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The implications of the mathematical format of the embedded-atom method of computer model-

ing of metals have been studied with use of a simple nearest-neighbor analytic model for the fcc lat-
tice. The physical inputs into the model are the atomic volume, the cohesive energy, the bulk

modulus, the average shear modulus, the vacancy-formation energy, and the slope at the nearest-
neighbor distance of the spherically averaged free-atom electron density calculated with Hartree-
Fock theory. The model employs an exponential repulsion between nearest-neighboring atoms, an

exponentially decreasing function for the free-atom electron density, and a universal equation relat-

ing the crystal energy and the lattice constant. The anisotropy ratio of the cubic shear moduli is
constrained to be 2 with this model. The dependence of the energies for unrelaxed configurations
for vacancy formation, divacancy binding, and low-index plane surfaces on the model parameters
has been analyzed. The average shear modulus plays a dominant role in determining these energies
relative to the bulk modulus or the cohesive energy because the slope of the embedding function at
the equilibrium electron density is linear in the average shear modulus. Embedding functions are
not uniquely determined in speci6c models, and it is shown that the embedding functions used in

several models are essentially equivalent.

I. INTRODUCTION

Metals have been studied with calculations based on
computer models since the earliest availability of digital
computers for scienti6c research. Fundamental to any
such research is the choice of the manner in which atoms
interact, i.e., of an interatomic potential. Numerous ap-
proaches have been used, leading to a long bibliogra-
phy' and a full complement of controversy. Any
choice is an approximation, so there is no ideal way of
treating this problem. Simple potentials tend not to have
enough flexibility to accurately portray real metals, while
more fundamental approaches tend to be too unwieldy to
carry out the desired calculations with sufficient
eSciency.

A new procedure for designing a mathematical model
of a metal has been developed by workers at Sandia Na-
tional Laboratory caBed the embedded-atom method
(EAM). ' It is based on density-functional theory as de-
rived by Stott and Zaremba (quasiatom approach) and
Ns(rskov and Lang (effective-medium approach). Here
the energy required to place a small impurity atom in s
lattice is taken solely as a function of the electron density
at that particular site. Each atomic species therefore has
a unique energy function which is in turn a function of
just the electron density. For example, Puska et al. '
have calculated this function for a number of light atoms
using a constant electron density (jellium) formulation.
Daw and Baskes ' extended this idea to a general lattice
model which permits variation in atomic positions by
also including a two-body central interatomic potential.
Thus it has been possible to include lattice relaxation and
cover a broad range of metals, impurities, and alloys, in-
cluding bulk, surface, and liquid properties. ' '" ' Re-
sults have been encouraging in that the model has shown

satisfactory agreement with experimental data over a
spectrum of (often previously intractable) problems.

As presently used, there is appreciable numerical
6tting to obtain the parameters and functions required
for an EAM model and all results must be obtained by
numerical calculations. To study the relationships be-
tween the physical input and output and the model pa-
rameters, a simple analytic fcc model has been developed.
The derivation of the model is given in the 5rst section
below. The model is then applied to several defects to ob-
tain the functional dependence of the energy on the phys-
ical parameters through rapidly convergent series expan-
sions.

II. THEORY

A. Embedded-atom method

The basic equations of the embedded-atom method
are

&t.i= QF(iot, ;)+2 X Nij(~;, »

St, = & f)(~i))
j {~i)

where E„, is the total internal energy, pz; is the electron
density at atom i due to all other atoms, f1 is the electron
density of atom j as a function of distance from its center,
R;J is the separation distance between atoms i and j,
F;(pt, ; ) is the energy to embed atom i in an electron den-
sity p&;, and P,-» is a two-body central potential between
atoms i and j. Thus the host e1ectron density pl, ; is as-
sumed to be a linear superposition of contributions from
individual atoms, which in turn are assumed to be spheri-
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with X the number of atoms in the crysta1, E the energy
per atom, i.e., the negative of the cohesive energy, and r
the mth neighbor to some particular atom.

If the perfect crystal structure is maintained, i.e.„ the
atomic volume is permitted to vary but there are no de-
fects and no shears, then Eq. (4) can be written as

E(r, ) =F(p(r, ) }+4(r,)

with

4(r, )=—,
' gtI)(r ) .

(6)

Since all neighbor distances are an exact factor times the
nearest-neighbor distance, both p and 4 are functions of
just the atomic volume, or, given the lattice structure, of
the nearest-neighbor distance. Using subscript e to indi-
cate evaluation at equilibrium, the experimental cohesive
energy E, is determined by

—F(p )+@

and the equilibrium condition is

ca11y symmetric, and the embedding energy is assumed to
be independent of the electron distribution or gradients.

These equations are identical in form to those recently
proposed by Finnis and Sinclair, ' also for an atomistic
model for metals. The interpretation is quite different,
however: The Finnis and Sinclair derivation is based on
tight-binding theory, with F~(a;) proportional to the
square root of a,- and o;,. being the linear superposition of
squares of overlap integrals.

To use the embedded-atom method in a 1attice model
calculation, the f and F functions must be specified for
each atomic species, and P for each possible combination
of atomic species. Although much of the power of EAM
is associated with its utility in the treatment of alloys, a
monatomic metal has been assumed in the present work
to minimize the number of functions involved with a
given calculation. Then, the basic equations, applied to a
perfect crystal, can be simplified to

E...=XE,
E =F(p)+-,' g ((}(r ),

E(ri )= E—, 1+a
r) rie

(10)

with

where 0 is the atomic volume and 8 the bulk modulus.
Equations (6) and (10) can then be combined to give

F(r, )= E, 1—+a —1
"&e

X exp —a
r le

—4(r, ) . (12)

8. Short-ranged fcc model

To obtain a useful analytic model, simple analytic
forms must be chosen for the two-body potential P(r )

and the electron density function f(r~ ). Furthermore, it
must be possible to invert Eq. (5) for the perfect crystal to
obtain an analytic expression for r (p).

In order to provide a direct procedure for satisfying
this last criterion, it is assumed that only nearest neigh-
bors contribute to the electron density and the two-body
potential in the fcc lattice. %'hile EAM does not intrinsi-
cally require short-ranged interactions, the nearest-
neighbor contribution is certainly dominant in the EAM
calculations to date. Thus this approximation limits the
generality of the model, but should retain the first-order
effects. For the perfect crystal, Eqs. (5) and (7) are then

To obtain the embedding function I' as a function of p,
p(r, ) must be inverted to give r, as a function of p. This
is then substituted into Eq. (12) for the required relation.

To summarize, the direct physical parameters required
for this EAM model are the equilibrium atomic volume,
the cohesive energy, and the bulk modulus, as well as the
lattice structure. A two-body potential and an electron
density function must also be specified to completely
define the model. The cohesive energy, bulk modulus,
and equilibrium condition [Eq. (9)] are all automatically
satisfied through the use of the function of Rose et al.

d4 dp dr'+
dr& dr& dp

p(r, ) = 12f (r, ),
4(r, )=6/(r, ) .

(13)

(14)

or

(9)

En early EAM calculations, the embedding function
was determined by a complex fitting procedure. Foiles'
has recently introduced a straightforward scheme which
is also used in the present model. Rose et al. have
shown that, for a broad range of materials, the energy as
a function of nearest-neighbor distance (or any length pa-
rameter in the lattice) is well approximated by the rela-
tion

To obtain equations for the elastic constants, the
perfect-crystal requirement can be relaxed to permit
homogeneous deformations. For the present case, the
equations given by Daw and Baskes reduce to

C)) ——X, +Xb or 8=—', X +Xb,

Ci2 ———,X, +Xb or C =—,'X, ,

with
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r]f(r)=f, exp —P —1, r &r,
r

(18)

where r, is a cutofF parameter. The two-body potential is
taken as a Born-Mayer repulsion, i.e., to have the same
analytic form as f (r):

y(r) =y, exp
rre

—1, r&r, .

%ith these two equations, the model is complete and
the embedding function is

F(p) = E, 1 ——ln-
p p,

Sa,
Xb —— (f'„)F," .

e

As mentioned above, the bulk modulus 8 =(C»
+2C,z)/3 is matched exactly. The anisotropy ratio
A =C/C' of the two cubic shears C =C44 and
C'=(C„—C,2)/2 is constrained to be 2 with this modeL
Thus the elastic constants cannot be fitted exactly with s
nearest-neighbor fcc EAM model, independent of the an-
alytic form of P(r) and f (r). The experimental anisotro-
py ratios for six fcc metals used in EAM calculations by
Foiles et al. ' range from 1.59 to 3.19. While this
discrepancy appears to be severe, it should be pointed out
that the anisotropy ratio is a very delicate parameter, is
not usually checked, and is commonly in error in most
models. In the present case, the Voigt average shear con-
stant 6 =(3C+2C')/5 can be matched exactly, while
the variation with orientation, although not precise, has
the correct sense. The volume dependence of the model
occurs through the Xb term.

In prior EAM calculations, the atomic electron densi-
ties have been assumed to be well represented by the
spherically averaged free-atom densities calculated from
Hartree-Pock theory by Clementi and Roetti ' and
McClean and Mcclean, with an additional adjustable
parameter to account for an admixture of different elec-
tronic configurations. %hen these Hartree-Fock elec-
tronic densities are plotted, it is seen that they are quite
well approximated by a single exponential term in the
range of distances of interest in HAM calculations. Thus
the electronic density in the present model is taken as

T

2y(y —P)
5Q

(21)

In summary, for a nearest-neighbor fcc EAM model,
exponentially decreasing functions have been chosen for
the atomistic electron density and the two-body potential,
and the energy function of Rose et al. is used. Of the pa-
rameters introduced, f, cancels and r, plays no
significant role in the calculations to be discussed, while
the magnitude of p is determined from atomic wave-
function calculations and the resistance to shear of the
model gives a relationship involving all three parameters
p, y, and p, . The cohesive energy, compressibility, and
lattice parameter (thus also atomic volume) are given ex-
actly, while the shear anisotropy is fixed at a value of 2.

III. CALCULATIONS

A. Analytic

The energies associated with vacancy formation, diva-
cancy binding, and formation of planar surfaces for fcc
metals are dominated by the contributions prior to relax-
ation. These unrelaxed energies can be calculated analyt-
ically with the short-ranged fcc EAM model derived
above. Thus the dependence of these energies on the
model parameters, to lowest order, can be seen directly.

To create a vacancy„an atom is removed from the inte-
rior of the crystal. Twelve two-body bonds are removed,
the embedding energy at the equilibrium electron density
is removed, and the embedding energy of the 12 neigh-
bors to the vacancy is changed from that at the equilibri-
um electron density to that at » the equilibrium electron
density. &hen the atom is placed on the surface, on
average six two-body bonds are formed and the ernbed-
ding energy at the equilibrium electron density is added.
This last energy input seems surprising at first, but the
surface is essentially unchanged, so the net efFect to the
embedding energy is to add one atom to the interior. De-
tailed counting at the surface yields the same result.

The unrelaxed vacancy-formation energy is therefore
given by

ations are small, the exact choice of r, plays no role as
long as the cutofF is well within the gap between first and
second neighbors. The calculations discussed later are in
this category. Also, the embedding function is not
defined for very small electron densities, i.e., for
p &p, exp[ p—(r, /r „—1)]. Again, this situation will not
arise in the present calculations. Finally, the average
shear constant 6, is given by

—4
Pe

where p, =12f, and 4, =+,. Because only ratios of
electronic densities occur in Eq. (20), the parameter f,
cancels from the model. There are still four parameters
introduced here: tI)„p, y, and r, . Although p can be ob-
tained from fitting atomic electron densities, jt can also
be treated as an adjustable parameter. For the elastic
constants or for any defect calculation in which the relax-

E,„"=—12F(p, )+12F(—'„'p, ) —4, .

Using Eq. (20) to evaluate the embedding terms,

F(p, )= E, —4, , —

(22)

(23)

(24)
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so that the unrelaxed vacancy-formation energy can be
written as

E" =12E — 1 ——ln( —") ( —")

where E„ is defined by

lf nE„=F p, + (31)

+ 12~,(1—(-'„')&/~)-~, . (25}

The details are somewhat more involved, but the unre-
laxed divacancy-formation energy in this notation is sim-

ply

Series expansions can now be made for the various terms
in Eq. (25) involving —'„':

(26)

E~, ———18Ei~+14Eii+4Ei0 .

Thus the unrelaxed divacancy binding energy is

(32)

( )/8 1 ( )+1 1( )12 P 12 21 P P 12

(27)
1 Q Q 0' 32 (')+

p p p 12

with a corresponding equation for ( —,", ) /~. «suming o
P, and y are all of the same magnitude (as they turn out
to be on later evaluation), Eq. (25) can be approximated
as

5 fleGe
1

1~ 11
2 Py SP 864P P

(34)

Eq, 2E)——„" E~„"——6E——22+ 10E22 —4E2o . (33}

Making use of the same type of expansions as for the sin-
gle vacancy, the divacancy binding energy can be con-
verted to an equation which displays the parameter
dependence:

3 e~e 1 1 2 ~e~e
16 p2 16 P E,

'2
EUF ( Eiu yg c

~'

1+ 3—2—1 0,

36 P

24 P 864 P P

The surface energy is determined by dividing the total
energy increase in separating bulk material on a crystallo-
graphic plane by the total new surface area created. For
the three fcc low-index planes, the unrelaxed surface en-

ergies are

Finally, using a from Eq. (11)and ((}, from Eq. (21),

3
8 2 12 P E,

L *

(E9—E12»U

3Q

U 2
1 Yoo= (Es —Eiz }

0e

(35)

(36)

Q, G,

Py 24 P 864 P P

Equation (22) can be written as

Ei„———12Ei~+ 12Eii,

(29)

(30)

2
112o—— (E7+E„—2E(2) .

Qe
(37)

Again expansions are made, and more terms are carried
because the convergence of these series is slower than in
the vacancy case.

9 08, 1 2 08,
v 3g,2 32 P2 4 P E,

10 Q,B,
64 ' 3P E,

Q,B,
p2

U
~100

1g A, G,
4 Py

2L. .
SP 96P P

0,8,
p

1 10 e~e
12 3P E,

1—1 Q,B,
2 2 p2

L J

e e 1 ~ 1 j/ y0 G

Py 6P 54P P

0,8,
p2

(38)

(39)

13 QB, 21 2 QB,
g,2 16 p2 52 P E,

15 +eGe 13 ~ 7
2 Py 72 P 288 P P

1—

10 QB, 3 QB,
2496 3P E, 2 E,

(40}
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B. Evaluation

For evaluation and interpretation of these equations,
copper is chosen as a prototype with the same physical
input data as used in earlier EAM calculations
a, =3.615 A, E, =3.54 eV, 8,=1.38X10' ergs/cm,
and 6, =0.55X 10' ergs/cm . The anisotropy ratio for
copper is 3.19, and the slope parameter of the atomic
electron density at the nearest-neighbor distance in the
crystal, as determined from the Hartree-Pock wave func-
tions, ' is p=6.0 for the 3d ' 4s ' state and p=6. 6 for the
3d 4s state. Since the 3d 4s state is expected to dom-
inate, p=6.0 is used as a starting value. The shear con-
stant 6, is used as an adjustable parameter instead of iI)„
the relationship coming from Eq. (21). Finally, an ap-
proximate value of @=8.0 is then required to give the
correct magnitude for the single vacancy-formation ener-
gy. The embedding function for copper with these pa-
rameters is shown as the solid line in Fig. 1. The embed-
ding function is not de6ned for small electron densities in
this model, as mentioned above. For the cutoff distance
taken at r, =r„+3/4(r2, r„—)=1.31r„,the embedding
function is not defined for p/p, & 0. 16.

With these values, the terms in the expansion for the
unrelaxed vacancy-formation energy [Eq. (29)] are

=0.184 eV, (42)

with the exact value being 0.207 eV. %hile the series
convergence is slower here, the shear modulus term is
still dominant over the bulk modulus term, although only
by a factor of 4. Again, the cohesive energy has little
effect on the results, but it is not quite as negligible as in
the vacancy-formation case.

The unrelaxed surface energies for the three low-index
planes are

I i i i =225( 1 +0.109+0.014)+ 896( 1 —0. 167—0.009)

=991 ergs/cm (43)

I iixi
——346( 1+0.145+0.025 ) + 1036(1—0.222 —0.016)

=1194 ergs/cm (44)

I U, =398(1+0.176+0.037)+ 1098(1—0.241 —0.022)

of primary importance in determining the vacancy-
formation energy, with C more significant than C'.

The results are similar for the other quantities calculat-
ed. The corresponding expansion for the unrelaxed diva-
cancy binding energy is

Eq„———0.053(1+0.132)+0.211(1+0.166+0.009)

E i„"——0.106(1+0.038)+ 1.267(1—O. OS5 —0.001) =1292 ergs/cm (45)

=1.306 eV . (41)

The exact value is 1.305 eV. Convergence is good in both
series with the number of terms included and the first
term of the second series is clearly dominant in determin-
ing the vacancy-formation energy. The bulk modulus
and the cohesive energy only affect the first series and
thus only play a minor role towards the vacancy-
formation energy. Indeed, the cohesive energy enters
into the second term in this series, and so its eff'ect is
negligible: varying the cohesive energy while holding the
other parameters constant does not change the unrelaxed
vacancy-formation energy. The second series contributes
over 90% of the energy, and scales linearly with the shear
modulus or the atomic volume times the shear modulus.

The unrelaxed vacancy-formation energy also is approxi-
mately inversely proportional to the parameters p and y.

Many physical parameters, including the bulk
modulus, the shear modulus, and the cohesive energy, as
well as the vacancy-formation energy, scale roughly with
the melting temperature. In one sense, Eq. (29) simply
reflects these relationships. However, the significance of
this equation is in indicating the dependence of the
vacancy-formation energy on these parameters when they
do not all scale together. To check if there is any experi-
mental tendency towards the result in the preceding para-
graph, the data for six fcc metals tabulated by Foiles
et al. ' was analyzed for the correlation of vacancy-
formation energy with various parameters, with goodness
of correlation determined by a small value of the ratio of
the standard deviation to the average value of the param-
eter. The sequence from best to ~orst correlation was
QC, AG, T, E„c,6, 8, QC', C', and QB. Thus the
atomic volume times the shear modulus does seem to be

The strong dependence of the unrelaxed vacancy-
formation energy on the shear modulus occurs because
the slope of the embedding function near the equilibrium
electron density depends primarily on the slopes of the
electron density and the two-body potential near the
equilibrium spacing. With Eqs. (30) and (31), the unre-
laxed vacancy-formation energy can be approximated by

UF dFEI ———@ —pu e e d
(46)

Furthermore, the equilibrium condition, Eq. (9), can be
written as

d4 dp
dr, dr,

Thus the unrelaxed vacancy-formation energy is propor-
tional to 4, and, as shown in Eq. (21), 4, is proportional
to 6, . The slope of the Rose function, Eq. (10), which
contains the dependence on the bulk modulus and the

Because of cancellation of positive and negative higher-
order terms, these are very close to the exact values of
992, 1195, and 1296 ergs/cm, respectively. The se-
quence from lowest to highest surface energy is {111j to
{100j to {110j, as expected for the fcc lattice. The pat-
tern is that the lower the surface energy, the better the
convergence, and the more the shear modulus term dom-
inates over the bulk modulus term. For the {110jsur-
face, almost 40% of the surface energy arises from the
bulk modulus term. This is not due to the poorer conver-
gence; including more terms would increase this percen-
tage.

IV. DISCUSSION
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cohesive energy, is zero at equilibrium, and so these pa-
rameters do not appear in the equation for the slope of
the embedding function with the electron density at equi-
librium.

The magnitude of the unrelaxed vacancy-formation en-
ergy was used as an input into the model. Based on the
dominant first term in the second series, the ratio
E2Un/E+" is —,

' with this model, the same value as with
simple nearest-neighbor bond counting. This ratio de-
creases to about —,', when the exact values are used. Pre-
cise experimental data for this ratio are not available, but
the present value is realistic.

The surface energies calculated here are smaller than
expected. Again, precise experimental values are not
available, but, for example. Tyson and MiHer report an
average surface energy of 1790 ergs/cm . 3 An average
face should be a mixture of low-energy facets, with the
lowest energy I 111I predominating, so that the present
values are perhaps —,

' smaller than the reported value.
Furthermore, the calculated value cannot readily be al-
tered by parameter variation while holding the vacancy-
formation energy constant. The embedding function is
approximately linear near p p, . If it were exactly
linear, the unrelaxed I 1 1 1 I surface energy would be relat-
ed to the unrelaxed vacancy formation by

I », —— —8» ——924 ergs/cm 2

3a,' &

Again, this is the same relationship as given by simple
nearest-neighbor bond counting. The calculated value
somewhat greater than this is due to the curvature in the
embedding function, but very much greater curvature
would be required to attain values comparable to the ex-
perimental value. The situation is similar for the other
surface energies.

Foiles et al. ' determined the EAM parameters for six
fcc metals using an overdetermined set of experimental

data. Since the function given by Rose et aI. was used,
the atomic volume, cohesive energy, and bulk modulus
are 6tted exactly. They also used the elastic shears, the

vacancy-formation energy, and the heats of solution,
where available, for the six metals. In summary, they
used 17 parameters and 40 data points in their fitting
scheme. Fully relaxed calculations for a variety of defect
properties were then carried out with these parameters.
A comparison of their results for copper, the present cal-
culations, and experimental results is shown in Table I.
The unrelaxed trivacancy and tetravacancy binding ener-
gies are also included in this table. As with the divacan-
cy, they are approximately related to the unrelaxed
vacancy-formation energy by nearest-neighbor bond
counting.

The embedding function for copper used by Foiles
et al. ' is shown as the dashed line in Fig. 1. Also, a
square-root dependence, the functional form derived by
Finnis and Sinclair, ' is given as the dotted line. It was
pointed out by Daw and Baskes that, for the case in
which the embedding function is linear in p, the entire
scheme is equivalent to using a dN'erent pair potential.
Indeed, in any model based on Eqs. (1) and (2), i.e., on
central two-body forces and a function of a linear super-
position of contributions, there is no change whatsoever
in the model if terms linear in the superposition variable
are added to the embedding functions and corresponding
terms are subtracted from the two-body potentials. %ith
a monatomic model, for example, adding zp to F(p) and
subtracting 2zf from P does not alter the model. Com-
parison of the three curves shown in Fig. 1 indicates that,
to an excellent approximation, they dieter only by a term
linear in p. Thus the embedding functions in the three
models are essentially equivalent. Discussions based on
the slope and curvature of the embedding function would
therefore seem to be quite general.

Finnis and Sinclair' point out that, if the second and
higher derivatives of the embedding function are neglect-

TABLE I. Calculated and experimental results. Both sets of calculations use a, =3.615 A,
8, =1.38X 10' ergs/cm3, and E,=3.54 eU as inputs. The calculations by Foiles et ul. ' are for fully
relaxed configurations while the present calculations are for unrelaxed configurations.

6, (10' ergs/crn')
~ =C/C'
E )„(eV)
Eq„(eV)
E3, (eV)

{10 ergs/cm )

I &oo (10' ergs/cm')
I 1 lp ( 10 CI'gs/cm )

'Reference 16.
Fitted exactly.

'Fitted using an overdetermined set.
Reference 24.

'Not adjustable.
Reference 25.
~Reference 26.
"Reference 23.

Present

0.55'
2e

0.21
0.62
1.27
0.99
1.20
1.30

Foiles et ar. '
0.54"'

3.53'
1.28'
0.27

1.17
1.28
1.40

Experiment

0.55"
3.19
1.3'
0.12g

1.79"
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ed, the energy changes with their model can be deter-
mined solely with an efFective pairwise interaction.
Foiles' has shown more generally that the embedding
function can be expanded to yield terms which can be
grouped to correspond to one-body, two-body, three-
body, etc., factors. The two-body contributions can then
be combined with the two-body potential to yield an
efFective two-body potential. If terms involving second
and higher derivatives of the embedding function are
neglected, the Finnis-Sinclair result is obtained.

%"ith the present model, if small higher-order terms are
dropped, the efFective two-body potential is

This is similar to a Morse potential, except that this is
one contribution to the eriergy, whereas the Morse poten-
tial is intended to provide the total energy. This efFective
two-body potential is shown as the solid curve in Fig. 2,
together with the corresponding potential from the nu-

merical copper model of Foiles et al. ' as the dashed
curve. The potential from the present model should be
forced to zero between first- and second-neighbor dis-
tances. These potentials are reminiscent of short-ranged
two-body empirical potentials, of which an example for
copper27 is shown as the dotted curve. For metals with
small curvature of the embedding function at the equilib-
rium electron density, these empirical models will closely

approximate the embedded-atom method for calculations
of energy changes involving small changes in electron
density.

computer modeling of metals. The physical inputs into
the model are the atomic volume, the cohesive energy,
the bulk modulus, the average shear modulus, the
vacancy-formation energy, and the slope at the nearest-
neighbor distance of the spherically averaged free-atom
electron density calculated with Hartree-Fock theory. '

The model employs an exponential repulsion between
nearest neighbors, an exponentiaBy decreasing function
for the free-atom electron density, and a universal equa-
tion relating the crystal energy and the lattice constant.
The anisotropy ratio of the cubic shear moduli is con-
strained to be 2 with this model.

An analytic function can be obtained for the embed-
ding function, with the slope and curvature at equilibri-
um electron density given by

dP 150,G,
(50)

90,8, —150,G,

A,'
(5l)

The slope of the embedding function at the equilibrium
electron density does not depend on 8, or E„and the
curvature is quite small. The unrelaxed vacancy-
formation energy involves changes in energy near equilib-
rium, and thus is dominated by the slope of the embed-
ding function. This leads to the surprising result that the
shear modulus, rather than the bulk modulus or the
cohesive energy, is the dominant parameter in determin-
ing the vacancy-formation energy. This should hold true
for any HAM model based on the energy function given

V. SUMMARY AND CONCLUSIONS

A simple nearest-neighbor analytic model for the fcc
lattice has been developed which indicates a number of
the salient features of the embedded-atom method of
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FIG. 1. Embedding function F(p) as a function of the rela-
tive electron density p/p, . The solid curve is Eq. {20)evaluated
for copper, the dashed curve is from a numerical HAM model
for copper by Foiles et al. (Ref. 16), and the dotted curve is for
I' (p) =z&p as used by Finnis and Sinclair (Ref. 19). Although
some variation is found at very lo~ densities, these three curves
difFer only by a term linear in p to an excellent approximation.

FIG. 2. EfFective two-body potentials for copper. The solid

curve is Eq. (49}evaluated for copper and is not actually defined

past a cutofF range between first- and second-neighbor distances,
and the dashed curve is from a numerical RAM model for
copper by Foiles et a1. (Ref. 16). The dotted curve is a short-

ranged empirical two-body potential for copper (Ref'. 27}.
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by Rose et al. and to the extent that this function is an
accurate approximation, to any RAM model.

The unrelaxed divacancy binding energy, and the unre-
laxed surface energies even more so, contain terms which
depend on the embedding function at electron densities
significantly smaller than the equilibrium value. Thus the
curvature plays a larger role and the shear modulus is not
as dominant in these cases.

This may also be seen by expanding the energies for
these quantities in rapid1y convergent series. The
lowest-order terms in these expansions depend only on
the slope of the embedding function at the equilibrium
electron density, and thus are independent of the bulk
modulus and the cohesive energy. In this case, the rela-
tions between the various calculated quantities are the
same as obtained by simple nearest-neighbor bond count-
ing. For example, the unrelaxed divacancy binding ener-

gy is —,
' the unrelaxed vacancy-formation energy, and the

I 1 1 1 ) surface energy is —,
' the unrelaxed vacancy-

formation energy divided by the ares per atom on the
surface plane. Models based on two-body forces, alone or
with volume-dependent energy contributions, will always
give bond counting results for unrelaxed con6gurations.

Daw and Baskes have pointed out that, if the embed-
ding function is completely linear„ the contribution from

the embedding function can always be converted into a
contribution from a two-body potential. Thus it is the
curvature of the embedding function which accounts for
the "many-body" aspect, or "local volume dependence"
of the EAM. This also accounts for the seemingly
difFerent character of the embedding function shown in
Fig. 1 and Ref. 16 with the earlier reports: ' they difFer

primarily by a linear term, which can be absorbed into
the two-body potential. Furthermore, the embedding
functions used by Foiles et al. ,

' the square-root depen-
dence used by Finnis and Sinclair, ' and the present cal-
culations are shown to difFer only by a term linear in the
superposition variable, i.e., they are essentially
equivalent. The differences in these models occur
through the choice off (r) and P(r).
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