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The physical significance of Galilean transformations applied to effective-mass (EM) equations for
Bloch electrons in Wannier representation is discussed and contrasted with that of Galilean coordi-
nate transformations applied to the free-particle Schrodinger equation. Mass constraints imposed
on the latter by Bargmann’s (1954) superselection rule do not extend to the EM, and criticisms of
the position-dependent EM concept which have invoked Bargmann’s theorem are shown to be
without foundation. Other criticisms concerning the nonuniqueness and non-Hermiticity of
effective Hamiltonians which employ this concept to describe crystals of graded composition are
discussed, and it is argued that the problems are associated with the heuristic nature of the virtual-
crystal model which is adopted rather than with the position-dependent EM.

I. INTRODUCTION

By means of effective-mass (EM) methods the dynam-
ics of Bloch electrons, subject to externally applied fields
or those due to lattice imperfections, may be studied free
of complexities due to the periodic lattice potential. In
familiar applications of these methods to homogeneous
crystals'~> the EM parameters are constant over the
crystal volume. However, in extending the method to de-
scribe crystals which are inhomogeneous due to spatially
varying lattice distortions,*~® compositions,'®~!* or
structure'*!> one encounters EM parameters which de-
pend on position. The logical self-consistency of this con-
cept has been questioned!®~!® by noting the identical
forms of the free-particle Schrodinger equation and the
conventional isotropic EM equation appropriate to a
homogeneous crystal and then appealing to Bargmann’s
theorem'®~?2 by which the (Newtonian) relativity princi-
ple constrains the mass of a free particle to be constant.
It is the aim of the present paper to address this criticism
and some problems of nonuniqueness and non-
Hermiticity of the effective Hamiltonian which have also
been noted'>!"!® in connection with the application of
the variable EM concept to semiconductors of graded
composition. We are motivated by a belief in both the
usefulness and the rigorous justifiability (see Sec. IV) of
position-dependent EM formalisms, at least in some in-
stances, and particularly in the contexts of distorted crys-
tals,*~® heterostructures,'*!> and epitaxially laminated
superlattices.

The plan of the paper is as follows. In Sec. II we re-
view the principles surrounding the Galilean invariance
of the Schrodinger equation (in position representation)
to clarify the physical basis and content of Bargmann’s
theorem, which depends on the equivalence of inertial
coordinate systems (having relative speeds v <<c¢) for the
classical and (via Ehrenfest’s theorem) the quantum
descriptions of nature. It is shown, following Refs. 21
and 22, that this equivalence is inconsistent with a mass
spectrum, i.e., that a dependence of the mass parameter
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on state, or wave vector, is not permitted (Bargmann’s
superselection rule). The derivation presented in Sec. II
makes it clear that position independence of mass is
essential to the proof of Bargmann’s theorem so even if
an analogue of Bargmann’s theorem were established for
the conventional EM equation (with position-independent
EM) it would say nothing about the logical consistency of
the position-dependent EM concept. It would, however,
raise serious problems for band theory as it would imply
that superpositions of states coming from more than one
band were impossible. In view of the doubts about the
admissibility of the above concept which were raised by
von Roos!®~!¥ there is a need for clarification and we
therefore investigate, in Sec. III, the meaning and impli-
cations of applying Galilean transformations to the
Wannier-representation EM  equation. Following
Slater,> we emphasize there that the spacelike variable
appearing therein represents a label which designates the
Wannier base states onto which the quantum state of the
system may be projected. Although a multitude of
(Galilean transformed) labeling schemes may be adopted,
there exists no relativity principle by which the form in-
variance of the EM equations appropriate to different
schemes may be asserted. Rather, because the EM equa-
tion is derived from the Schrodinger equation, its form is
predetermined by the latter and by the specific scheme of
continuous labeling adopted for the atomic sites. By in-
vestigating the form which the EM equation takes under
Galilean label transformations and by modifying the ar-
gument of Sec. II we show that there exists no analogue
of Bargmann’s theorem in the case of effective mass and
that therefore neither restrictions on the band depen-
dence of the EM nor, a fortiori, on its position depen-
dence, are implied. An alternative view of the label
transformation procedure, leading to the same con-
clusions, is presented in an appendix.

In Sec. IV we consider the questions of uniqueness and
Hermiticity of effective Hamiltonians containing
position-dependent EM. Emphasis is placed on the need
for a physically precise model in achieving the former
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and on the need to consider the physical interpretation of
the “‘effective wave function” in assessing the latter.
These points are illustrated by reference to an effective
Hamiltonian appropriate to distorted crystals. Our con-
clusions are summarized in Sec. V.

II. BARGMANN’S THEOREM

Although the free-particle Schrédinger equation and
the effective-mass equation appropriate to a crystalline
environment have identical forms (at least for the case of
isotropic effective mass) the physical interpretations of
their solutions are quite different and this difference is
central to our argument. In this section the physical
principles underlying Bargmann’s theorem are outlined
following Refs. 20 and 21, to make the differences be-
tween the transformation properties of the quantum
theory as encapsulated in Schrodinger’s equation and
those of effective-mass theory (Sec. III) more evident.

The time evolution of any quantum state | ¥) of a free
particle of mass m is determined by

i WY =H | V), 2.1

ot

where H is to be understood as the kinetic energy opera-
tor (—#*V?/2m). (We adopt absolute Newtonian time
without further comment, in keeping with the nonrela-
tivistic connotations of the Schrédinger equation and the
Galilean transformation). The well-known correspon-
dence (Ehrenfest’s theorem) between the quantum and
classical descriptions implies that coordinate representa-
tions of H and |¥) expressed in terms of any inertial
frame must yield the same physics, at least for particle
speeds and relative frame speeds very much less than that
of light (as will henceforth be assumed). Consider a
Cartesian reference frame F in which a material particle
P has coordinates (x,y,z)=r and another, F’, in which
the same particle at the same time has coordinates
(x',y',z')=r’, where

r=r—vt+a, (2.2)

a being a constant vector (a,,a,,a,). The state | V) may
be described either in terms of its projections
Yp(r,t)=(r,F | ¥) on the eigenstates |r,F) of position
r as measured in F or in terms of Yp(r,t)=(r, F' | ¥)
where |r,F’) is an eigenstate of position r as measured
in F'. Note that r is a dummy variable in these relations
and may be replaced by r' or any other symbol. The
equivalence of the two quantum descriptions then
demands that

= o (00) = B () (2.3a)

2m FADEI=ERqp TR .
and

—# 5 . _a_

> Vippl(r,t)=ifi atlllp'(r,t), (2.3b)

and furthermore demands that the physical interpreta-
tion of the two wave functions be the same. In particular
the probability density at P must be the same whether ex-
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pressed as |¢p(r,t)|? or |Yp(r—vt+a,t)|? and this
quite generally implies

Yp(r,t)=e® "y (r—vt +a,t), 2.4)

where the function g is real. That g must also be indepen-
dent of the state | V) follows from the required invari-
ance of inner products such as (® | ¥) which the theory
relates to observable transition probabilities. On substi-
tuting (2.4) into (2.3a) it follows?*?! that the former rela-
tionship is consistent with the form invariance of the
Schrodinger equation only if

gln)="2vr—fo’) . 2.5)
It should be emphasized that this result is dependent
upon the position independence of m.

It is shown in Refs. 21 and 22 that (2.4) and (2.5) gen-
erate an accumulated phase change of arbitrary magni-
tude when a suitable sequence of boost and translation
operations is applied, the phase change being proportion-
al to m for a given sequence. This indeterminacy of
phase is specifically associated?? with nonrelativistic as-
pects, in particular the failure to distinguish between
coordinate time and proper time and the artificial separa-
tion of energies of excitation from the rest mass. If sta-
tionary solutions ¢'/(r,t)=¢;(r)exp(—iE;t /%) of (2.3)
existed, in which the parameter m was allowed to assume
values m ; dependent on the state of excitation, then a
superposition of such states would exhibit interference
effects which depended on the coordinate system chosen.
To avoid this manifestly unphysical situation ‘‘Barg-
mann’s superselection rule,” expressly forbidding such a
mass spectrum and restricting the application of the
Schrodinger equation to particles of constant mass, is for-
mulated. In view of the questions raised by von
Roos!®~!8 it is of interest to construct an argument which
parallels that of the present section as far as possible, but
applying instead to the EM equation. This is done in the
following section and it is found to lead to quite different
conclusions.

III. THE EFFECTIVE-MASS EQUATION

In the preceding section we emphasized that the
derivation of Bargmann’s theorem for the free-particle
Schrodinger equation depends on two physical principles.
Thus the principle of (Newtonian) relativity requires that
the wave functions which represent the same free-particle
state in coordinate representations corresponding to
frames in uniform relative motion should satisfy the same
free-particle Schrodinger equation (2.3), while the stan-
dard interpretation of the wave function requires in addi-
tion that these wave functions should be related as in
(2.4). The suggestion that the physical consequence, ex-
pressed in the superselection rule for particle mass,
should also apply to the effective mass of particles propa-
gating in a crystalline environment has been made by von
Ro00s.!®~!® This suggestion arises because of the identity
of form between the usual EM equation (3.14) and the
free-particle Schrodinger equation. However its substan-
tiation must rest upon a detailed study of the transforma-
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tion properties of the EM equation and the physical in-
terpretation of its solutions. In the present section we
deduce the forms taken by the EM equation when Galile-
an transformations are applied to the independent vari-
ables and deduce the interpretation which attaches to the
“effective wave functions” or ‘“modulating functions.”
Such transformations correspond to time-dependent la-
beling of Wannier base states.

To prepare the way for the time-dependent transforma-
tion (3.15) we first consider a monatomic lattice whose
atoms we suppose to be rigidly displaced from each lat-
tice point by o, i.e., they are located at positions

Rn:Tn+a y (3.1

where the lattice translations T,=n;a; (summation im-
plied), a; being primitive basis vectors and n; being any
integers. For the moment o is a time-independent vec-
tor. We define the Wannier functions

a;(r,R)=[Q"2/27)?] [ e~ *Rp(k,r)d% ,  (32)

j
where 0 is the unit-cell volume, R (for convenience of
notation we omit the index n) denotes a member of the
set (3.1), bj(k,r) is a Bloch energy eigenfunction of the
crystal Hamiltonian H, corresponding to band j and
wave vector k, and the integral is over the first Brillouin
zone. The existence of stationary energy eigenstates im-
plies that the coordinates (x,y,z)=r are measured in a
lattice rest frame. It is also implied, by the constancy (in
time) of o, that the atomic positions R are (for the
present) measured in such a frame; the latter condition
will later be relaxed. When o =0, or some other member
of the set {T,}, (3.2) are Wannier functions and depend?
only on the difference (r—R). For general o this is not
the case but the properties of orthogonality

[ a} (t,R)a;(r,R)d*r =88z , (3.3)

where the integral is over all space, and completeness

S af‘(r,R)a,-(r’,R)zS(r—r')
j.R

(3.4)

are still readily proved, along the lines of Ref. 23.
In view of (3.4) we may expand an arbitrary one-
electron wave function of the crystal as

\Il(r,t)= 2 CJ(Ryt)aj(r,R) .
R

(3.5)

Wave functions (3.5) with components from several
bands with different EM are considered since it is for this
case (only) that Bargmann’s theorem as invoked by von
Roos could possibly have interesting, i.e., disturbing,
consequences (viz., the existence of an EM-dependent
phase factor depending on an arbitrary choice of refer-
ence frame) if the theorem applied at all. On substituting
in the Schrdodinger equation and using (3.3) we find

aC;
iﬁ—;(k,t)zZej(R,R’)Cj(R’) , (3.6)
T
where no sum over j is implied and where
g;(R,R)= [ a*(r,R)H,a;(r,R")d’r . 3.7)
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By following a similar procedure to that of Ref. 23, and
using (3.1) to relate atomic positions and corresponding
lattice translations, we find

g;(R,R)=¢;(R—R’,0)=¢;(R—R")=¢,(T—-T') . (3.8)
Now it follows from (3.8) and (3.2) that
g,(T)=[Q/2n)] [ E;(k)e™Td% (3.9)
with inverse
E;(k)= 3 ¢;(T)e'T*, (3.10)
T

where E;(k) is the energy eigenvalue corresponding to
bj(k,r). We may use (3.10) to define the operator
E(—iVg) and consider its operation on an infinitely
differentiable function C;(R) of a continuous variable R.

By using Taylor’s theorem in the form??

{exp(T-Vg)}F(R)=F(R+T), (3.11)
(3.10) yields
E;(—iVg)C;(R)= ; g;(T)C;(R+T)
(3.12)

= % g;(R'=R)C;(R’),

where we have used the fact that (R+T) is a member of
the set (3.1). It then follows from (3.12) that solutions of
the differential equation

H2-C)(R,O=E,(~iVR)C/(R,1) ,
when evaluated at the discrete points (3.1), yield solutions
of the difference equations (3.6). For those solutions
C;(R) which vary slowly on the scale of the lattice con-
stant [this requires that solutions of (3.14) be restricted,
in each band, to plane waves of small wave vector] we are
justified in retaining only the leading order of derivatives
on the right-hand side of (3.13) to obtain the EM equa-
tion

(3.13)

ﬁ2
*
J

in2C (R )=~ (3.14)
2

Y V&C;(R,t) ,
in which m ! is the EM for the jth band and we ignore an
unimportant constant term which may be absorbed into
the time derivative. If the considerations of Sec. II ap-
plied to (3.14), unphysical interference effects would be
predicted unless the parameters m® were independent
not only of wave vector but also of band index—a con-
clusion which must be ruled out on both theoretical and
experimental grounds. In fact, Bargmann’s theorem does
not apply to the EM equation, as we now discuss.

It is clear from Sec. II that Bargmann’s theorem is
based on the physical requirement that the free-particle
Schrodinger equation provide a valid description of ap-
propriate physical phenomena, independent of which of
several frames of reference is used to specify particle posi-
tion coordinates. The formal similarity between (3.14)
and the Schrodinger equation has led von Roos!®~!8 to
conclude that Bargmann’s theorem has implications for
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the band effective mass. To assess this possibility calls for
consideration of the physics underlying Galilean transfor-
mations in the context of the EM equation. We have
been led to examine two different possibilities in this re-
gard. On the one hand we consider a Galilean transfor-
mation of all coordinates (including ionic coordinates im-
plied in the one-electron potential) which appear in the
one-electron Schrodinger equation. Physically, this cor-
responds to choosing a reference frame in which the lat-
tice moves uniformly. We then derive the EM equation
(A15), by expanding the wave function in terms of Wan-
nier functions centered on the atomic sites of this uni-
formly moving lattice, and show that its form differs from
(3.14). Thus the essential [from the point of view of es-
tablishing Bargmann’s theorem—cf. (2.3a) and (2.3b)]
form invariance of the EM equations corresponding to
the two frames is not present and consequently
Bargmann’s theorem cannot be invoked. The details of
the above viewpoint are developed in the Appendix.

In the remainder of this section we take an alternative
view which corresponds more closely to that of von
Roos,'%~!8 who considers Galilean transformations of the
variables appearing in (3.14). It is clear from the deriva-
tion leading to (3.14) that the variable R appearing
therein represents a set of three numbers which serve to
label the atomic sites of the crystal. In the conventional
scheme these numbers are time independent and are sim-
ply the atomic coordinates as measured in the lattice rest
frame (the transition from discrete coordinates to con-
tinuous variable having been made by restricting con-
sideration to slowly varying envelope functions). There-
fore Galilean transformations applied to a given R, yield
time-dependent labels

R,=T,—vt+o0—a=R, —vt+a (3.15)
corresponding to the coordinates of atom n with respect
to a frame which moves uniformly with respect to the lat-
tice rest frame. Although clumsy, such a labeling scheme
is legitimate, establishing a one-to-one correspondence
between label and atomic site provided the time is also
specified; i.e., a clock is indispensable in the interpreta-
tion of such a scheme. Bearing in mind the central role
of the relativity principle in establishing the invariant
form of (2.3a) and (2.3b), which played a crucial part in
the proof of Bargmann’s theorem, the corresponding
physical justification behind von Roos’s application of
this theorem to the EM rests on showing that the form of
the EM equation is invariant under different choices of la-
beling schemes (3.15). We now consider this. We noted
earlier that the completeness and orthonormality of the
functions (3.2) are retained when R is replaced by (3.15),
allowing the expansion

¥(r,t)= 3 C;(R,,t)a;(r,R,),
iR,

(3.16)

where the sum is over that set {R,} which is specified at
time ¢ by the Galilean transformation (3.15).

If expansions (3.5) and (3.16) are to represent the same
state we have, for all ¢,
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3 C)Ryt)a;(x.R,)
Js Ry
= 3 C/(R,—vt+alaj(r,R,—vt+a) . (3.17)
j’Rn

On substituting (3.2) and using the orthonormality of the
Bloch functions, (3.17) yields, for all ¢,

S Ci(R,—vi+a,t)e
R

—ik-(R —vt+a)

ik'R

=3 Ci(Rytle ", (3.18)
Rn

Further reduction of (3.18) can be achieved for those spe-
cial combinations of v and ¢ such that (vt —a) is some lat-
tice translation T#. In these cases one finds, on integra-
tion of (3.18) over the first Brillouin zone and using?*

oo 3
[anet Bt _Lrly

(3.19)

that

Ci(Rpy,1,)=C;(Ry,1,,) (3.20)

for all Ry,. Here ¢z, are those (discrete) times for which

vt,—a=T,, (3.21)

some lattice translation. Although (3.20) can only be es-
tablished for discrete (v,7,) satisfying (3.21), this restric-
tion becomes less and less important as the lattice con-
stant is decreased to reach the continuum approximation
or, alternatively, if the functions (3.20) vary slowly on the
scale of the (fixed) lattice constant. In any case the estab-
lishment of (3.20) for the above special values of v¢ shows
that no relation of type (2.4), viz.,

C;(R,t)=e“®IC,(R,1) (3.22)
can apply unless
G(R,1,)=0 (3.23)

and this is sufficient to rule out form (2.5); the latter ap-
pears to be essential, according to the discussion follow-
ing that equation, to the proof of phase indeterminacy
underlying Bargmann’s theorem.

Although nothing further need be said it is useful to
derive the EM equation appropriate to the Galilean-
transformed labeling scheme (3.15) in order to show
where the arguments of Refs. 16 and 17 (in particular,
Sec. II of Ref. 17) break down. Substituting (3.16) in the
Schrédinger equation one notes that the time dependence
imparted through (3.15) appears not only in the
coefficients C but also in the Wannier functions.
Methods similar to those which led to (3.14) then yield

-Gy (R vt +,1)=[E,(~i V) — v V]

XC‘j(R—vt—t—a,t) R (3.24)

in which we emphasize that both arguments on the left
are to be differentiated. The drift term on the right arises
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from the time dependence of the Wannier functions in
(3.16). It cancels with an identical term arising from the
first argument on the left of (3.24), yielding (for slowly
varying solutions)

Sz,

i EY

R'=R—vi+a

#2 ~ o
= m* [V%(’Cj(th)]R’=R—vt+a ’ (3.25)
m;

in which the time derivative is with respect to the second
argument only. Bearing in mind (3.14), it follows that
(3.25) has solutions (3.20). On the other hand, if a Galile-
an transformation is applied to (3.14) directly, the drift
term appearing on the right of (3.24) does not appear,
leading to a different EM equation and different con-
clusions.!®17
To complete the analogy with Sec. II we consider the
direct physical interpretation of the modulating func-
tions. It readily follows from the orthonormality of the
functions (3.2) that on integrating the absolute square of
(3.5) over a volume AV (centered on r=~R), whose dimen-
sions are large compared to the lattice constant but small
compared to the scale on which C (R) varies significantly,
that the probability of finding an electron in AV is?’
PAU=%§ 1C,(R, ) |2 (3.26)

and

AV ~
Pa="4 3 ICR,)| 2 3.27)
j
when calculated from (3.5) and (3.6), respectively. There-
fore the invariance of (averaged) charge density between
the two labeling schemes implies

S ICR|*=T |CiR,t)|*. (3.28)
i j

To make our point we consider a state |¥) made of
components from a single band. Equation (3.28) then re-
quires [cf. (2.4)]

C(R,t)=eCRIC(R,1) , (3.29)

where, as in Sec. II, the real function G (R,t) is deter-
mined by the fact that both C and C must satisfy certain
differential equations, in this case (3.14) and (3.25), re-
spectively. These imply G =0, agreeing with (3.23). The
contrast between (3.23) and the analogous expression (2.5)
is obvious and clearly negates the suggestion that the EM
should be subject to Bargmann’s theorem. It is a corol-
lary of this result that a more general solution may be
constructed from states of several bands without leading
to logical inconsistencies.

1IV. POSITION-DEPENDENT EFFECTIVE MASS

The concept of position-dependent EM has been asso-
ciated with an evident non-Hermiticity and nonunique-
ness of the associated effective Hamiltonians.!®~!® Such
theories present problems and have been criticized. The
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cause of these difficulties is not the variable EM concept
itself, but rather the unsatisfactory models (e.g., the
virtual-crystal model) from which the EM equation has
been derived and the associated difficulties of ascribing a
precise physical interpretation to its solutions. In con-
trast to Sec. III, where effective Hamiltonians were
rigorously deduced from the Schrodinger equation, the
lack of a precise deductive derivation leads inevitably to
some arbitrariness and, although the requirement of Her-
miticity may be invoked to rule out certain possibilities,
there can be no guarantee that the result is unique,
correct, or even meaningful. It must also be emphasized,
as we discuss in more detail below, that the Hermiticity
of an operator cannot be judged without considering the
physical interpretation of the functions on which it
operates, since this in turn determines the mathematical
structure of the integrals representing inner products [see
Eq. (4.3)].

Mixed crystals of graded composition present a very
difficult problem in which the deficiencies of the virtual-
crystal model are to some extent compensated by its
heuristic appeal; in any case the absence of alternative
strategies makes adoption of the model appear unavoid-
able. However, to illustrate the points made in the previ-
ous paragraph it suffices to consider the example of dis-
torted crystals, in which the concept of position-
dependent EM also arises®2?® (Ref. 9 also discusses earlier
formulations*~8). In this case the deduction of a unique®*
and Hermitian effective Hamiltonian and the physical in-
terpretation of its solutions both follow rigorously from
the Schrodinger equation using methods similar to those
of Sec. III. Although all the details need not be presented
here, we wish to emphasize the importance of physically
interpreting the envelope functions C(R,?) before judg-
ing the Hermiticity of the effective Hamiltonian. Thus
we observe, following Sec. III of Ref. 9, that we may in-
tegrate the absolute square of the total wave function
over a small volume AV to obtain a probability analogous
to (3.26). Now, however, if we denote the elastic dilata-
tion by O(R) the number of atoms in AV is inversely pro-
portional to 146, leading to a spatially averaged proba-
bility density [see Eq. (19) of Ref. 9]

p(R,t)=|C(R,t)|%/[1+O(R)], @.1)

where, as before, ) denotes the unit-cell volume of the
undeformed crystal. Hence the normalization condition

d°R

2« 2
Jie® o 78R =

1 (4.2)

must be applied to the modulating functions. It follows
that the integral defining the inner product of two modu-
lating functions

d?R

14+6(R) @3

(CqlCpr= [ CER,CHR,

must contain the same weighting factor and hence that
the question of the Hermiticity of the effective Hamiltoni-
an H,, i.e., the property by which?’

(C,|H,Cp)=(Cpy|H,C,)* (4.4)
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for all C, and Cg, cannot be separated from that of phys-
ical interpretation of the modulating functions. In the in-
terest of simplicity we have written Egs. (4.1)-(4.4) in
forms appropriate to a one-band model; the many-band
extensions are available in Ref. 26.

V. SUMMARY AND CONCLUSIONS

After investigating the theoretical basis of Bargmann’s
theorem (Sec. II) we pointed out that if this theorem were
to apply to the EM equation (3.14) its effect would be to
restrict the band dependence (not the position depen-
dence) of the EM. We conclude that criticisms'®~!® of
the position-dependent EM concept which appeal to
Bargmann’s theorem cannot be sustained.

In fact, Bargmann’s theorem does not apply to the EM
equation and no restrictions on the band dependence of
the EM are implied. This was established in Sec. III by
investigating the physical significance of Galilean trans-
formations in this context and showing that the physical
invariance of EM theory when different base-state label-
ing schemes (related by Galilean transformation) are em-
ployed implies that no EM-dependent phase changes, of
the type (2.5) which led to Bargmann’s theorem, accrue.

In the absence of justifiable criticism the concept of
position-dependent EM remains a useful and powerful
one with application to a number of problems. However,
as emphasized in Sec. IV, it is important that effective
Hamiltonians which embody this concept be based upon
physically sound models which permit adequate con-
sideration to be given to the direct physical interpretation
of the modulating functions which they govern.
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APPENDIX

In the main body of this paper we have attempted to
clarify the physical meaning of the Galilean transforma-
tions applied by von Roos'®~!8 to the spacelike label vari-
able appearing in the EM equation and have shown that
no EM version of Bargmann’s theorem follows. Howev-
er, given the invariance of the complete Schrodinger
equation under Galilean coordinate (both electronic and
ionic) transformations we should also examine what this
invariance implies regarding the corresponding EM equa-
tions. In this appendix we show, by explicit derivation of
the EM equation arising when a coordinate frame other
than the crystal rest frame is adopted, that this equation
does not possess the form invariance*® assumed by von
Roos!®~ '8 5o that an essential ingredient for the proof of
Bargmann’s theorem is missing.

We consider the variation of the effective-mass equa-
tion due to the Galilean transformation of the coordinate
system. We will show that the effective-mass equation is
not Galilean invariant.
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We begin with the coordinate system F in which ions
are at rest. Then, W in (2.3a) is expanded in terms of
Wannier functions as follows:

\PF(r,t;{Rm} )= E Cj(nyt)apj(f,Rn) .

jom

(A1)

This is equivalent to (3.5) in the text and the apparent
difference comes from the notations which are employed
here to facilitate the following discussion. The subscript
F is retained on the right-hand side since we wish to also
consider another coordinate system F’ which moves
against F. The same subscript is attached to the Wannier
function since this function needs to be defined [see (A9)]
according to the coordinate system. In this appendix
ions are labeled by n and ionic positions (with respect to
F) are denoted by R,. The dependence of the one-
electron wave function on the position of ions is indicated
explicitly on the left-hand side of (A1); this dependence
comes through the crystal potential in the Schrodinger
equation which is satisfied by V.

The definition of the Wannier function (3.2) may be
rewritten as

ag (L, Ry)=[Q2/(2m1"2]e ™ (k15 (R} )d K
(A2)

where we again acknowledge that the Bloch function de-
pends on ionic positions through the crystal potential.

Now we go to another coordinate system F’ which
moves against the rest system with the velocity v. The
coordinate r’ in the new frame is related to r in the old
one by (2.2). The wave function in the new coordinate
system is expanded in terms of localized Wannier-type
functions which will be appropriately defined below [see
(A9)];

Vel(r',t'; {Ry})= 3 Ci(n,t")ap;(r',Ry,) . (A3)
j,n

The position R}, of the ion with (frame-independent) label

n is now related to R, by

R,=R,—vt’. (A4)

If the description is not to depend on an arbitrary choice
of coordinate frame the functions on the left-hand side of
(A1) and (A3) must be related by (2.4) in the text.

To arrive at an appropriate definition for the a.; func-
tions we consider first the time-dependent Bloch function
in the rest frame,

b[:j(k,r,t; {Rm} )=exp[—1E1(k)t/ﬁ]bpj(k,r; {Rn} ) N
(A5)

where E;(k) is the eigenvalue corresponding to
bri(k,r; {R,}). Since the latter satisfies Schrodinger’s
equation it is transformed as follows using (2.4) and (2.5):

. . 2,
bpj(k,r',t'; Ry} ) =g ~iImvrtm/2n7cl/h

Xbg (kT +vt',t3(Ru}) . (A6)

When we substitute (AS) into (A6), we get a factor show-
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ing that the new function oscillates with the frequency
E[(k)/#i=E;(k)/fi+mv’/2% (A7)

meaning that the energy eigenvalue is shifted by the
amount of kinetic energy associated with the uniform
translatory motion. We choose to drop this factor in
defining the Galilean transform of the time-independent
Bloch function as

bp; (Kt (R} )= =¥ b (k,r' +vi',t'; {Rp}) .
(A8)

This function still depends on time since, in F’, the crys-
tal potential changes with time but quantum-mechanical
oscillation has been eliminated. Correspondingly we

define the Wannier-like function in the new frame as
ap;(r',Ry)=e "/ (¢ v, R,) (A9)

and readily establish the orthogonality, completeness,
and localization of these functions.
It follows from (2.4), (2.5), (3.5), (A3), and (A9) that

> Ci(n,t")ag(r'+vt',Ry)
j»n

__, —i(m/2#) 2 ’ ’
=e "MV Y Ci(n,t )ag(r'+vit',Ry) .

J,m

(A10)

When the orthonormality of the Wannier function is ap-
plied, it follows from (A 10) that

Cj(n,t')=exp |—ijov’" |Cym,1") (Al1)

i.e., that the frequency of oscillation of C; is also shifted
by the amount corresponding to the kinetic energy of the
uniform motion. Therefore, it is evident from (3.6) that
Cj(n,t") obeys the equation

m

5 08+ (mn)Cjln's 1),

i#-Ciln, =3, (A12)
~
where n’ denotes a typical member of the invariant label
set {n}.
In (A12) we have derived the equation of motion for
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the envelope C;(n,?) expressed as a function of the labels.
Since atoms are moving in the present case (coordinate
frame F’) this does not represent the time evolution of the
amplitude at a fixed point. To get the time evolution at a
fixed point, we should replace the first entry of C’ with
the position R, which is time dependent when n is fixed.
The time derivatives of these two functions are related by

aC'(n,t) dC'(R,t)
a ot

and the substitution of this into (A 12) yields

—v-VRC'(R, 1)+ (A13)

., 0 . m ,
ifim —ifiv-Vp——v® |Cj(R,1)

=35 RRICRLD, (ALY

in which R’ is now a typical member of the set {R,}, not
a Galilean transform of R. In the latter equation it is im-
portant to distinguish the free-electron mass m from the
band effective masses m* which enter the right-hand side
via the Fourier transform (3.10), leading to

. i . m > ’ _ #
tﬁat—tﬁvvk 5 C/(R,t)= 2m}

V&C;(R,1) .

(A15)

On comparing (A15) with (3.14) we observe that the in-
variance of form which was postulated (or, rather, which
is prescribed by the correspondence principle) in the case
of (2.3), and which plays a vital role in the proof?! of
Bargmann’s theorem, fails to carry over to the EM equa-
tions which derive from Galilean-transformed coordinate
frames. As a result Bargmann’s theorem cannot be estab-
lished for the EM (and of course, this applies a fortiori if
the m} depend on position.) The only exception would
be if all the m I-‘ were equal, in which case (A15) could be
reduced to the form (3.14) by a unitary transformation;
then the considerations of Sec. II and Ref. 21 would ap-
ply but, with all m equal, would be without physical
consequence.
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