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The problem of the packing density on quasiperiodic lattices is discussed in a systematic way us-

ing projection techniques. For compact domains a direct construction is presented using a Voronoi

construction on a quasilattice in perpendicular space de6ned by the forbidden volume of the packed

objects. A generalized inflation law, valid for arbitrary shapes of the acceptance domain using the

properties of linear mappings of the hyperlattice on itself which commute with the symmetry group,
is used to show that the packing densities and the whole structure of the projected quasilattice are

periodic under scale transformations. %'e find the optimal compact acceptance domains and pack-

ing densities for several icosahedral problems. For the packing of spheres on the primitive lattice,
an icosahedron and the truncated triacontahedron give equal densities but difFerent quasilattices.

For the packing of icosahedra one 6nds only the second lattice and a very high density. For the fcc
and bcc lattices the maximum density acceptance domain is a triacontahedron and the densities are

considerably lower. The results of Henley for including correlations to increase the density are re-

formulated in terms of a graph problem in perpendicular space. Including only the graphs

equivalent to his, we Snd the same packing density for the two primitive and for the fcc lattice. It is

shown that a generalization leads to an interesting and very complex problem in graph theory which

we are unable to solve.

I. INTRODUCTION

An interesting aspect of quasicrystalline ordering is the
question of the packing densities associated with such ar-
rangements. In essence this is also the zero-order ap-
proximation for the structural stability problem. The
problem is nontrivial because different atomic sites have
different environments and a considerable variety of
(nearest-neighbor) Voronoi polyhedra, even for the sim-
plest case of single-species undecorated quasicrystals.
When one considers a quasicrystal as a projection of a
periodic hyperlattice in a higher-dimensional space, '
one finds that the quasiperiodic arrangement of projected
points depends not only on the chosen hyperlattice but
also on the shape of the acceptance domain used for the
projection. The packing density one can achieve then de-
pends both on the point density of the quasicrystal and
on the size of the largest objects of a given shape which
can be placed at all these points. In particular, for a
packing of spheres this depends on the smallest nearest-
neighbor distances in the quasilattice. Clearly the largest
spheres one can pack cannot have a diameter larger than
this distance. Henley has recently discussed the
icosahedral quasiperiodic packing of spheres using
several shapes for the acceptance domain. Using the
techniques developed by Elser one can determine the
point density and other properties, like the distribution of
nearest-neighbor distances, from the volume and shape of
the acceptance domain. Our purpose here is to develop a
systematic approach for this problem.

In Sec. II eve show hovv one can calculate packing pa-
rameters and the conditions for the appearance of the
various separation vectors between the projected lattice

points from the structure of the acceptance domain. Our
considerations in this section are very similar to those of
Elser, and most of the results we derive are not new.
The essential point is that the volume of the acceptance
domain (in perpendicular space) is proportional to the
density of the projected points. Thus one has to maxim-
ize this volume subject to the constraints imposed by the
packing conditions.

In Sec. III we use these results to develop a systematic
procedure for maximizing the packing density, on the
quasilattice, for objects of arbitrary shape and size. The
procedure only assumes that one wants to place the same
object at all the points of the quasilattice. The shape and
size of the object define an excluded volume in parallel
(physical) space. No other (quasi)lattice points are al-
lowed within this volume around any occupied point.
This excluded volume, considered as an acceptance
domain, defines a quasilattice in perpendicular space con-
sisting of the projections of all the hyperlattice vectors
which are forbidden. One is looking for the largest ac-
ceptance domain (in perpendicular space) which excludes
all these vectors around any accepted point. For com-
pact acceptance domains the density is maximized by a
Voronoi cell around the origin of this quasilattice in per-
pendicular space.

%e then prove that the packing density is periodic in
the size of the packed objects. To prove this we use a
generalized form of inflation, based on the properties of
linear operators which map the hyperlattice on itself
while they remain simple scale transformations in both
parallel and perpendicular space separate1y. The ex-
istence of such operators, their relation to inflation, and
their mathematical context were discussed recently by
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Ostlund and %light. Our derivation ls dNerent. For
the icosahedral group the definition of these operators is
essentially umque and their construction is straightfor-
ward. The scale factors are v and v . The shrinking of
any acceptance domain by v will give a quasicrystal
identical to the original one except for a v scale trans-
formation. The result for the packing densities follows.
This is the context of Sec. IV.

These results are applied to the packing of spheres on
undecorated icosahedral quasilattices in Sec. V. We
derive the acceptance domains which maximize the den-
sity for all three lattices. %e find two acceptance
domains for the primitive lattice, a truncated triacon-
tahedron discussed already by Henley and an icosahed-
ron, and for both the fcc and the bcc lattice a triacon-
tahedron. The maximum packing densities for compact
acceptance domains are 0.56 for the primitive (sc) lattice
for both acceptance domains, 0.30 for the centered
icosahedral (or bc) lattice and 0.48 for fc. We also give
results for the distributions of neighbor distances for the
icosahedral acceptance domain supplementing the results
of Henley for the truncated triacontahedron. For the
packing of icosahedra we find that the acceptance
domain is the truncated triacontahedron and the packing
density is extremely high (0.62), much higher than any of
the results of Ref. 6.

The Voronoi construction maximizes the density for
compact acceptance domains. It was noted by Henley
that one can obtain considerably higher densities if one
allows for correlations in the quasilattice. This results in
an acceptance domain which has a larger volume but is
no longer simply connected. Using the results derived
earlier we reformulate this problem as a condition on the
acceptance domain. We show that the terms considered
are only the simplest, and can, at least formally, be gen-
eralized. One ends up with a very interesting problem in
graph theory —namely the minimal number of points
needed to decompose a graph formed by the vectors of
the forbidden quasilattice, and the shape of the accep-
tance domain which corresponds to this decomposition.
This problexn turns out to be completely intractable even
as a computational problem as soon as one includes any-
thing beyond the smallest vectors (the Henley approxima-
tion). Thus all we were able to show was that higher den-
sities are probably possible. We also apply the lowest-
order corrections to the sc lattice with an icosahedral ac-
ceptance domain and to the fcc lattice, and 6nd in both
cases a density equal to that achieved by Henley (0.62}.

II. DENSITIKS AND THE ACCEPTANCE DOMAIN

Consider a lattice (L ) in D-dimensional space (R )

consisting of the vectors

Rn= gn, e, ,

where the e; arc linearly independent. %e decompose
R into two mutually orthogonal subspaces R ~~ and E. .
A general vector ra in R can then be decomposed into
its parallel and perpendicular components {rll'ri). A pro-
jected (quasi} lattice L ll in 8 ll is defined by

Rll+Lll if R,eS'(r, } and RD=(Rll, R,)ELD, (2)

where the acceptance domain Sj (r) is some region in 8 .
This is equivalent to the projection of a slice of L of
"width" S (r ) in R on R ll. L ll is a "lattice plane" of L
(and therefore a periodic lattice in R ll) if all its direction
cosines with the e; [Eq. (1)]are rational. Otherwise it is a
quasiperiodic quasilattice. Quite generally one has for
the volumes

where VD is the volume of a region in R and Vll and Vj
are the volumes of the projections of this region on R ll

and R, respectively. Thus if the volume of the elementa-
ry unit cell of I.+ in 8 + is 1, then

,
S —1 d pll

——1/, —S (4)

where the two regions Si(r) and Si(r+Ri) are shifted by
Ri with respect to each other.

Most of our considerations below will use this relation-
ship or its analogs. In particular, it follows that Rt~ will
not appear for acceptance domains such that the overlap
[Eq. (5)] is empty. As stated in the Introduction these re-
sults are in the main equivalent to those of Elser.

III. THE VORONOI CONSTRUCTION

It is clear from the above that the packing density for
objects of a given shape will depend on the shape of the
acceptance domain. If, for example, wc want to pack
spheres of diameter d then the largest spheres compatible
with a given acceptance domain will have a diameter
equal to the smallest nearest-neighbor distance allowed.
This is, according to Eq. (5), the smallest Rll for which
So(Rll } defined in Eq. (5) does not vanish. For spheres of

where S„ is the volume of the acceptance domain Si(r) in
R'

Ull is the volume p r point and pll the density of the
points in Lll. These relations, which are always true on
the average (when one averages over the positions (r') of
the acceptance domain Si(r —r') with respect to the pro-
jection of the origin [in Eq. (1)] on R ) become indepen
dent of the position of Si(r —r') when R contains no lat-
tice vectors of L . We shall assume this implicitly in the
following. The considerations become a little more com-
plex when this does not hold even when Lit is still a
quasilattice —as for the projections of the Penrose tiling
from five dimensions. This is proven in great detail by
Else r.

While the density p~I depends only on the Uohume of the
acceptance domain, other properties depend also on its
shape. Thus a separation Rll between two points in L'l
can appear only when two points separated by the corre-
sponding perpendicular projection (Rj) can both fall
simultaneously into Sj (ri). The density of such pairs in
L'l, pll(Rll), is then given by the volume So(Rll) of the
overlap region So(r, ;Rll)

pll(Rll)=so(Rll) whell So(rJ, Rll) =SJ(rJ ) rlSJ (rJ+RJ };
R ={R,R )EL, (5)
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c =pii(d)U =Si(d)v (8)

where Si(d} is the volume of the Voronoi cell defined by
the above construction and u (=md /6) the volume of
the packed spheres.

There are now two complications.
(a) It is evident that this acceptance domain will not

change smoothly as a function of the sphere diameter (d).
The Voronoi polyhedron is determined by a small num-
ber (usually one or at most two} of stars of the quasilat-
tice. They change only for certain discrete values of d.
These special values of d obviously give the maximum
(volume) packing density for a given acceptance domain.
One also finds that, in general, not all vectors of Li(Ri)
play a role. As the diameter is increased, and as a result
L changes as new vectors are added (or some vectors are
subtracted), only certain special vectors ever show up as
those determining the acceptance domain (i.e., the Voro-
noi polyhedron of the origin).

(b) The second problem is more delicate. In general
one can obviously vary d through the whole range
0&d & oo. There is no way one could check this whole
range directly. We solve this problem by showing that
the packing density is periodic in the scale. For the
icosahedral quasicrystals we show that spheres of radius
d and of radius r d always have identical packing frac-
tions. %e shall do this by proving a generalized in8ation
rule for lattices generated by arbitrary acceptance
domains.

Finally, we note that the procedure we have discussed
above can obviously be generalized to calculate the pack-
ing density of objects of arbitrary shape. The only
difFerence is that the forbidden excluded volume in R i

around any lattice point of L, It, which de5ines the quasilat-
tice L in R, will then not be spherical. It will have a

diameter d we therefore need an acceptance domain
Si(r;d) such that

So(Ri):—0 if R
()

& d .

To maximize the packing density one needs the accep-
tance domain which satisfies Eq. (6) and has the largest
volume.

It is evident that the vectors Rj for which Eq. (6}
holds, form a quasilattice L' in perpendicular space (R ')
with the spherical acceptance domain (in R i) R

1
& d:

R~GL if Ri &d and Rn=(Ri, Ri)CL . (7)

Thus the acceptance domain for the quasicrystal we want
to construct must exclude aB the vectors (Ri ) belonging
to L . The condition is obviously that Eq. (5) will give
So =0 for all these vectors. If we want a compact domain
the largest volume for which this holds is given by a
Voronoi construction. One draws the planes bisecting all

the vectors R, of L . The region defined by this con-
struction around the origin is the largest compact accep-
tance domain which excludes all vectors Ri. It is the
Voronoi polyhedron of the origin on ihe quasilattice I.~

defined (in R ) by Eq. (7).
The maximum volume packing density (c) for these

spheres is then given by

diN'erent shape and the Voronoi construction has to be
implemented for the resulting quasilattice. Also, in cal-
culating the packing density through Eq. (8), we have to
use the correct volume U of the packed objects.

%'e sha11 Srst prove the generalized inflation rule in the
following section and then proceed to calculate the
relevant acceptance domains and packing fractions for
the icosahedral lattices.

IV. INFLATION FOR GENERAL
ACCEPTANCE DOMAINS

A general vector of L can be written in terms of its
components in Eq. (1) [Rn ——(ni, n2, . . . , nn)]. We note
that this description is not necessarily orthogonal in R n

[if the vectors e; in Eq. (1) do not form an orthonormal
set]. Assume for simphcity that the lattice is primitive
(i.e., there are no restrictions on the n;). The lattice is
then mapped on itself by the D dimensional matrices M
with integral elements. If, in addition, det~)M ~)

=+1 then
M has an integral inverse and the mapping is one to one.
The matrices E for which this holds form a group [E].
A general transformation E in this group is a linear aSne
transformation of R+ on itself which conserves volume.
For completeness we note that when R contains lattice
vectors it is useful to use a more general definition of [E]
because an infinite number of difFerent points in L D then
have the saiiie Rl but dllei'eilt Ri. The generalization is

straightforward but in the following we assume, for sim-

plicity that this is not the case.
Let the lattice L be invariant under some point group

G. It is then always possible to represent the operations
of 6 in the form E and this defines a unique subgroup

[6]of [E].9 [G] describes the way 6 acts on the lattice
vectors of L~ but also the way the operations of 6 act on
the whole space R when they act at the origin of L and
1eave this origin invariant. The cases of interest are those
in which these representations of 6 are reducible. They
can then be reduced' to a form in which they act sepa-
rately in n irreducible, mutually orthogonal, subspaces of
R~—R', R2, . . . , R". One of these would be Ri. It is

then possible to find a subgroup of [E], [E '], of opera-
tors which commute with [6]. These operators define
infiations of Li which can be obtained by suitable scale
transformations of the (arbitrary) acceptance domain in
each of the subspaces R' orthogonal to R~' separately.
The existence of these operators, their relevance to the
description of inflation, and many of their mathematical
properties mere recently discussed by Ostlund and
%right.

We notice that any matrix whichwhe, n reduced, is a
constant (scale factor} A, , in each subspace R' separately
will commute with [6]. Among these there are obviously
matrices w'hose determinant is one. The demonstration
that the A.; can always be chosen so that one obtains in-

teger representations which belong to [E] is a httle more
complex, but elementary. %e omit the demonstration
here. A much more sophisticated proof is given in Ref. 5.
%e construct the operators explicitly for the icosahedral
lattices below.

It is simplest to see why operators of the group [E ']
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define an inflation when R ~~ and 8 are both irreducible.
Let the two scale factors obtained when the matrix is re-

duced be A, i and Aj where obviously (A.i) '(Ai) '=1 and
we can assume A,

i & A,j (otherwise we look at the inverse
matrix).

Consider now what the transformation does. It trans-
forms the set of vectors in the original projected slice
IRD I with projections {Ri] and IRj I into a new set of
vectors of l. : t RD ] with scaled projections

I =aiIRt(I and IRAQI =1,IR, I. Obviously, the pro-
jected lattice L~~ is simply the lattice one would obtain
from I. by using an acceptance domain scaled by A, i but
of the same shape as the original acceptance domain.
The result 1.~~ is identical to 1.~t —point by point —except
for a scale factor A,i. The transformation is thus
equivalent to a projection of the same lattice with an ac-
ceptance domain reduced by a factor A,z leading to a
scaled version (by A, l) of L i —L 1'. The points of I.1' all
belong to I.i. At the same time they can also be tiled in
the same way as 1.1 but with larger, scaled, tiles. The re-
lation to standard geometric definitions of inflation is ob-
vious. The advantage of our procedure is that it holds for
arbitrary shapes of the acceptance domain and defines an
in8ation for any arbitrary form of tiling one may choose.

In the following we illustrate this for projections of
icosahedral lattices from six dimensions. We choose an
orthonormal set of vectors e; in E. as a basis set and
choose Y so that each of these axes is invariant under one
of the fivefold rotations. Any matrix M of the form

n —n —n

n —n —n n m

—n —n n

then commutes with [Y]. It is easy to see that the eigen-
values of these matrices are A,+ ——mknv 5. They there-
fore belong to [E] (and then obviously also to [E '] }only
when m2 —5n2=+l. The smallest eigenvalue (larger
than one) is 2+&5(v i) for m =+2 and n = %1.

For the packing density of spheres it follows that it is
therefore sufBcient to investigate the range

1&d &r '=2+&5 .

Any possible packing density must also show up in this
range for any shape of the acceptance domain. This is

1

1

1

—1

1

0 0
1 0

—1 0
0 1

—1 1

0 0 0 1 1

0 0 0 1.47 1.35
0 0 0 1.05 1.7
0 1 0 056 238

—1 0. 0 0.63 2.74

12
30
30
20

the result for the primitive (sc} lattice. Clearly all powers
of this scale factor are also allowed.

For the two other lattices it is convenient to take the
size of the cubic cell as one so that points with half in-

tegral indices appear. It can thus be seen that half in-
tegral values of m and n are allowed in the matrices M
which otherwise still have the form given in Eq. (9). The
smallest eigenvalues appear for 2m =+1, 2n =+1 giving
a scaling factor A+ ——(1+v 5)/2=~*' for both these lat-
tices.

We note that the reflection of these in6ation rules in
the Fourier spectrum were already noticed by Elser and
are discussed in detail by Ostlund and Wright.

V. THE OPTIMAL COMPACT ACCEPTANCE DOMAINS
FOR THE ICOSAHEDRAL LATTICES

The results of constructing the acceptance domains ac-
cording to these prescriptions are shown in Tables I-IV.
In Table I we list some of the lattice vectors wi. th small
indices which are useful in this context. We also give the
number of vectors in the icosahedral star to which these
vectors belong and their parallel and perpendicular pro-
jections.

In Table II we give the results for the primitive (sc) lat-
tice. We 6nd two acceptance domains which give equal
densities. One is an icosahedron (with 20 faces) and the
other a truncated triacontahedron. The latter domain is
also mentioned by Henley. The icosahedral acceptance
domain has not been discussed before. Both acceptance
domains give an optimal volume packing density of
c =0.56. The two quasilattices are ho~ever quite
diferent in detail. This can be seen by comparing the dis-
tribution of neighbor environments for the icosahedral
domain given in Table IV with the corresponding results
of Henley for the truncated triacontahedron.

TABLE I. The small index vectors with projections closest to
the origin. %'e give the six-dimensional description, the lengths
of the two projections, and the number of vectors in the
icosahedral stars.

Vector

TABLE II. Determining vectors, their projected lengths, and the resulting packing densities for the
sc lattice. It can be seen that one obtains two types of Voronoi ceHs which repeat periodically as the
scale is changed.

0
0

—1

0
—1

—3

Vector

1

0
0
1

—1

—2

—1

0
0
1

1

2

0.563
1

1.7
2.38
4.22
7.2

2.38
1

1.05
0.563
0.236
0.248

0.55

0.55
0.55
0.55
0.55

Stars

2,3
4

5,6

20
12
30
20
12
30
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TABLE III. Same as Table II but for the fc lattice.

1 0
2 1

3 1

4 0

1 1 0 1
—1 0 0 0

1 0 0 0
1 1 0 —1

1 0.63
0 1.05
0 1.7

—1 2.76

2.76
1.7
1.05
0.63

0.48 30
0.48 30
0.48 30
0.48 30

Even more striking is their role when one tries to pack
other objects. %e have constructed the excluded volume
and Voronoi cells for the packing of icosahedra, a prob-
lem studied in great detail in Ref. 6. One only finds the
truncated triacontahedron as acceptance domain. The
icosahedral Voronoi cell does not appear at all in this
packing problem. Since the volume of the accommodat-
ed icosahedra is larger than that of the spheres, for the
same point density, one obtains a very high-volume densi-
ty of 0.65. This is much higher than the densities found
in Ref. 6 for the same problem using other techniques.
On the other hand, only the icosahedral acceptance
domain appears for the packing of objects with the shape
of the truncated triacontahedron.

For fc we find a triacontahedron as the only shape of
the acceptance domain and the density is 0.48. This is
described in Table III. In both tables we have retained
some redundancy to illustrate the scaling periodicity dis-
cussed in Secs. III and IV above. For the centered bcc
lattice the maximum density is 0.3 but we do not give the
details of the construction.

VI. HIGHER DENSITIES AND COMPI. KX
ACCEPTANCE DOMAINS

TABLE IV. Distribution of numbers of near neighbors for
the primitive (sc) quasilattice obtained with the icosahedral ac-
ceptance domain of Table II. n is the number of neighbors and
the frequency of sites with this number of neighbors given for
the sheH at 1, for the shell at 1.05, and for both shells combined
(that is the density of sites having this number of neighbors in
both shells together).

0
1

2
3

5

6
7

9
10
11
12

0
0.007
0.013
0.033
0.316
0.26
0.252
0.02
0.046
0.007
0
0
0.044

r =1.05

0.051
0.046
0.03
0.119
0.093
0.36
0.212
0.093
0
0
0
0
0

1+1.05

0
0
0
0
0
0
0.007
0
0.046
0.44
0.1

0.36
0.04

A. The Henley acceptance domain

Henley 6rst noted that the packing density can be in-
creased considerably if one allows for more complex
correlations in the positions of the accepted sites. The ar-

gument is simple, at least in principle. The Voronoi con-
struction assumes a compact domain. Any point inside
the domain excludes all regions of R which are closer to
it than any of the forbidden vectors Rz in the quasilattice
I. defined in Sec. III. This can be quite ineScient when
some regions in the compact acceptance domain are re-
sponsible for the exclusion (from the domain) of several
regions of equal volume which are outside. The density
(that is the volume of the acceptance domain) can then be
increased by punching a hole into the original domain
and adding to it the regions which are forbidden by the
projections of lattice sites in the hole. In physical space
this amounts to a rearrangement of some configurations
in a way which will allow the accommodation of more
spheres (this is the argument used in Ref. 3). The sim-
plest correlations are those related directly to the forbid-
den vectors for which R~ is smallest. Henley noticed
that they show up in the form of chains and the density
can be increased for chains with an odd number of ver-
tices. This allowed him to increase the packing density
considerably —from 0.56 to 0.62. We want to put this in
a more general and systematic context.

In Sec. III we defined an acceptance domain so that it
does not contain any vectors with a short parallel projec-
tion (smaller than d). This led to the Voronoi construc-
tion. Assume now that we expand this domain somewhat
and check if we can somehow find a larger volume within
this larger trial region.

The expansion of the acceptance domain wi11 result in
the appearance of "connected points" —meaning points
in the expanded domain which are connected by "forbid-
den" vectors with a short parallel component. At least
one of these points is always inside the original accep-
tance domain, because that is the way it was constructed.
If only points connected to a single other point appear
then we cannot gain anything. Replacing the original
point in the compact region by its partner (or more accu-
rately interchanging the two regions associated with the
two ends inside the expanded domain) will change the
shape of the acceptance domain but not its volume. If,
on the other hand, we find chains of connected points we
may be able to increase the total acceptance volume by
disconnecting these chains in a different way. For exam-
ple, a chain of three in the expanded domain with its cen-
tral point inside the original domain can be disconnected
by removing the center. This procedure will result in an
acceptance domain full of holes, but with a larger volume.
Starting with the Voronoi cell one can continue expand-
ing the acceptance domain in this way until it becomes so
large that new (and larger) forbidden vectors belonging to
I. begin to appear. This happens when the boundaries
of the expanded domain reach those of the second Voro-
noi cell around the origin. Until that point only the Hen-
ley chains show up and they can be disconnected
efficiently in a trivial way. This procedure is in essence
equivalent to that of Henley if the rearrangements in
real space, which he carries out, are done with sufficient
care so as not to destroy the quasiperiodicity. Our pro-
cedure obviously assures the quasiperiodicity automati-
cally and the volume of the corrected domain gives the
new density.
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Explicitly the procedure amounts to the following.
One starts out with the "second" Voronoi cell of the ori-
gin in I. which includes aB the forbidden vectors respon-
sible for the boundaries of the "5rst" Voronoi cell dis-
cussed in Sec. III but no larger forbidden vectors. One
can then construct chains from these forbidden vectors
inside the trial region. The chains are disconnected in
the most eScient way by punching holes. %e shall call
the resulting acceptance domain the Henley domain.

We have constructed acceptance domains in this way
for both the sc and the fc lattice. For sc we confirm
Henley's result and obtain an increase in packing density
from 0.56 to 0.62. Somewhat surprisingly the correction
for fc is much larger. The Voronoi construction gave
only 0.48 in this case but the corrected density is the
same, 0.62. This is of course close to the densities of ran-
dom close packing. "

B. The general yrob1em

If we generalize these results the question of higher
densities for projected quasilattices is formally well
defined. %'e can go on increasing the region we investi-
gate in R ~. %hen we cross the boundaries of the second
Voronoi cell new vectors R, and therefore new and much
more complex forbidden graphs appear. The problem
reduces to a problem in graph theory of finding a
minimal separating set for these graphs. Since the com-

plexity of these graphs increases very rapidly and one
even encounters infinite graphs very soon, this problem is
far from being trivial either formally or as a computa-
tional problem. Since the complexity of the graphs in-
creases very rapidly naive approaches are useless. In par-
ticular, it is not known whether one can construct a sys-
tematic iterative procedure for successive corrections.

At this stage we do not even know for sure if there are
higher quasiperiodic densities than those found by Hen-
ley, though one obviously expects this. It is also not
clear if the addition of successively larger stars (in R )

and therefore of more complex graphs, results in a sys-
tematic iterative procedure for the quasiperiodic packing.
It is possible that the whole acceptance domain may have
to be redesigned at each successive stage when a new star
is added but this would contradict our expectations.
Somehow one would hope that successive rearrangements
would involve more complex and rare local environments
and smaller gains in the total density. It is, however, by
no means evident that this is indeed the case.
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