA e

We see that y, (g) grows very rapidly for g&0. A neces-
sary condition for preserving the localized solution is ob-
viously that ~yi ~

stays smaller than or of the order of
unity in [ n, n]. Imposin—g th.at the variation of

~ 8„+~—8„~ be smaller than 2n. would give approxi-
mately the sanM condition, and this condition fixes the
width hp of the fundamental pass band. This condition
reads

R

8'
R'

(41) FIG. 11. Bifurcation from curve CI to either C2 or CI.
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Secondary localixstions

The fundamental localization has been found between
the dominant stop bands which are closest neighbors.
Now the p-energy spectrum of dominant SB's contains,
in the limit e~O, all the discrete x 's (frontier abcissas).
These values delimitate energy bands with widths
1,2, . . . , P —1; two for each band m, except for band
m =P (as was said before). The energy distribution of
these bands is nothing but that of interpeak distances of
the refractive-index 6eld. An analytic expression for the
energy intervals of the two mth bands is given, in the lim-
it s~O, in Appendix B. They are E"22nm/F~+,
(i =1,2), with

E~~ "/2m = W' "=mF~ /F~+ i Int( mF~/—F~+ i ), (42)

and

E ' '/2n = W~ ' =1+Int( mF~ /F~+ i ) mF~ /F~+ i—,

where 8' is the rotation number associated with E
For m & [1,P], we have a set of pairs of dominant stop

bands whose rotation numbers W" respectively difFer, in
each pair, by 1/M, 2/M, . . . , P/M. Note that this band
contains m secondary stop bands and therefore rn adja-

IPX

Iiot be derived froiil llilearized Eq. (37). However, one
can show that, at given energy, any set I k } may be de-
duced from two particular sets Ik Ii and Ik I&.

let us consider eigenstates u, and u2 of AM(E, e) with Ai
and Ai orbits (they are the fundamental Floquet solu-
tions}. It is easily seen that angular variable p associated
with A& and Az orbits is periodic with period M, and the
corresponding sets I k I, and t k I z are also periodic. Now

any given initial state Y can be projected over u, and u2
and it s orbit A is a linear combination of A, and A2.
Generically A is aperiodic and so is the associated set

I k I which is obtained from I k I, and [k J i. A typical an-

gular graph is sketched on Fig. 12.

cent pass bands. It must also be clear that any low-order
band (m &gF~ } is characterized by its averaged energy or
rotation number, which is given by formula (42) or (43)„
but its energy width is not m (in unit }M, ), even for small s.
%e shall come back to this point later.

Choosing p in one of these P energy bands, we observe
exactly the same type of properties as in the fundamental
band (quasimonotonic and slow variation of the ct. 's,

etc ) . T. he only difference is that the drift speed of the

(ai ) s is modified. For instance the (a. ) variation over

a period, in the mth energy band, is 2m' instead of 2m.

The coarse-graining procedure is still applicable, al-

though its accuracy decreases when m is increased:
Indeed, a varies more and more rapidly which makes

the neglect of a 's fluctuations in the averaging process
less and less justi6ed. The approximation remains good
as long as m is sufficiently smaller than P.

Concerning the differential equation obeyed by the mth
locahzation, it is the same as Eq. (33), provided that we
make the scale transformations g~mg and A ~3 /m,
and remember that g varies in an interval of extension
2m'. . Therefore, all that was said in the preceding sec-
tion on the localized solutions in a system containing m

periods of v(x } remains valid here. In other words there
is a one-to-one correspondence between the solutions of a
one-period system with an energy chosen in the mth ener-

gy band and those of an m-period system with corre-
sponding appropriate energy lying in the fundamental
pass band. Numerical two-peak and three-peak solu-
tions, obtained by iterating matrix transformation (1) for

energy values, respectively, taken in the second and third
energy bands are shown in Fig. 13.

Finally we remark that formula (41), which was said to
give the order of magnitude of the fundamental pass
band width, can be applied in the case of an mth-order

energy band, provided 3 is replaced by 2/m. This
shows that the bandwidths grow rapidly with m and that
finite pass bands hE are expected for m & sFN ("finite"
meaning that hE is not very small compared to unity:
Remember that E/(2 )iEr-[0, 1]}. As a consequence we

see that model-A Suite systems are easily transparent. In
particular, the nearest pass bands encountered around
the fundamental ones are the largest.

MODEL B

Slowly varying phase shifts and intermittency

JJ

E

r y r

This model does not possess the symmetry of model A,
but it keeps the fundamental property that P„[mod(2m )]
is still a slowly varying variable for appropriate energy
values.

Let us put pn =r„+c„,where r„=Int(pn ). According
to relation (8) we have g„=c„mod(l). Evaluating now
the phase shift P„mod(2m ), we write in terms of energy E
defined by Eq. (5)

2$„/2~=EJ„=Ec„[mod(1)] .

FIG. 12. A typical solution in a multiperiodic system (funda-
mental localization) or, equivalently, secondary locahzation in
one period.

IfE /2 is an integer, we also have

2$„ /2n =E( r„+c„)=Epn [mod( 1 ) ] . (44)
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at 8=3@ /2 and has a minimum at

8, =m/2+2K, [k=arctan(e, )],
with

P(8, )= —2A, . (46)

FIG. 13. Secondary localizations obtained by numerical
iteration of the matrix transformation. (a) Second-order locah-
zation: N =12„a=0.01, p, =20732.94. (b) Third-order localiza-
tion: %=12,a=0.01,@=12811.8.

We shall now show that P„[mod(2m)] is made a slowly

varying function of n if E=F~ (a Fibonacci number).
Taking indeed p=cr (we shall only consider this case in
the following) and using formula

F [~—(%+i)+( 1)&~(&+i)]/i/5

we obtain nE~=F~, +(—1) cr, from which

[2$„mod(2n)=I2n[( —1} cr n] mod(1)I .

In the limit of large N the graph P„~P„+i [mod(2n )] is
stuck to the first diagonal. 2$„[mod(2n)] varies very
slowly and monotonically, growing or decreasing accord-
ing to the parity of ¹ For p=cr Pn is aperiodic and the
number of iterations needed for running through [0,2n]
is very close to X=o

For such an energy value angular mapping (14) may be
looked at as an autononwus one depending on the slowly
varying parameter P. This situation is analogous to those
found in model A, and even simpler since the variable pa-
rameter is simply associated with a translation (or a rota-
tion on the circle). As a consequence we shall not need to
assume E small.

Let us consider the fixed points of this mapping for
given p. They satisfy to p= —p(8). The graph (8) of
—p(8) is sketched on Fig. 14. 8 is tangent to the 8 axis

Therefore there exist two fixed points 8, and 8i as long as

P belongs to angular band [—2A, ,O). 8, C [8„3m/2] cor-
responds to the unstable fixed point, and
8@K[3m/2, 2ir]V[0, 8, ] corresponds to the stable fixed

point. Considering the local growth rate of intensity I„
defined by

we have from formula (17), y„=1+2',cos8„
+2s ( I+ sin8„). It easily seen that y„& 1 (y„& 1) in the

8i (82) donlalli.
%e may now easily give a qualitative description of the

solutions. They wiB be found by following "adiabatical-
ly" the local solutions obtained at constant P. Let us as-
sume $0=0 and that P is decreasing (odd NJ. Starting
from an arbitrary initial value 80 for 8, we rapidly reach
fixed point 8, and follow it up to 8, . In this "fixed-point
domain" (FPD} where PE[0,—2A, ], intensity I„grows
monotonically. When P& —2iL, fixed points disappear;
then we enter an "oscillatory domain" (OD} in which, as
we shall later see, the orbit runs along a set of successive
periodic cycles. For p=o the orbit is aperiodic and,
when P goes again beyond zero, 8 reenters the fixed point
regime with an "initial value" different from 80. In this

way m'e get an intermittent solution in which oscillatory
and monotonic paths alternate, the quasiperiod of the in-
termittency being 8'. As in model A exceptional orbits
exist such that the chosen fixed point at the beginning of
a FPD is the unstable one, making I„decrease. In Fig.
15 numerical iteration of the mapping shows typical in-

termittency.

Pseudocycles and "noise localization"

When P„belongs to the OD, the eigenvalues of the nth
+if„

transfer matrix A„are complex and of the form e
where f„=arccos(Rea„} (see preceding section). In
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FIG. 15. (a) Typical intermittent solution. Graph of ln(I„) as
a function of n. One observes the regular staircase with wavy
steps. tb) Graph of I„ for small e. %hen an appropriate phase
value is encountered at the end of an oscillatory domain, the
solution escapes from the stable Axed point.

terms of parameter A, ,f„reads

f„=arccos[cos(P„+ A, )/ cosA, ] .

Let us now consider the wave propagation for
n E [n, n +p ],p being such that

1 «p « 1/a with a =2m cr (47)

It can be shown that, in the limit of large N, the transfer
matrix

J=~+p
~ "„+&=

at Srst order with respect to parameter ap. Performing
the matrix multiplication in the above relation gives

a„
8 +p~
tl P4

pip pip

with

a„~=e "+[sin(4„+A)/cosA —sinf„]ipf„

P„=f,+f2+ +f„=n(n —1)a/(2cosA)+nn/2

is such that g„nn /2 is fini—te. This is not contradictory
with condition (50) provided that a cosA, &&1. Then we
get the following expression for the coeScients of transfer
matrix A 0..

ao„=e " +i[sin($0+ A, )/(cosA, sinf 0)—1]sing„, (51)

Po„=[is/(1+iE)] sing„/sinfo i sinAe '——/sinfo (52}

with, here, f0 =n /2 and $0+A, = —m /2. Let us now con-
sider the propagation of initial state

(eia/2 e
—ia/2)/v/2

We see that A „"+e=l whenever f„/2n. =s/p (s arbi-
trary integer), and this situation corresponds to the ex-
istence of a period-p cycle for the mapping. Since
P„G[—2A, , —m ] in the OD, 0 &f„/2n. & —,

' and therefore

p/s &2. This means that p can take any integer value
larger than or equal to 2.

At the center of the OD (n =no), P„=—(n./2+A),

f„ /2m. ——,
' (corresponding to a period 4 cycle), and we

have f„+„f„—„—.. Therefore the cycle set obtained by

making f„/2ir take all possible rational values in the OD
is symmetrical with respect no. %'e also observe that a
period-p cycle is obtained by only Sxing P; that is, in-
dependently of the chosen initial 8 value. This means
that, iff„/ 2ir=s/ p(fixing P at the corresponding value),
all the orbits of the mapping are periodic with the same
period p, and therefore are not attracting: a property
which is reminiscent of the linear character of the origi-
nal matrix transformation. Clearly these results could be
obtained from the study of the angular mapping, but in a
much more intricate way.

Actually, since P„vary at each iteration, any orbit
would "see" an infinite set of cycles corresponding to suc-
cessive rational values taken by f„/2ir. As a result, at
large but finite i', only the short-period cycles are actual-
ly observable. Indeed let n~ be the n value corresponding
to a large period-p cycle, after a few iterations of the
mapping, P„has already shifted from P„, making this

cycle unobservable. On the contrary P„ is nearly con-
stant along several periods of a short cycle. We therefore
expect a complicated or "noisy" behavior of any orbit in
the OD, unless f„/2' is close to simple rational values.
This idea will be made more precise by studying the solu-
tions around n =no, at the center of the OD.

Let us make the change n ~no+n; with

an ~gl,
(50)

f„=m/2+an /cosA, .

Now we shall extend the preceding calculation to the
case ~here

X[i sin(pf„)/sinf„],

P„~ = [is/(1+is)] sin(pf„}/sinf„. (49)

I„, the intensity of u s orbit at nth iteration, exhibits a
period-2 cycle (while the period of the 8 cycle is 4). A
straightforward calculation shows that I„ takes di8'erent
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values according to the parity of n. %e obtain '3QQ

I„=1+vsin [n(n —1)a/(2cosA, )] (n even),

I„' =1+2Esina+2e (1+ cosa)

—v sin [n (n —1)a /(2 cosA, )] (n odd),
RQQ

v= siniA+(1 —1/cosA, )
100

I

The graphs of I„and I„' are sketched on Fig. 16. I„and
I„exhibit, respectively, a minimum and a maximum for
n =no. One observes that if 0; veri6es the relation
sina+ e( 1+ cosa )=0, or a =A, /2+ 3'/4, the extrema of
I„and I„' coincide. When this condition is realized, the
intensity near n =no is nearly constant; that is,
nonfluctuating. Aside from an interval h, n of the order
a '~~ around no, I„ is rapidly fluctuating, until another
value of n is found where f„/2ir is again a simple ration-
al. We call this efFect "noise localization. " Note that its
width b,n is small compared with intermittency length
(which is of the order of a '). Noise localization is best
shown on the graph of e„=((I„)—(I„) )/(I„), i.e.,
I„'s variance, ( ) meaning an average taken on 5n such
that 1 ~&5n ~~ En. Figure 17 shows a graph of 8„'.

More about intermittency

We have seen that the graph of 8„solutions consists of
an aperiodic sequence of "oscillating plateaus'" (OD) con-
nected by monotonic arcs (FPD). The ratio between
FPD and OD widths is nearly 2A/(ir —2A, ). In general
one follows the stable fixed point in the FPD and increas-
ing I„are observed yielding a solution whose shape is a
regular staircase with wavy steps (see Fig. 15). However
decreasing branches for I„can be obtained also for con-
venient 8 imtial values: Then the unstable fixed point is
chosen. Now one must also remember that the most gen-
eral solution is obtained as an arbitrary sum of the orbits

a - - ~ a 38P
FIG. 17. Graph of I„ in a finite system illuminated from left

side: (a) in a stop band {E=233,a=0.3); (b) in a pass band
(E=233, a=0.02).

of two independent class-8'states, and its shape strongly
depends on boundary conditions. Consider for instance a
large but 6nite system illuminated from the left side.
Then energy conservation implies that I, =Io(1—R), I,
being the transmitted wave intensity and R the reflexion
coeScient: This prevents the solution to be of the ever-
increasing type above. In particular I, is finite and not

Fnergy: i581'.00
Kpe: .300

FIG. 16. Period-4 cycle (middle of an OD). Graph of the in-
tensities I„and I„' obtained, respectively, for even and odd
values of n. If the initial phase is conveniently chosen, the max-
imurn of I„and the minimum of I„' coincide.

FIG. 18. Noise localization. Graph 8„' of the inverse vari-
ance of the "orbit noise" in the period-4 cycle domain (logarith-
mic scale).
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NO f=arccos(cosP/cosA) . (54)

This is a nonautonomous differential equation, which can
be formally integrated. Further detailed features of the
solutions could of course be available from the integrated
solution, but the main ones have already been obtained.

~ ~ ~ ~ k0

FIG. 19. Antilocalization. Graph of ln(I„) in the oscillatory
domain, with appropriate initial phase (E=233, c=0.3).

vanishing when the energy belongs to a pass band (see
Fig. 18).

Whatever be the particular solution considered, it is in-

teresting to determine the total growth (or decrease) I" of
the intensity in a FPD. From relation (17) we have:

I"=g In[y(8„)],

where the sum is extended over the FOP width. Going
to the limit of continuous variables, we get, in a growing
FPD

I =a 'e I H(8)/[I+2eH(8)]d8,
3n /2

with

H(8 ) = cos8+ s( 1+ sin8) .

I is of the order of a for finite s, while, in the limit
c.~O, I =ms a '. A last type of solution may be called
"antilocalization", and is associated with a 8 graph of the
type shown on Fig. 19: One successively follows, in the
FPD, the unstable Sxed point, then the stable one. The
parameter to be matched is obviously the initial phase.

Antilocalization and noise localization have been ob-
tained by choosing precise values of the initial phase Ho

and of the energy (E =I'z ). It can be shown that 80 is ex-
tremely critical (much more than E), a situation opposite
to that of model A. This suggests the use of model B
propagative systems to detect ultrasmsll phase shifts.

All the above results have been obtained by studying
the discrete angular mapping. As could be expected, the
slow variation of P makes it possible, as in model A, to
derive a difFerential equation obeyed by 8(x) in the limit
of continuous variables. This is done in Appendix C.
Making the variable change 8—+8+A, /~/+A, this
equation reads

(a sinf /2f )d8/dP —sinA, cos8= ist /cosA, (53)

The basic property, common to models A and B snd
explaining the phenomena described in this paper, is the
slow variation of the phase shifts [mod(2m}] for con-
venient energy values. This property endows the quasi-
periodic medium with strong regularity and makes the
wave propagation highly organized. However, the two
models are substantially difFerent as regards the localiza-
tion process.

Only model A is able to yield pseudolocalization of the
wave energy. Indeed, some solutions in model 8 could
seem to exhibit a "localized behavior. " This happens
when an OD is surrounded by two difFerent FPD's (I„
growing into the left one snd decreasing into the right
one). However the ratio of OD width to intermittency
quasiperiod is finite (of the order of s for small s). There-
fore such solutions are not pseudolocalized [ J I(x}dx is

proportional to the system length]. In model 8, fixed
point domains necessarily alternate with finite oscillatory
domains while, in model A, the averaged angular variable
exhibits a monotonic evolution all along each half-period.
Therefore, in model A, all the iterations in a period (or a
quasiperiod) contribute to build-up the growth (and de-
crease) of the localized profile, while only a part of them
in model 8 contribute. On the other hand the interesting
phenomena of noise localization and antilocalizstion are
speci6c to model B.

A last remark is in order. Focusing our attention on
the cases where a slow variable is available, we have cast
some basic problems aside. In particular we have not an-
alyzed, for a&0, the energy spectrum of the stop bands
(or of the rotation number).

We conclude by emphasizing the richness and variety
of propagation features in quasiperiodic mediums. Mod-
els A and B are quite different and are themselves
different from other ones previously studied in the litera-
ture, such ss the quasicrystal model of Luch and Petritis
(where the eigenstates are neither extended nor localized
and apparently exhibit a recurrent behavior). Last but
not least, the resonance phenomena we have described
suggest experimental applications: high-resolution fre-
quency Nters snd small phase shifts detectors.

An experiment on the propagation of acoustic surface
wsves on s grooved array is presently being performed at
Sophia-Antipolis (Thomson-Sintra laboratories), whose
preliminary results seem in remarkable agreement with
the present theory.
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of one of the two fundamental pass bands:
FN F—~ iFN+, ——( —1) . This relation can be put in the
form of Eq. (81) provided we choose

0=( —}"+
I
m

I Fiv bo=( —1}"+"
I

0
In model A, the orbits of the two A eigenvectors are

symmetrical with respect to the period's center.
Proof. Let u, and u2 be the two eigenvectors of Asr,

with u, =(u,+,u, ), and A, , A2 be the orbits of u, and u&.

Consider now the backward propagation from the right
end of the system, of initial state u', (u', being the tran-
spose of u, ). Due to the symmetry of the refractive-index
field, this state is obviously an eigenstate of A~ and its
orbit is symmetric with A, with respect to the period's
center. Since there are only two eigenvectors, A, and Az
are identical.

where v=sign(m).
Now, in order to de5ne the boundaries of the mth ener-

gy bands, we must choose the smallest values in the set

t a, b ) . This is achieved by taking

k=Int(
I
m

I F~/FN+, ) .

If N +m is evenwe obtain a =
I
m

I Fx kF~+—, or

E/(2m)=
I
m

I F~/F~, —Int(
I
m

I F~/Fiv i) . (84)

IfN+m is odd

In a pass band, the orbits of the two eigenvectors A,

Proof. At first eigenvectors ui and uz associated with
eigenvalues s, and s2 verify ui ——u2. Indeed this relation
results from s2 ——s

&
and from the characteristic equation

0
of A&. By induction one shows that the elements of A,
and Az also verify this relation.

Let A~i"'=(x„,y„) be the nth component of A, . We
have

Ilk~i"'ll =(x„',y„')'( A „')'A„(x„,y„),
which reads

ll~'i"'ll'=(
I x. I

'+
I y. I

'}(
I a. I

'+
I b. I

'}

+x„'y„b„(a„+a„')+x„y„'a„(b„+b„').

The expression for IIX,iz"'ll being obtained by making
x„~y„' and y„~x„' in the above expression, one sees
that IIX,'i"'II =IIAiz"'ll, Vn Finally w. e have from lemma 1

th« IIAill(» = IIAzll(L —» w»ch ends the proof.

E/(2~)=, 1+»« Im I FN/FN+1) Im I
F—N/Fr~i .

(85)

Relations (84) and (85) give one of the boundaries of the
mth energy bands, the other one being translated by
km /FN+, . There are two of them, corresponding to the
two symmetrical intervals of the tx ] set.

APPENDIX C

We start from expression (51) and (52) for A 0
coeicients in the main text, no being arbitrary. Passing
to the limit of continuous variables, we put

f(bx ) = f f(x)dx,

where f(x ) stands for the local f„. We have
d Pldx =f(x). The continuous version of matrix 2 ii is

APPENDIX 8

Let m G Z. We consider the set (a, b l of integers satis-
fying with

a(x) p(x)x+ LLz

p'(x ) a'(x }

(a, b) and (ao, bo) being two solutions of (Bl), we have

(a ao)F~ (b —bo)F—~+ i
——0—.

(81) a(x) =1+i[1+a(x)]b,g,
a(x) = sin(P+ A, )/(cosA, sinf )—1,
P(x)=b(x)61(, b(x)=i sink, e '~/sinf .

Since Fz and Fz+& are relatively prime numbers, the
above relation implies that We have Y(x+M )= A "„+ Y(x). Introducing W(x)

= Y+ /F, we obtain
Q =go —kFp(+]

b =ho —kE~ .

(82)

(83) d$V/dg=b+2i(1+a )W O'W— (C 1)

Relations (82) and (83) give the complete set [a,b J pro-
vided we know a particular solution (az, bo). This one
can be obtained from a previous relation giving the width

from which we deduce

d($'W')/d@=(b'fV+bW'}(I —
I

W
I

2) .
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As expected we find that equality
~~8'j = l is preserved

by Eq. (Cl). Therefore we put W=e', and, using vari-
able P instead of P, we find that 8 obeys the following
equation:

(a sinf /2f )d 8/dP = sinAco, s(8+A)+, sin((()+A)/cosA,

or, making the variable change 8~8+A, , /~/+A, ,

(a sinf/2f )d8/dP sink, cos8= sing/cosA, , (C2)

f=arccos(cosP/cosA, ) .
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