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We study the single-particle properties of an electron in a small onc-dimensional conducting ring

subject to a large uniform electric 6eld which is generated by a linearly ramped magnetic Aux. The
adiabatic eigenstates of this system form a complete set of minibands which are separated by gaps
determined by the static scattering potential in the ring. At high Selds the Zencr tunneling transi-

tions between these minibands promote the particles to higher energy states. In spite of the absence
of inelastic scattering in this model, D. Lenstra and W. van Haeringen [Phys. Rev. Lett. 57, 1623
(1986)] found a resistive behavior of the electrons which they attributed to the process of phase ran-

domization generated by Zener tunneling between the minibands. We have studied several model

systems to investigate the roles of phase randomization and of the energy dependence of the Zener

tunneling amplitudes. None of the models studied showed resistive behavior. We Snd that the pro-
cess of phase randomization alone (constant Zener tunneling amplitudes) leads to an exponential lo-

calization of the electrons in energy space. The addition of energy-dependent Zener tunneling am-

plitudes weakens the localization. Our main conclusion is that the process of phase randomization
leads to localization of the electrons in energy space and not to resistive behavior.

I. INTRODUCTION

As the dimensions of a sample become smaller than the
distance between inelastic scattering events, a new
"mesoscopic" regime is reached where the transport
properties are strongly aftected by quantum-mechanical
interference. ' The maintenance of the quantum coher-
ence of the single-particle waves throughout the sample
leads to sample-specific conductance and to reproducible
variations in the transport coefficients as the chemical po-
tential or the magnetic field is changed. Outstanding ex-
perimental achievements include the observations of
(universal) conductance Auctuations in thin wires ' and
of periodic structure in the magnetoresistance of small
(semi)conducting rings (Aharanov-Bohm effect).

An elementary example which has been studied
thoroughly both experimentally and theoretically' is
the normal metal ring threaded by a magnetic Aux 4.
Let us consider a one-dimensional closed loop. Because
of the periodic boundary conditions enforced by the sin-
gle valuedness of the wave functions, the eigenstates of
ihe electrons in this system look like Bloch waves in a
crystal. ' In the transcription, the circumference L of
the ring corresponds to the lattice constant a in the crys-
tal. The role of the wave vector k in the crystal is taken
up by the Aux parameter a/L =2'@(r)l@oI., where
+0——hc/e is the normal state Aux quantum in Gaussian
umts. As we increase the flux 4(t) through the loop
linearly in time, a constant electric field I' is induced in
the ring. The Aux parameter a then increases linearly in
time, corresponding to a Bloch electron moving linearly
in time through k space.

The efFect of a nonuniform potential in the ring is to in-
troduce "minigaps" at the zone boundaries a=+nm
which are reached by the electron whenever the Aux 4(t)
goes through a multiple of half the flux quantum, 4o/2.
Since the spectrum of the system is discrete, an electron
in a pure Bloch state will follow the Aux change adiabati-
cally if the induced electric field is infinitesimal, i.e., it
will be backscattered to the same energy level each time
it reaches a zone boundary. If the field strength is in-
creased, the possibility of Zener tunneling' between the
energy levels arises, i.e., the electron can be forward scat-
tered to the neighboring level as it crosses a zone bound-
ary.

%hereas the properties of normal metal rings in the
adiabatic limit of weak electric fields are reasonably well
understood, the situation for high electric fields is much
less clear. A recent paper by Lenstra and van Haer-
ingen" suggested that very interesting phenomena are
present in the high-field limit. Applying their theory of
the dc conductivity of a one-dimensional (1D) wire with
periodic boundary conditions' ' to the closed loop they
found a "resistive" behavior in this Hamiltonian system:
the average steady current turned out to be proportional
to the electric field in the ring induced by the time-
dependent Aux 4(t). This behavior is quite unusual —the
fundamental microscopic Zener tunneling amplitudes, '

which produce this current, are not analytic in the elec-
tric field, yet the macroscopic result, Lenstra and van
Haeringen claimed, is linear in the field. In their paper
they attributed this resistive behavior to the occurrence
of phase randomization induced by Zener tunneling be-
tween the discrete energy levels of the system.
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The claim of a resistive behavior in a Hamiltonian sys-
tem has been criticized by E.andauer who showed that
the process of Zener tunneling is in fact completely rever-
sible, ' and thus concluded that the system was acting
more like a nonlinear inductance than a resistance, so
that stored energy could in principle be retrieved. This
was in fact seen in the numerical simulations by Lenstra
and van Haeringen. "'

The time evolution of the single-particle wave function
in the ring can be cast in the form of a scattering prob-
lem. After this reformulation, the time evolution of the
system depends on two sets of parameters, (i) the amph-
tudes t„for Zener tunneling between the bands, and (ii)
the phases 8„for free propagation between two succes-
sive scattering events (here n numbers the adiabatic ener-

gy levels).
The purpose of the present paper is to investigate the

origin of the apparently "Ohmic" or resistive behavior of
the system reported by Lenstra and van Haeringen. To
do so we have studied four models: (i) Their suggestion
that phase randomization might be responsible for the
saturating current lead us to isolate this property and to
first study a model with constant Zener tunneling ampli-
tudes r„=rbut quasirandom phases 8„.(ii) We repeated
the simulations on the Kronig-Penney model over a
much 1onger time scale, as we found that the system does
not reach its asymptotic behavior on the short time scale
considered by E.enstra and van Haeringen. (iii) We have
studied a system which is characterized by a realistic set
of gaps which close at high energies (screened impurity
model), unlike the Kronig-Penney model where the gaps
asymptotically approach a constant value. (iv) We have
studied a model characterized by periodic phases 8„and
constant Zener tunneling amplitudes t„=t.Models (i) to
(iii) are studied mainly by numerical methods and the dis-
cussion of model (iv) includes both analytical and numeri-
cal work.

This extensive study of the system leads us to the fol-
lowing conclusions: (i} For constant Zener tunneling am-
plitudes the phase randomization in this system leads to
exponential localization of the wave function in energy
space (i.e., the probability to find an electron in a high en-
ergy state decays exponentially with increasing energy)
and a zero-mean-current asymptotic state. (ii) Relaxing
the phase randomization by introducing periodic phases8„=8„+zchanges the nature of the wave function from
localized to extended. The current then rises linearly in
time, indicating free-electron-like acceleration. (iii} As
we relax the condition of constant Zener tunneling ampli-
tudes we find results indicating that the wave functions
are algebraically localized for the Kronig-Penney model.
Accordingly, the current again returns back to a zero
mean for all field values; however, the time needed to
reach the asymptotic state is much longer. We wish to
point out that these results for the Kronig-Penney model
are somewhat speculative and further studies have to
confirm or reject them. However, we definitely do not
observe Ohmic behavior: whereas we can reproduce
Lenstra and van Haeringen's results on a short time
scale, we find that the apparent saturation of the current
is only a transient e8'ect and not the asymptotic behavior

of the system.
It turns out that the Kronig-Penney model can be re-

garded as an intermediate case between models showing
either localized or delocalized wave functions. (iv) For
the screened impurity model we then find that the wave
functions are delocalized. However, also in this model
the phase randomizati. on is very important since it can
prevent the particles from rapidly attaining large energies
in the electric field. At not too high fields and for finite
times the system behaves as if the particles were actually
localized.

The outline of the paper is as follows. In Sec. II we de-
scribe briefiy the low-field (adiabatic) and high-field be-
havior of electrons in a one-dimensional closed loop. We
introduce Zener tunneling and show how to reduce the
time evolution to a scattering problem. We also intro-
duce the notion of quasienergy. In Sec. III we present
our results for the three models characterized by constant
Zener tunneling amplitudes and quasirandorn phases, the
Kronig-Penney model, and the screened impurity model.
The results of this section are found by numerical simula-
tions. In Sec. IV we first analytically study the simplest
cases of a system with periodic phases 8„=6„+2and
6„=8„+4.%'e then present numerical results on sys-
terns with larger periods: This allows us to turn on the
phase randomization gradually and clarifies how the lo-
calization of the wave functions occurs in this system. In
Sec. V we summarize our results and conclude. In order
to make this paper self-contained we include an Appen-
dix A in which we derive the adiabatic energy levels and
eigenstates for the Kronig-Penney model in a simple way,
and an Appendix 8 discussing Zener tunneling.

II. KI.KCTRONS IN A RING

We will start by brieAy reviewing the physics of an iso-
lated 1D ring threaded by a magnetic fiux 4(t)=cFLt
which is ramped linearly in time (c is the velocity of light,
F & 0 is the induced electric field in the ring whose cir-
cumference is L). Et is important that this is a Hamiltoni-
an system and therefore unable to dissipate energy. We
shall start with the adiabatic limit, which applies to a
slowly varying Aux, and then generalize the formalism to
describe 6elds of arbitrary strength. As we integrate the
time evolution of the system over the time period
t =n.fileFL, half the period of Bloch oscillations (e &0
is the electron charge}, the formalism reduces to a
scattering problem between the adiabatic energy levels
with the scattering amplitudes determined by Zener tun-
neling and backscattering. ' Thereby, the time evolution
of the system is reduced to a discrete set of points and
can be described by the iterative application of a unitary
operator T. In a third subsection we will introduce the
quasienergy and the corresponding eigenfunctions which
diagonalize the discrete time evolution operator T.

We consider a ID ring with the time varying magnetic
Aux threading it. Since we are interested in the problem
of a spacially constant and time-independent electromo-
tive force (emf} we will take a choice of gauge where the
scalar potential is zero and the vector potential
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A(t)=cFt is linear in time. The Hamiltonian is then
given by

H(r)= —. + —A(r) + V(x),1 A 8 e

2' l Bx c

phases:

where rn is the mass of the electron. The potential V(x)
is periodic in the circumference L, of the ring,
V(x) = V(x+L), and describes some scattering potential
acting on the electrons. Furthermore, the Hamiltonian
(1) shows the time reversal symmetry H( t) =—H'(r).

The wave functions %(r), describing the single-particle
states of the system, satisfy the Schrodinger equation

i A =H(r)%(r),
t

and are subject to periodic boundary conditions,
%(x+L,r)=%(x, t), since they must be single-valued
functions over the ring.

a
)
~ ~

0 7T 27T 4TI 67r 87T

A. Adiabatic limit

In the adiabatic limit of a slowly varying flux 4(t),
such that F~0, we can treat the vector potential A (t) in
(1) as a constant parameter. The adiabatic eigenfunctions
u„and energies e„ then satisfy the time-independent
Schrodinger equation

H(a)u„=e„u„
and are subject to the boundary condition
u„(x+L )=u„(x).Here we have introduced the new
time (or flux) variable

a =2ir4(t)/+0=eFLt /fi,

with 40——hc/e the unit of Aux. In the following we will

use the parameters t or a to describe the time coordinate
at our convenience.

By removing the vector potential in (2) with a gauge
transformation

~
—l cd /L~

the problem reduces to calculating the Bloch functions
in a. periodic potential V(x),

(4a)

FIG. 1. Adiabatic energy levels c„asa function of Aux a.
For a linearly increasing flux the electrons move through the
minibands, changing to neighboring minibands by forward
scattering {Zener tunneling, A ~D or B~C) or remaining in

the same minibaqd upon back scattering (A~C or B~D).
The transition amplitudes for forward scattering (Zener tunnel-

ing) and backscattering are t„and r„,respectively. The phase
change over one complete scattering event is 6„for forward
scattering into the n +1st level and 6„—8„for backscattering
into the nth level. The time evolution is calculated by iterating
the amplitudes c„( ' forward in time, where k denotes the kth
time step. Also shown is the free-electron parabola for a carrier
moving in a uniform potential Vo/I. (dotted line).

the Born-von Karman unit cell, each level contains at
most one electron (per spin). The gaps between the mini-
bands s„arecaused by the potential V(x). For the
Kronig-Penney model the gap parameter 2h„approaches
an asymptotic value 2V0/L as the level index n becomes
large. This is identical to the result found by Lenstra and
van Haeringen using degenerate perturbation theory. Us-
ing a smooth potential instead, leads to gaps which van-
ish as the energy increases. This is readily understood by
noticing that at large energies the perturbative approach
is always valid and therefore the gap parameter 6„is

simply given by the nearly-free-electron approximation

V(x )e
—l27Tllx /I1

L

Here the factor 2irn/L in the exponent is simply the
difFerence in the wave vectors E„=+nm/L at opposite.
sides of the nth Brillouin zone.

The current carried by a single electron in the state
0 (r) ls glvell by

j (t)=—I dx
e
I —L 2l7l E

2l8' ~ @~@
Ac

(x+L)=e' y„~(x), (4b)

where a/L =eI't/fi is analogous to the wave vector in
the usual formulation of the Bloch problem and the "lat-
tice constant" is given by the ring's circumference I..
The wave functions y„(x)and eigenenergies s„arecal-
culated exactly in Appendix A for the case of a 5-
function scattering potential V(x) = V05(x)—the
Kronig-Penney model. A plot of the adiabatic energy
levels c„ is shown in Fig. I. Both the eigenfunctions

and the eigenenergies c,„areperiodic in the Aux

4(t) with period 40 (Ref. 19) (in a the period is 2m) as is
obvious from (4) and illustrated in Fig. 1. The Brillouin
zone for the ring is given by the range [ ir, m] of a. —
Since the unit cell length I. in this problem is identical to
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which for a particle in the pure adiabatic state u„
reduces to

dF„~j(t)=-
St da

In the adiabatic limit the particle moves through the
miniband in accordance with the Aux change o.4o/2m.
As pointed out by Buttiker, Imry, and I.andauer this
leads to a Josephson-like oscillating current as the parti-
cle is Bragg re6ected each time it approaches the neigh-
boring level at the Brillouin-zone boundaries. If the fiux
is fixed at a value differing from an integer multiple of
half the unit Aux, a constant Josephson-like current is in-
duced in the ring.

As we drop the approximation of infinitely slowly vary-
ing fiux the possibility of Zener tunneling between the
adiabatic levels u„ leads to new interesting phenomena.

It turns out that transitions are most probable between
neighboring levels as they approach each other at the
edge of a Brillouin zone. For example, the coupling be-
tween the levels n and n+1 in Fig. 1 is strongest for
a=21m, the coupling between n —1 and n for values
a =(2l+ 1)~.

If we restrict the dynamics to discrete points
aI ——m(l+ —,

' ), l =0, 1, . . . , we can reformulate the prob-
lem of the time evolution as a scattering problem. %e in-
tegrate the time evolution (6a) over the interval spanned
by uI and aI+&, taking into account only transitions be-
tween neighboring (approaching) levels. The unitary ma-
trix S„then describes the time evolution of the pair of
amplitudes e„andc„+&

over the time interval t:
c„~i(a(+, ) c„+i(ai )

c„(ai+i ) " c„(aI)=S„

B. Zener tunneling

—i8„r„e
=8 i8„r„e

c„i(ai )

c„(a,)

%'(t)= g c„(t)u„
n=1

The time evolution of the coefficients e„(t)is determined
by the time-dependent Schrodinger equation (1),

dc„(a) e„
i = ' c„(a)—i g A„(a)c (a), (6a)

with

du (x)A„(a)=I dx u„' (x) (6b)

A strong electric field I' along the ring induces transi-
tions between the levels e„.Such nonadiabatic transi-
tions were first studied by Zener' and later considered by
Eilenberger in the context of interband tunneling in a
large electric field in semiconductors. The formulas
presented in this section are derived in Appendix 8 for
the Kronig-Penney model.

As Zener tunneling between the single-particle levels
becomes important the wave function 0'(t) spreads over
all the adiabatic eigenstates u„and therefore is a super-
position

The amplitudes c„+i(aI), e„(a,) and c„+i(a&+i),
c„(a&+,) correspond to the incoming and outgoing states
in the usual scattering formalism, respectively. Assuming
that the transition is completed (i.e., points A„8,and C,
D in Fig. 1 are in the asymptotic regions of the scattering
event) the amplitudes for Zener tunneling t„(transition
from A to D in Fig. 1) and backscattering r„(transition
from A to C) aregiven by

t„=exp —,r„=(1t„)—2h„
w„ eFL

With E„=E,n =R nn/2mL, . the upper band edge of
the nth level, we can define the bandwidth
ie„=B„E„=An n/mL These re.sults are derived for
the Kronig-Penney model in Appendix 8 and their gen-
eralization to smooth potentials is straightforward. For
the case of a weak potential V(x) and/or high energiesc„,the assumption of completed Zener tunneling transi-
tions is always fulfilled (for a more detailed discussion see
Appendix 8). Note that the amplitude for Zener tunnel-
ing is not an analytic function of the electric field.

The phases B„and8„are

8„=m vn +
eFL,

8 =X+—~n 1+tt N

' 2 1/2 * r

n n
ln + 1+

Here w is the ratio between the unit of energy in the ring
E& and the potential-energy drop eEL, along the ring pro-
duced by the electric field: r=Ei/eFL The physical.
meaning of the phases 6„and8„is illustrated in Fig. 1.

6„is the net change in phase due to the free-electron-like
time evolution of the state between A and D,6„=t(E„+6„)/fi.The first term in 8„is a scattering
phase X„for backscattering which in general depends on
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the potential V(x) and varies smoothly with the level in-
dex n (i.e., the energy). The second term in 0„(-net/2
for large n) corrects for the phase due to the time evolu-
tion of the state when the particle is backscattered to C
instead of forward to B.

As pointed out by Lenstra and vao Haeringen, the
phase e„plays a key role for the time evolution of the
system. The phase differences 8„+&—e„due to propa-
gation in neighboring pairs of levels can become large, no
matter how weak the field is, since 8„8„=2nrndepends
linearly on n. In general ~ is an irrational number and
therefore neighboring pairs of levels pick up random
dift'erences in phase for large n because ~n modulo 1 is
essentially a random number. The random phases 8„
will lead to localization eiTects of the wave function in en-
ergy space as we will demonstrate in Sec. III. The phase8„is less important as X„varies continuously with n

(X„~Oincreases monotonically to m/4 with increasing n

for the Kronig-Penney model) and the second term is ap-
proximately linear in n.

For the lowest energy state n =1 there is no partner
for scattering at a=2ml and we have to impose the
boundary condition

—ieo
c1(a2I ) e c 1(azl —1)

with 80=mr/12 for a free-electron-like band.
The S„matrix is unitary because it describes a time

evolution, and symmetric due to the time reversal sym-
metry H( t)=H (t).—The time-reversal symmetry im-
plies an equality for the time evolution of 4'(t) and
)p'( t ). There—fore, the amplitudes for processes
%'„~+8and 4'&~%'~ must be equal, causing the off-
diagonal elements of the S„matrix to be identical.
Furthermore, S„doesnot depend on the time at which
the scattering event takes place but only on the level in-
dex n of the lower band.

The matrix S„takes the amplitudes c„(a)a step for-
ward in time, increasing a by m, However, ii is obvious
from Fig. 1 that the full period in a is 2m, corresponding
to a time interval t2 h/eFI. , the——period of Bloch oscil-
lations. It is natural to introduce the discrete time evolu-
tion operator T which takes the system forward in time
by an entire period, from a2k to a2(k+ &). At each time

a2k, k =0, 1, . . . , we de6ne the basis

(k)"n ="n a2k

the coeScients

c„=c„(a2„),(k)

snd the wave function

' —)P(a2k )

The time dependence of the basis u„( ' in the x representa-
tion is given by the phase shift

(k)( ) ( 1)k i 2mkx jLu (0)( )—
Pf ~n

The unitary operator T theo acts on the wave functions
in the following way:

y qp(k) qy(k +1)

yu(k) ~ (u(k+I) yu(k)}u(k+)) ~ Z. u(k+1)"m =~ "n ~ "m &n nm n
n

The coeScients c„' ' obey the recursion relation

(k+1) ~ y (k)
n ~ nm m

C. Quasienergy

Since the matrix T„ in Eq. (8) is independent of time
we can de6ne a new basis u' ' at each point azk which
evolves trivially in time, namely

(k) —i co (k + 1) (10)

The quantity co is called the quasienergy and we refer to
the u' ' as the quasienergy eigenstates. We assume that
Eq. (10) defines a complete basis u'"' with co in the range
[ n, m] at each —po. int azk. For practical purposes we
cast Eq. (10}into matrix form. Using the abbreviation

u„„=(u„'"',u'"')= J dx[u("'(x)]*u„'"'(x),

we find that Eq. (10) takes the form

This equation is very similar to Eq. (7). Indeed we can
find the matrix elements T„byapplying the recursion
relation (7} twice on the amplitudes c„'"',mixing first the
amplitudes cz i(a2„) and c2 (aik) with S2, at
a=(2k+1)m, and afterwards the amplitudes c2 (a2k+, )

and c2 +i(aik+() with S2 at a=2(k+1)n The. opera-
tor T couples a Anal state u„' +"to four initial states u„( '.
An explicit form for the operator T, i.e., its representa-
tion in level basis T„,will be given in Sec. IU.

With this derivation of the discrete time evolution
operator T, we have cast the problem of the time evolu-
tion of the system into the form of a scattering problem.
The time evolution has been reduced to a discrete set of
points snd thereby becomes amenable to numerical stud-
ies. As a consequence the current in the simulations is
sampled only at discrete time steps, therefore the pres-
ence of a steady current cannot be determined unambigu-
ously since an oscillating current with a period equal to
the sampling period looks like a constant (i.e., the prob-
lem of aliasing arises). This proviso should be kept in
mind when we are going to present our results in the next
section.

The recursion relations (9) for the amplitudes c„'"'look
like those of a tight-binding model. This is similar to the
problem of quantum chaos in the periodically kicked ro-
tor. 2' Indeed our model for the localization of wave func-
tions in level space looks like the problem of localization
of wave functions in angular momentum space for the
kicked rotor. However, the quantum model to which it
corresponds is a rotor periodically kicked in time by a
nonlocaI potential, so we have not tried to map our prob-
lem onto that work.
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(p(k) I d & e i—cuk (k)2~'"
with the amplitude c given by the initial condition

(12a)

Note that u„ is independent of time because k has

dropped out of our defining equation (11).
If we expand the wave function %' into quasienergy

eigenstates the time evolution of %' simplifies to

For the approximations used in the derivation of the
above equation, see Appendix B.

Having established the formalism used in this paper,
we now go on with the presentation of our results for the
three model calculations treating the cases of constant
Zener tunneling amplitudes t„=t,the Kronig-Penney
model with V(x)= V05(x) as studied previously by Lens-
tra and van Haeringen, and a third model with a smooth
potential V(x) mimicking a screened impurity.

(0)
C~t)

= Cn uu, m
n=l

(12b)

%e conclude that once we know the character of the
eigenstates u' ' we also control the time evolution of the
wave function +. For instance, if the states u ' ' are local-
ized in level space n (i.e., i u„ i

decays exponentially in

n) then %(i) will be localized, too. One way to examine
the nature of the eigenstates u' ' is to determine the local
density of states (LDOS): Using Eqs. (12a), (12b), and the
initial condition c„''=5„„,we find

c'"'=(g' ' '(Ii'"')= dr(i
~

g
no no '

2 "o ~

and by a simple Fourier transformation of the time evolu-
tion of the initial amplitude c„' ', we obtain the desired

LDOS,

c'"'e'""= J d~'
I

u . I'5(~ ~'}-
no 2 no, ~'

k= —oo

=p( (i', ) .

The amplitudes for negative times are determined by the
time-reversal symmetry, c„' "'=(c„'"')'.If the distur-

0 0
bance remains localized at long times, we expect the local
density of states p(no;co) to be a set of sharp peaks
representing those localized states u „'"'which arc peaked
near no and therefore strongly couple to the initial distur-
bance. This provides a simple way to examine whether
the solutions to the recursion relations remain localized
in level space or not.

Once given the LDOS we can pick a value co (for in-

stance, at a peak) and filter out the corresponding eigen-
state u"',

QP

lcd k{k)e P

u n, co k = —oo0' p

(14)

j'"=jo g )
„'")'(—1)" '( ——,'),

n=1

etiamJo=

where the same initial condition c„''=5„„hasbeen

used. Equation (14) gives us simple and direct numerical
access to the eigenfunctions u'„'.

Another quantity providing useful information on the
system is the current j(r) which is given by Eq. (5). For
the general case including Zener tunneling the current
becomes

III. MODEL SIMULATIONS

In this section we will examine three models for the
Zener tunneling process in a 10 loop of wire. In each
model we will examine some feature of the scattering ma-
trices $„[seeEq. (7)] and approximate certain parameters
to learn how important they are. %e will always use the
same initial condition as Ref. 11, namely unit amplitude
(c„''=1} in states n =200 and 201. The discrete time
evolution of the system is then calculated by repeatedly
applying the unitary time evolution operator T on the
wave function q( (or equivalently by applying twice the
scattering operators S„and mixing alternating pairs of
levels). Data on the current and the distribution of am-
plitudes in the various levels are retained during the
iteration.

Some comments about the simulations should be made.
The simulations were run for 4096 time steps t2, more
than 40 times longer than in Ref. 11 (note that in Ref. 11
a time step is dc6ned over the interval t, so our results
extend over 8192 steps t ) These. long runs we found to
be important because the long-time behavior often ap-
peared only gradually. Test runs were performed to en-
sure that numerical roundo8' did not affect the results.
To check unitarity, we ran the simulation forward for
4096 steps, then ran it backward for the same time, and
checked that the initial state was recovered. This showed
that unitarity was preserved to machine precision (1 part
in 10' ). Another test we used was to run the simulation
forward, take the complex conjugate of the amplitudes,
then continue to run the simulation. The subsequent
time evolution was the time-reversed version of the initial
simulation, explicitly showing the time-reversal symme-
try of the Zener tunneling. ' %e show the current in one
such simulation in Fig. 2. From these tests we 6nd that
the finite precision of the calculation affected in no
signi6cant way the results obtained, even over the longest
runs.

The three models that we examined are (a} a system
with constant transmission amplitudes t„=t,but phases
that vary with energy; (b) the Kronig-Penney model stud-
ied by Lenstra and van Haeringen; and (c) a system with

gaps that close with increasing energy unlike the
Kronig-Penney model. For quick reference we have la-
beled the figures with "CTA" for the model with con-
stant tunneling amplitudes, with "KP" for the Kronig-
Penney model, and with "SI" for the screened impurity
model.

In each case we examine (i} the phase randomization
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FIG. 2. Time reversal symmetry. %ith the levels 200 and
201 occupied at time k =0, the time evolution of the current j'"'
is plotted for k between 0 (start} and 4096. The amplitudes
c„(~6)are then complex conjugated and used as the new initial
condition at time k= —4096. Evolving the system again for-
ward in time we recover the initial state at time 0 (end) with a
precision of 1 in 10', This shows that the fimte numerical accu-
racy of the simulation does not aFect our results.

properties of the model, (ii) the behavior of the current as
a function of time, (iii) the nature of the time-evolved
state at long times, and (iv) the local density of modes
that contribute to the initial disturbance.

A. Constant Xenel tunneling amphtudes

FIG. 3. Adiabatic energy levels e„asa function of Aux o..
%'e discuss the concept of phase randomizatian. The path (e)

contributes a term of order t 'r ' to the amplitude at 8. All other
four paths connecting points A and 8 contribute terms of the
order (rt)'; however, di8'erent paths pick up diFerent phases.
The phase dN'erences between paths are approximately 6&—6&
between (b} and (a), 6&—63 between (c) and (b), and 66—64 be-
tween (d) and (c). Since the phases 6„areessentially random,
the summation over diFerent paths leads to a strong suppression
af the total amplitude at paint 8.

The motivation for this model came from the claim by
Lenstra and van Haeringen that the crucial feature of the
Zener tunneling model was the apparently random phase
that the wave function acquired while tunnehng through
different sequences of energy levels. To be more specific,
consider Fig. 3. Here we show five diferent paths in en-

ergy space connecting points A and 8 at two different
times. Whereas path (e) contributes an amplitude of or-
der t r ', the paths (a) to (d) all contribute terms of the
same order (tr) to the total amplitude at 8. However all
the latter four amplitudes arrive with difkrent essentially
random phases at B. Relative to the neighboring path,
the phase differences are 8~—6I—(I)„8„)„I between
(b) and (II), 8,—6I—(B„B„)„4between (c) and (b),
and 86—64—(I)„8„)„5between (d) and (c).

Note that the phase B„usually is a very smooth slowly
varying function of n, whereas the phases e„areessen-
tially random. Finally, adding up amplitudes with the
same modulus but random phases leads to a strong
suppression of the wave function at B. This is very simi-
lar to the phase randomization e8'ects in Anderson's
model of localization in a one-dimensional random poten-
tial.

Lenstra and van Haeringen then claimed that this
phase randomization was the source of the constant
current which they found to be proportional to the in-
duced emf. We will therefore simplify the Zener tunnel-
ing so that the value of the tunneling probability t„be-
IwccI1 lcvcls n and n + 1 ls lndcpclldcllt of n (cxccpt for
the boundary condition of the lowest level n =1). Fur

thermore, we drop the constant term in e„andsubstitute
the phase 8„byB„=lrl.n /2, such that the scattering ma-
trix S„takes the form

—i (n. /2)~n

g —I VTJl 2

n =e i(m/2)vn (15)

QH„

0
0 2000

I

i

4000
level index n

=.'A'

6000 8000

FIG. 4. Phase 6„picked up during a single forward scatter-
ing event as a function of level index n. The phase parameter
v =E& /eFI. has been chosen equal to the inverse of the golden
mean ~& ——(1+&5)/2, ~=1/~G. The phases 6„arefound by
taking the modulus of m~n with respect to 2'. The quasi-
periodic patterns which appear on a large scale in n are due to
close approximations of ~ by a rational p/v, generating quasi-
periods of length v. Most important, however, is the 1ocally
random behavior of the phases 6„.
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This simple form of S„alsolends itself to analytical treat-
ment (see Sec. I&). The only parameter left in (15) in ad-
dition to the magnitude t of the tunneling amplitude is
the phase parameter ~=E, /eFL. If v is not a simple
fraction like —,

' or —'„the expression en rnodulo 2 acts like
a random number generator and produces essentially ran-
dom phases e„asillustrated in Fig. 4. Here we have
chosen ~ equal to the inverse of the golden mean

rG ——(1+v 5)/2, ~=1/ rG. A quasiperiod v (v is an in-
teger) in the pattern can be observed for those values of v
which lead to a good approximation of vw by an integer
number p, r=@/v. Although there is some regularity in
the pattern on a large scale in n, the phase change locally
is apparently quite random.

Keeping ~ at this value, we have varied the tunneling
amplitude t. The resulting current traces for four values
of t are shown in Fig. 5. Note that t is quite close to one
so that most of the time the particle will tunnel. For
0.7 gt «0.9 we found essentially the same behavior as
shown in the bottom curve for t =0.9. As t drops below
1/&2, backscattering starts to dominate. The Fourier
transform of the current starts to show clearly resolved
peaks. The number of peaks decreases as f, approaches 0.
This can be explained by the decrease of the number of
levels involved in the time evolution of %. As t ~0 pure
Bloch oscillations emerge.

The short time be-havior for t near to unity is essentially
the same as seen by Lenstra and van Haeringen; however,

the fluctuations are larger by a factor of 2 or 3 in our re-
sults. The behavior at long time is completely difFerent
from that seen in Ref. 11, since the mean current decays
to zero even for t =0.999. We therefore conclude that
the asymptotic behavior of this model is zero net current
with large fluctuations. This is certainly one simple way
for a steady state to be reached: Since the energy
pumped into the system per unit of time is

0.0 I "-

T T ' ' l

t = 0.999

)c„[

[E(t)=(%'(r), H(t)%'(t))], the net energy exchange be-
tween the field and the system drops to zero, indicating
that the particles have become localized in energy space.
With a finite current such as reported by Lenstra and van
Haeringen, the mean energy in the electronic degrees of
freedom must increase linearly with time since we have
no way to remove it from the electrons. '

Figure 6 shows the distribution of the probability
! c„!in the levels n at the end of the run. Except for

the top figure, there is little change in the distribution
over the last 2048 time steps. While the state for t =0.9
appears to be localized over a narrow range of levels, the

),

yg,4
CTA

002 '.

!--

o (Itski ~~
l

I

t =0.99
0.05 z

! I

I

t = 0.99

200 I-

-200 —'

L

0 IOOO 2000
time steps k

5000 4000 0

!

!!

1 J
80004000

level index n

FIG. 5. Current j as a function of time for the model with
constant Zener tunneling amplitudes t„=t.k numbers the time
steps t2 . For t =0.9 the current evolution is characterized by
large fluctuations around zero. As the tunneling amplitude t is
increased, the current first rises and then relaxes back to zero.
On average, no further energy is pumped into the system once it
has attained its zero-mean-current asymptotic state. This state
has not quite been reached for t =0.999. The arrow in the bot-
tom left-hand corner marks the simulation time used in the
work of Lenstra and van Haeringen, Ref. 11.

FIG. 6. Probability distribution ! c„!after 4096 time steps
t2„, as a function of level index n. Except for the topmost figure
(t =0.999) the distributions are essentially unchanged over the
last 2048 time steps, in agreement with the observation that no
further energy is pumped into the system after it has reached
the zero-mean-current asymptotic state. The data strongly sug-
gest that the wave functions become localized in energy space
with a localization length which increases as the tunneling am-
plitude t approaches unity.
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t = 0.995
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FIG. 7. Local density of states at the levels n p ——200 and 201
as a function of quasienergy co. The spectrum appears pointlike
for the case t =0.9 indicating that the quasienergy eigenstates
are localized in energy space. Increasing the tunneling ampli-
tude t leads to the 611ing in of additional peaks as more eigen-
states overlap with the initial disturbance at levels 200 and 201.
This indicates the increase of the localization length as t ap-
proaches unity. Note that the large peaks persist as t increases
from 0.99 to 0.999. For t =0.999 the asymptotic state has not
yet been reached.

FIG. 8. Local density of states vs quasienergy co at different
positions in level space. The same peaks are present in the local
density of states at pl p=200 and 202. Therefore, we conclude
that the same localized quasienergy eigenstates contribute to
these neighboring initial disturbances. As we move farther
away from level 200 the local density of states changes com-
pletely. At level 800 di8'erent quasienergy eigenstates overlap
with the initial disturbance and consequently the IDOS peaks at
diferent values of co.

localization evidently weakens as t approaches unity.
This behavior is also reAected in the local density of
states, shown in Fig. 7. For t =0,9 the spectrum clearly
appears pointlike, which ~ould occur if the eigenstates
are localized. If the localization length were g, we would
expect about g' peaks in the LDOS. The two intermediate
values of t clearly show the filling in of the density of
states, indicative of decreasing localization. The interpre-
tation of the t =0.999 results is ambiguous, primarily be-
cause the current has not returned to zero, indicating
that we have not reached the asymptotic regime yet.

If our interpretation of the LDOS is correct, then
neighboring pairs of levels should exhibit the same peaks
irl the I.DOS with only the height of the peaks varying
due to the shghtly changed overlap of u„' ' with the eigen-

functions u' '. This is indeed found to be true for the
present model and is iBustrated in Fig. 8, where me corn-
pare the LDOS for the level pairs (200, 201) and (202,
203). As we go farther away from our initial level
no=200, me expect that other eigenfunctions u will

overlap with a specific site. Indeed, if we choose the pair
(800, 801) the LDOS has changed completely as we show
in Fig. 8.

The above arguments strongly suggest that the eigen-
functions u'"' of this particular system are localized in

energy (level) space. We therefore have filtered out some
eigenfunctions u„'' for the four values of t discussed
above, using Eq. (14), and find that they are exponentially
localized, indeed. The result is shown in Fig. 9 where we
show a set of exponentially decaying eigenfunctions u„
for the four values of t. Extracting the localization
lengths g from the slopes, we find that the localization
length diverges as t approaches unity and that the func-
tion g(t) is well described by

g(t)-, t~l .1

1 —t' (16)

Note that the parameter 1 —t describes the deviation
from free-electron —like acceleration, or, put into other
words, is a measure for the scattering in the system. Of
course our limited set of data can be described as mell by
g(t)-2/(I t ), which shows the sa—me divergence as
(16).

Thus we find that the process of phase randomization
leads to localization of the wave functions in level space
and therefore to zero average current asymptotically. A.

finite average current is incompatible with the localiza-
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= exp[ n—(1—r)],

3
C:

-60

where the last equation applies for t~1. The localiza-
tion length g(t) then turns out to be g(t)=1/(1 t—),
which is precisely the result we have found above. 4'ith
our assumption, we can therefore reproduce our result
for the asymptotic form of the wave function, and we find
the correct dependence of the localization length g on the
tunneling amplitude t.

-80
0 2000

!

4000 6000 8000
8. Kronig-Penney model

level index n

FIG. 9. Quasienergy eigenstates in level n representation are
plotted vs level index n for four values of the tunneling ampli-

tude t. An eigenstate belonging to a particularly prominent
peak in the local density of states has been chosen in each case.
Exponentially localized eigenstates are found and the localiza-
tion length g(t) is extracted from the slope of ln( ( M„„~) vs n by
linear regression. The inset shows the dependence of the locali-
zation length g(t) on the tunneling amphtude t The d.ata are
well represented by the form g(t)=1/(1 t). The localiz—ation
length g diverges as the tunneling amplitude t approaches unity.

tion of the wave functions as this requires the system to
absorb energy continuously from the field. This can be
achieved only if the wave function is delocalized, allow-
ing the electrons to move up in level space.

The question may be raised if it is really the phase ran-
domization which leads to the localization of the wave
functions, or is it rather the exponential decay r" of the
leading edge of the wave function which is responsible for
the localization? The answer to the second possibility is
no. We will show in Sec. IV that if we substitute r by a
rational number, the eigenfunctions u„'"'are extended in

energy space. The above semiclassical view which
neglects the phase is misleading.

Let us finally speculate on the role of the phase ran-
domization. In his work Ping Ao examines the behav-
ior of the leading edge of the wave function in order to
describe the time dependence of the current in the ring.
Here we extend these ideas to discuss the behavior of the
wave functions and to determine their asymptotic behav-
ior at large energies.

For the present model we find that the leading edge of
the wave function 4' decays exponentially with increasing
level index n,

~
c„~-r . The tail, which this leading

edge leaves behind, is decaying in the same way, like rt,
since the particle is backscattered once. Having suffered
a backscattering event, the amplitude now takes part in
the phase randomization. I.et us assume that the phase
randomization localizes the wave function in energy
space in the form of the tail left behind by the leading
edge. The localized wave function then decays as t", or

The above discussion has shown that phase randomiza-
tion together with constant Zener tunneling amplitude
produces (i) exponentially localized wave functions in en-

ergy space, and (ii) zero asymptotic current. We now
release the second condition and allow for the variation
of the transmission coefBcients t„with level index n. In
the case of the Kronig-Penney model discussed here, this
variation is due only to the quadratic dispersion relation
of the electrons as the gaps h„are constant (=b, ) and
only the bandwidths (or velocities) m„ increase linearly
with level index n.

As we have seen above that the localization length g
diverges with r approaching unity, we might expect a
weakening of the localization or even a delocalization of
the wave functions at high energies where the transmis-
sion amplitudes approach unity. However, it is not clear
that the resulting current asymptotically should ap-
proach a constant value as claimed by Lenstra and van
Haeringen. Since it could be that the simulations of Ref.
11 were done over too short a time to see the asymptotic
behavior, we have repeated the simulations on the
Kronig-Penney model over a considerably larger time in-
terval.

We have studied the behavior of the system for
difFerent values of the field strength I, as this is the exper-
imentally accessible parameter. We chose a ring cir-
cumference L = 1 pm and a scattering potential
V0=10 ' eVm. This sets the interesting scale for the
field (where rzoo&0. 9) to 1 —10 V/m. We will illustrate
our results for the values F= 1, 3, 5, 7, and 9 V/m (in the
following we will drop the unit V/m).

The phase parameter v now depends on the strength of
the field. In Fig. 10 we show the patterns for the phasee„for our five field values. Again there is some varying
degree of regularity on a larger scale in n and the length
of the quasiperiods now change with the field. We have
not found any structure in our results due to the existence
of such quasiperiods, indicating that the randomness in8„is enough to wash out correlations.

In Fig. 11 the current j is shown as a function of time.
For weak fields I' & 1 the behavior is very reminiscent of
the t=0.9 behavior in the previous model, and the
current for I'=3 is very similar to that for t=0.995,
where the current first increases and then returns slowly



GIANNI M.Al I'ER AND DANA A. BROWNE

2-::=.--"--- -. :-:-

0,.:..=:. '=„-..:, ='. -:"-."..'.,', ;..-':-';:".- --;-.; -:. :.,=,„-„'',„..=..

7r ~. -aP'- -, ~' '-. -I', '

7T,~ ..

0 .'-~ ' ' e . ' ".e- ' . ~ ~ ~ "' ' ".' 'x . i ' cwi-."''i'" "'4+~~V'~" ~~""&&::& ~~M~"i'4i~'c" ~~

I ~'+ Q + i, + WjO++$~QJ ~ $ $1tiw QI J W lY g'~% g

VT ~'. '
':-.":;-.=",-'' -:;, .- '--. :;

0 '-':-..„-:.-"..'.-,;, *:-..-"".=.:--'-„'='-,, '.::-"-' —;"-.'

I I I I

OH

0 4000 8000
level index n

FIG. 10. Phase map e„asa function of level index n for five

diFerent values of the electric field I'; from top to bottom I' =9,
7, 5, 3, and 1, respectively. Since the phase parameter
~=E& /eFL depends on the field, the phase maps change with
field. Quasiperiods appear when r is we11 approximated by a ra-
tional p/v; the length of the quasiperiod is given by v. Again
the behavior of the phases e„is essentially random on short
scales.

to a zero mean asymptotically. Thus for weak fields we
see that the behavior looks very similar to that produced
by phase randomization and constant Zener tunneling.
%e conclude that if the phase randomizing process pro-
duces a well-localized distribution, then the fact that the
transmission probability varies with energy has only httle
efFect. This view agrees well with the result found for the
wave functions shown in Fig. 12. At low-6eld values the
wave functions remain well localized at low energies.
Similarly, the local density of states is pointlike as we ex-
pect it to be the case for a system characterized by local-
ized wave functions, see Fig. 13.

As the field is increased, which means that the ampli-
tudes t„increase, wc see a difFerent behavior emerge. The
current, which may remain nearly constant for a long
time as in the F=5 case, eventually starts to increase
linearly with time as we increase the field still further, in-
dicating free-electron-like acceleration. Simultaneously,
thc wave function develops a long tail, headed by a pro-
nounced peak, which decays only slowly for large fields.
The system constantly picks up energy from the Seld to
promote the particles to higher energies. The local densi-

ty of states clearly Mls in as the 6eld strength is increased.
Note that whereas in Fig. 7 new peaks are added to the
already present peaks as t is increased (r & 0.99), here the
LDOS changes completely as we increase the field. I'. Thc
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FIG. 11. Current j as a function of time for the Kronig-
Penney model featuring asymptotically constant energy gaps.
The traces for I' =1 and 3 resemble the current evolution in the

case of constant tunneling amplitudes, where the current relaxes

back to a zero mean. For a field E=5 the current nearly satu-

rates at a constant nonzero value. The presence of a linearly ris-

ing component in the current becomes evident as the field is fur-

ther increased. This linearly increasing current indicates the

presence of free-electron-like acceleration of a part of the wave

function, i.e., the wave function seems to delocalize.

reason for this diferent behavior is given by the difFerent
generating function for the phases e„:whereas the pa-
rameter ~ did not depend on the transmission amplitude t
in our model A, it depends on the Seld F in the case of
the Kronig-Penney model.

Let us compare the results of our simulations with
those obtained by Lenstra and van Haeringen. If we ig-
nore the long-time behavior and examine the evolution
only over the first 150 steps, then the current apparently
saturates and becomes independent of time as reported by
Lenstra and van Haeringen. On this short-time scale we
then reproduce their results. However, as we follow the
evolution over a longer time interval (4096 time steps) we
have seen a completely difFerent behavior emerge.
Whereas for field values I' &5 the current apparently
saturates, we find a roughly linear increase of the current
for larger fields. If we compare the saturation current
(j ) (over 4096 time steps) for field values I' &5 (where
such a quantity may make sense) to the results of Lenstra
and van Haeringen, we find that the average current (j )
increases in size as the field is increased, see Fig. 14.
However, it does not follow a linear law, and hence it is
clear that this system does not show Ohmic behavior as
has been claimed by Lenstrs and van Hacringen. Note
that the Buctuations in our simulation, which grow after
the initial disturbance has felt the presence of the bound-
ary at n =1, are much larger than in Rcf. 11, where the
simulation was stopped just as the disturbance reached
Pf =1.
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Obviously it is very important to run the simulations
over a long enough time interval in order to see the true
asymptotic behavior of the system. How can we be sure
then that we actually observe the right asymptotic behav-
ior of the system'? The answer is that at high fields we
probably do not see it yet, in spite of our long simulation
times. In the following we will repeat the analysis given
at the end of the last section which was so successful in
predicting the right answers for the model with constant
Zener tunneling amplitudes.

%e assume again that the phase randomization acts to
preserve the form of the wave function as it is left behind
by the leading edge. The Zener tunneling amplitudes t„
now depend on the level index n. We find the following
asymptotic behavior of the amplitudes c„:

! c„!-r„gt, =(1—t„)' exp

2 1
1 —exp

. 1/2+ Lilf

1 Pf
exp ——lnf no

FIG. 12. Probability distribution ! c„!after 4096 time steps
t& as a function of level index n. Whereas the wave functions
look localized at low energies for Aeld values I' =1 and 3, the
wave functions appear to be delocalized at high-field values
I'=7 and 9. In the latter two cases the baHistic peak at the
leading edge moves linearly with time to the right, leaving a
thin tail behind due to the very weak backscattering. The frac-
tion of the wave function which is kept localized at low energies
due to phase randomization decreases with increasing Seld.

FIG. 13. Local density of states at levels no ——200 and 201 as
a function of quasienergy cu. Again the spectrum appears point-
like at low Seld values F. Increasing the field leads to the ap-
pearance of an increasing number of peaks in the spectrum.
Contrary to the previous model discussing the case of constant
tunneling amplitudes„here the large peaks shift with varying
field. This is due to the dependence of the phase parameter r on
the field F.
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FIG. 14. Average current (j ) /jo over 4096 time steps t, as
a function of induced electric Geld F. %'e compare the results of
our calculation I,

') with those obtained by Lenstra and van

Haeringen, Ref. 11 {0).The vertical bars represent the current
tluctuations ( (j (j ) )2 ) '~2/j 0. W—hereas Lenstra and van

Haeringen observe an Ohmic behavior, our data deviate largely
from a linear relationship between the mean current and the in-

duced 6eld.
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with

1

f 4 F. , eFI.
(17)

Normalizing the wave function to unity we obtain the re-
sult

1/2, +1/f
1 1

1/2
21+—

with

2 ] 2

f

where g denotes the Riemann g function. This result
then indicates that the wave functions 4 and therefore
also the quasienergy eigenfunctions for the Kronig-
Penney model are algebraically localized for all field
strengths. Numerical simulations again support this re-
sult: %e have 61tered out a few eigenfunctions numeri-
cally using again Eq. (14) and find that they are indeed
decaying algebraically, see Fig. 15. For F= 1 we find an
exponent —,'+1/f =5.7 [the value expected from (17) is
=7.1], for F=3 the result is —'+1/f =2.9 [2.7 as expect-
ed from (17)], and for F =5 we find an exponent =1.7
(1.8 is the expected value, we have not quite reached the
asymptotic region here as the current has not returned to
zero). For higher-field values our simulations are prob-
ably far from reaching the asymptotic region.

If the wave functions are indeed algebraically localized
we would expect that once the leading mode has decayed
the current returns to zero asymptotically:

We then find that jljo decays smoothly from —,
' to 0 as we

increase the field, which is essentially zero on the scale of
the 6uctuations in the current which are always present.
This relaxation to a zero mean current at long times can
be observed in our simulations for the fields F=1 and 3.
A check of the distribution of

~ e„~~ at field values F) 5

shows that we have not reached the asymptotic region as
the leading mode of the wave function has not decayed
yet, thus we cannot expect to see the current return to
zero. Note that whereas the current returns always back
to zero according to the above considerations, the total
energy picked up by the system diverges if f & 1 or
I' g 6.6.

If we then trust the assumption concerning the role of
the phase randomization made above, we have to con-
clude that (i) for the Kronig-Penney model the quasiener-

gy eigenfunctions are algebraically localized, (ii) the
current returns back to a zero mean asymptotically, and
(iii) our simulation time is not long enough to observe the
asymptotic behavior of the system at large fields: The
linear rise we see is only a transient behavior.

C. Screened impurity model

-I0

-20

3
C

D

C

-40

A rather artificial feature of the Kronig-Penney model
is the fact that the gaps remain constant at high energies.
This is due to the sharpness of the potential V(x), leading
to a Fourier transform which behaves badly at in6nity,
i.e., the gaps do not close. %e therefore investigated a
third model where the 5 function was replaced by a
smooth scattering potential mimicking a screened impur-
ity. The gaps in this model then shrink according to

-50

FIG. 15. Quasienergy cigcnstatcs in level n representation vs

level index n on a double logarithmic scale. Eigenstates belong-
ing to particularly prominent peaks in the local density of states
have been chosen. The eigenstates for the Kronig-Penney mod-
el decay algcbraiea}ly with exponents 1/f + z

-5.7, 2.9, and 1.7
for increasing Seld values I' = 1, 3, and 5, respectively. The bot-
tom curve illustrates the behavior of an eigenstate for the
screened impurity model. Note the nearly constant tail develop-
ing above n =400.

The parameters 6 and x were chosen such that for the
200th level the gap was the same as in the Kronig-Penney
model and by the time the 500th level was reached the
gap had been reduced to half its value at 200.

The changes in the phases 6„induced by the change in
the potential are negligible, since almost all of the phase
change is due to the kinetic energy. The current traces
for the impurity model are shown in Fig. 16. %'e have
chosen a 5eld range which covers the typical low- and
high-Seld behavior of this model, namely F=0.5, 1, 2,
and 5. *At low-field values 8 ~0.5 the current strongly
oscillates around a zero mean, the wave function which is
sho~n in Fig. 17 appears localized, and the local density



37 ZENER TUNNELING AND LOCALIZATION IN SMALL. . . 3869

.050.
I

SI
Ic„(

0. I4

200

0

= 2 (0.9837)
0

I

0.02 I

~ IIJAII
I

0,
200~

0

-200 I-

0 I 000

~F = I (0.9677)

pF = 0.5 (0.9565)
I

2000 5000 4000
time steps k

0 i

O. I
I-

0 J~

O. I-

x 50

F= 0.5

FIG. 16. Current j as a function of time for the screened im-

purity model which is characterized by asymptotically closing
gaps. Similar to the Kronig-Penney model, the current Auctu-

ates strongly around zero for a low-field value and increases in

time as we go to larger electric fields. For field values I' & 1 the
current increases faster than linear, indicating that an increas-
ing fraction of the wave function behaves free-electron-like as
the time increases. Asymptotically the current has to attain a,

linear behavior.

of states is pointlike as shown in Fig. 18. Thus we find
that at low-field values the system essentially behaves like
the Kronig-Penney model. This can be understood by
noticing that the gaps are fairly constant over the first
400 levels and therefore the tunneling amplitudes t„show
the same dependence on the level index n as in the
Kronig-Penney model. The wave function then should
become algebraically localized as long as it does not
probe higher lying states, which is essentially the case at
low enough fields as I' ~0.5. This explains the behavior
of the system as observed at low fields.

%e point out, that since the wave function decays only
algebraically, we cannot define a localization length.
Therefore, there is always a thin tail of the wave function
which probes levels at higher energies. This tail wi11

delocalize and move up io energy space. We have filtered
out a few quasienergy eigenstates for I=0.5 and find
that they decay algebraically up to n =400. For n ~ 400
a tail is observed which delocalizes to high energies, see
Fig. 15. The amplitude in this tail, however, is strongly
suppressed compared with the localized part of the wave
function at low energies (a suppression of 10 is found
in our numerical result for I' =0.5). The wave function is
then not strictly localized but slowly leaks through its tail
at large energies.

As we turn to higher-field values a di8'erent behavior is
observed. By the time the field reaches 1 we can already
see the runaway caused by the rapid increase in the

0 lE

0 4000
I evel index n

8000

FIG. 17. Probability distribution
~ c„~ after 4096 time steps

t2 as a function of level index n. Again the wave function looks
localized at low energies for the case of a weak applied field
{bottom figure). At higher field values the wave functions devel-

op a pronounced tai1 which looks very diferent from the tail
developed by the wave functions for the Kronig-Penney model.
This can be understood by noticing that the gaps shrink rapidly
with increasing energy for the impurity model, such that the
tunneling amplitude approaches unity much more rapidly.
Note that the pronounced ballistic peak at high field values will

attain a nonzero weight asymptotically.

transmission amplitudes t„with level index n. %hereas
the parameter y„[seeEqs. (86) and (87)j decays only as
1/n for the Kronig-Penney model and for the impurity
model at low energies, it decays like 1/n for the impuri-

ty model at high energies. The leading mode of the wave
function does not decay to zero any longer since the
product of the tunneling amplitudes t„converges to a
finite value asymptotically. This leading mode can be
nicely observed in the figures for the probability density

~ c„~ at large field values, see Fig. 17. With an asymp-
totically finite weight of the wave function in the leading
mode the current then will never relax back to a zero
mean.

Do we then have to conclude that localization efFects
due to phase randomization are not important in a real
system where the gaps close with increasing energy' To
answer this question we point out that for a field F=0.5,
where typically 90% of the particles tunnel, the effects of
the phase randomization are drastic: the phase randomi-
zation very e%ciently prevents the particles from running
away to high energies and thereby suppresses the current
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IV. PHASE RANDOMIZATION AND I.OCAI. IZATION
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In this section we will investigate the effects of phase
randomization in. detail. We will confine the discussion
to the case of constant Zener tunneling amplitudes t„=t.
In Sec. IV A we wi11 present some analytic results where
we show that a system with no random phases is charac-
terized by extended wave functions. As we increase the
number of diferent phases in the system. we 6nd that the
wave functions tend to become localized. This will be il-
lustrated in Sec. IV 8 where we follow the behavior of the
system as the phase randomization is gradually turned
on. The results of the second subsection will be mainly
numerical.

A. Periodic phases

F=O.5

ilL w. ). .)„,J. . ~ L

We shaH start from Eq. (15}which contains all essen-
tial features of the model. It is convenient to remove
some of the phases in (15) by redefining the phases of the
wave functions u„

(18)

FIG. 18. Local density of states of levels no ——200 and 201 as
a function of quasienergy co. The pointlike spectrum found for
low electric fields (bottom figure) fills in as we increase the
strength of the field F.

flowing in the ring.
We remark that since we find again a rapid crossover

from localized to delocalized behavior as we increase the
field, it is clear that a finite range potential V(x) produces
a highly non-Ohmic result, in agreement with arguments
made by Landauer. '

In summary, the study of the above three models has
led us to the following conclusions: (i) Phase randomiza-
tion leads to localization of the wave functions, not to a
constant current and Ohmic behavior as claimed by
Lenstra and van Haeringen. (ii) For constant Zener tun-
neling amplitudes the current relaxes back to zero asymp-
totically and the wave functions are exponentially local-
ized. (iii) For the Kronig-Penney model we expect alge-
braically localized eigenstates and a current which
asymptotically returns to zero. This result is based on an

assumption concerning the role of the phase randomiza-
tion and we have presented some numerical evidence sup-
porting it. (iv} If the tunneling amplitudes approach uni-

ty faster than for the Kronig-Penney model the wave
functions delocalize and the current starts rising
inde5nitely with time.

Finally, it may be possible that the inclusion of the in-
elastic scattering will cause the distribution ~c„~ to
change, as energy is transferred from the ring to some
large reservoir, and the behavior we have seen above will
be cut off'. It is not clear if this mill combine with Zener
tunneling and produce Ohmic behavior for the current in
a ring.

with

n —1

i)„=g 8, =n(n —1)—v. .

takes the simple form

T=e-" "'Vm )

0

—i 4m mr I 2lfl K'7

0

~~ —l 2/Pl 7T 7 e 14m 7T.P
r2m e

Here r2 denotes the 2mth element along the diagonal.
The matrix T„couples c„' " to four amplitudes c„' '.
The unitary transformation (18) renders the matrix 8'
real. The boundary condition for the lowest level n =1
leads to the recursion

(k +)) ((Tl'/12)TI
r (k) I (k) }c)

We will drop the tilde in the folloming since we keep
working in this basis from now on. Using the above uni-
tary transformation we determine the discrete time evolu-
tion operator T by iterating the recursion relation (7)
twice, mixing alternating pairs of levels as described in
Sec. II. The matrix T„which defines the recursion rela-
tions for the amplitudes c„' ',

(k +1) ~ T (k)
C~ nmcm
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+n
Xn+1

Xn+] Xn, +Xn J y XO X] 1

using the Fibonacci sequence x„.For the moment we
will concentrate on the lowest approximants v.

o
——1 and

~] =—,
' as they can easily be treated analytically and pro-

vide insight into the behavior of the model without phase
randomization.

Setting r equal to 1 in (19) we obtain a particularly sim-
ple form for T since all the phases are l. [We have
dropped the uninteresting phase exp( —imr/2) in Eq. (19)
since this leads to a mere shift of the spectrum. ] The size
of the unit cell in level space is 2, the minimal possible
size. %e erst solve the eigenvalue problem for the infinite
system and take into account the boundary condition (20}
later.

Our aim is to solve the eigenvalue problem (10), in ma-
trix notation Eq. (11). Because of the periodicity in level
index n it is useful to make a Fourier ansatz for u„

Equations (19}and (20}completely determine the discrete
time evolution of the system.

How can we manipulate the degree of phase randomi-
zation? As pointed out in Sec. II the phases 6„show a
quasiperiodicity with a quasiperiod v if ~ is close to a ra-
tional p/v. If we deliberately pick a rational number for
~, v =p/v, then the phases 6„repeat exactly after going
up 2v levels in energy space. This is a suScient, not a
necessary condition, of course. Therefore, by setting the
phase parameter v equal to a rational number p/v, we in-
troduce a unit cell in level space of length less or equal to
2v. The task of calculating the spectrum and the eigen-
functions of the discrete time evolution operator T be-
comes identical to the problem of finding the vibrational
eigenmodes of a half-infinite 1D chain of atoms with a
unit cell containing 2v di8'erent masses (or springs). The
only difkrence is that T is a unitary operator whereas the
phonon problem is characterized by a Hermitian opera-
tor. Therefore, the spectrum of T will be on the unit cir-
cle in the coroplex phase instead of on the real axis.

In the next section we will approximate the inverse of
the golden mean 1/~G by the sequence

FIG. 19. Quasienergy co as a function of wave number q for
two models characterized by periodic phases 8„:(a) v.= 1, the
size of the unit cell is 2. The dispersion is linear, co=+2q, for
t =1. As t decreases a gap opens in the spectrum which in-

creases as t approaches 0. For t~O the dispersion becomes
linear again, co~0. (b) ~= ~, the unit cell size is 4. The new

dispersion is found by shifting and back folding the dispersion
in (a).

The dispersion co(q) is shown in Fig. 19(a) for t =0.9 and
1.

The eigenvectors are determined by the ratio

r(q, co) = "q 2tr sin(q)
u ' since+ t sin(2q )

r (q, co) is positive (negative) for the branch with
sgn(co) =sgn(q ) [sgn(co) = —sgn(q) ], respectively.

In the limit t ~1, Eq. (22) simplifies and we obtain the
linear dispersion co(q)=+2tq. The extended eigenstates
u ' ' then are traveling modes moving up or down
through level space,

u'e' q n =2m
u'e'" -"&, n=2,m —1. (21)

(ki ~g ei(n 2kiq—~ co{q) ~ n oe

{I() ~g i{n +2I()q~ ~{q) ~ n, ee

Since we have two levels per unit cell we can restrict q to
[—qc/2, n /2] and we expect to find two modes for each q
value. Inserting (21) into Eq. (11) and using the simple
form for T, we Snd the following eigenvalue equation for
the polarization vector (u ', uq'):

e '"—1 —2it e'qsin(q)

2i sin(q)

e
2i sin(q) Qq

' —1+2it 2e "sin(q) uq,

co(q) =+2 arcsin(t sinq ) .

Thc secular cquat1on dctcfmlncs the dlspcrslon relat1on
co(q) and we obtain the result

Here we have used the symbol 5„,(5„,) which is 1 on
odd- (even-) numbered levels and zero elsewhere, respec-
tively. An initial disturbance therefore moves at a veloci-
ty 2t through level space without any dispersion.

As we decrease the tunneling parameter t three things
happen: (i) a gap opens up in the quasienergy spectrum,
(ii) the velocity of the long-wavelength modes decreases
to 2t & 2, and (iii) modes with q near to the Brillouin-zone
edges +m/2 show strong dispersion. Note that strong
dispersion near the Brillouin-zone edge leads to a van
Hove singularity in the density of states. In a comparison
with phonon modes in a crystal the decrease of the tun-
neling amplitude t corresponds to an increase of the
atomic mass in the crystal.
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As the tunneling I; approaches zero, we find again a
dispersion-free propagation of the initial disturbance,
however, the velocity in level space is zero, meaning that
the particle remains in its initial level forever. This is the
limit of Bloch oscillation.

Most important we find that the simplest model
without phase randomization leads to extended quasien-
ergy eigenstates u' '. This property is not specific to the
case ~=~0—every model characterized by periodic
phases 8„hasextended eigenstates. However, as we will

shortly see, the system approaches the quasiperiodic limit
showing localized eigenfunctions smoothly as we increase
the size of the unit cell. Note that as mentioned before in
Sec III, the rapid (exponential) decay of the amplitude
for the leading edge of the wave function does not pro-
duce localized wave functions if no phase randomization
is present.

A new feature appears as we include the boundary con-
dition (20) into the model. To satisfy Eq. (20) we have to
define new eigenstates u'

~q'~ by superposing up-going and
down-going states of the same energy to(q)=to( —q),
q y 0, on opposite sides of the Brillouin zone,

~n, co(q) ~n, co(q)+ ~q ~n, m( —q) '

An interesting by-product is then the appearance of
boundary states which decay exponentially as we move
up in level space. A short look at Eq. (22) tells us that ail
boundary states appear at q =+n. /2 and they decay in
level space on a scale I(, where

j. . co
K =cosh sin

t 2

ing large matrices, we will investigate the system with the
numerical tools we have already used in Sec. III. This
also allows us to compare the result directly with the
findings of Sec. III.

8. Approaching phase randomization

In the following we will study the behavior of the sys-
tem as we approach full phase randomization by intro-
ducing an increasing number of difkrent phases 8„into
the problem, i,e., by increasing the size of the unit cell.
%e will approach the system with true phase randomiza-
tion characterized by ~=1/~G in four steps: The case

3 allows us to make connection with the previous

section, r4 ———,
' and ~6———,", describe the intermediate

range, and with ~8 ———,", we approach the case of phase
randornizaton pretty well already. The tunneling param-
eter t =0.9 is held constant throughout this study.

%'e start with the discussion of the current j'"' which
is shown in Fig. 20. In all four cases characterized by
periodic phases 8„wesee a linear increase of the current
with time which indicates free acceleration of the elec-
trons. The slope of the current, however, decreases as we
increase the size of the unit cell, as if the electrons would
become heavier. Remembering the analysis of the previ-
ous section we can interpret this behavior in the follow-
ing way: The linear rise of the current must be due to the
nondispersive traveling modes u„'~'~ which describe that
part of the wave function 4'"' which travels up in level
space at a velocity 2t. The slope in the current is then

600--
1

%e then conclude that boundary states are found for
t ~ 1 at the edge of the Brillouin zone with a quasienergy
to in the gap 2 arcsint &

~

co
~

& ~.
Having established this new formalism the interesting

question is what happens as we increase the unit cell size

by gradually approaching an irrational phase parameter
Of course, the most simple thing to do is to examine

the case v
&

———,'. %e can folio~ through the above forrnal-

ism in exactly the same way, the only difference being
that we now have to deal with a 4&4 matrix, since the
size of the unit cell is now 4. It turns out that the disper-
sion relation co(q) becomes

200

0

0:

0

200 i-

1 gl

l5
p 2I

$4

x 0.5

co(q)=+2arcsin t

s1I1
4

cos

200 ~

0

-200--

As expected we find four branches within the Brillouin
zone [—m/4, m/4] and we show a plot of the dispersion
in Fig. 19(b). It turns out that the dispersion is merely
shifted and backfolded to the reduced Brillouin zone as
compared to the ~0 ease. Therefore, nothing particularly
interesting happens as we go from ~o to ~&. However,
very interesting results are found as we go beyond ~&. As
it becomes rather tedious to diagonalize the correspond-

0 I 000 2000 5000 4000
time steps k

FIG. 20. Current j as a function of time for the model with

periodic phases 8„.%'e compare the current for four examples
characterized by periodic phases {top curves) with the current in
the presence of full phase randomization {bottom curve). As we

increase the size of the unit cell 2v, the slope in the linear rise of
the current is reduced, as if the electrons would become heavier.
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PIG. 21. Probability distribution
~ c„~ after 4096 time steps

as a function of level index n. As the size of the unit cell is in-
creased following the figures from top to bottom the wave func-
tion %' seems to become localized. %e point out, however, that
the quasienergy eigenfunctions (and therefore also %') are always
extended if the size of the unit cell is Snite. Only for the bottom
wave function do we 6nd an exponentially localized state due to
phase randomization.

determined by the product of the velocity 2t and the frac-
tion of the wave function which overlaps with these non-
dispersive traveling modes. Since the tunneling ampli-
tude is constant in our five examples, the decrease in
slope with increasing denominator v indicates the disap-
pearance of the nondispersive traveling modes. As we go
beyond a unit cell size of 110 (rs), only the long-time be-
havior of the current allows us to distinguish between the
cases of periodic phases e„with a large unit cell and the
fully phase randomizing ease with an infinite unit cell.

In Fig. 21 we show the distribution
I c„~2 at the end of

the run. The beating structure observed for the cases
r=rz and r=r4 is due to the interference of diS'erent
modes traveling through level space at nearly equal veloc-
ity. The leading edge of the wave function is never at
n =8393 as it is the case for the Kronig-Penney model
and the impurity inodeI in high 5elds: the origin of delo-
calization is die'erent here. For v =r2 the leading edge is
roughly determined by the velocity 2t of the nondisper-
sive traveling modes. As we go beyond v& the maximal
velocity for traveling waves obviously must decrease,
since the leading edge of the wave function drops drasti-
cally. By the time we reach v =vs we see again that the
wave function has become apparently localized at low en-
ergies.

FIG. 22. Local density of states at the levels no ——200 and 201
as a function of quasienergy e. The LDOS for a small period
(T2 3 ) shows 3 pronounced features: (i) a strongl y oscil lating

behavior on the linear portions of the dispersion curve co(q)
which is due to the reAection from the boundary at n =1, (ii)

gaps are opening as the tunneling amplitude t decreases from
unity, and (iii) van Hove singularities are marking the edges of
the gaps. As the size of the unit cell is increased from top to
bottom, the number of gaps increases and the weight of the
spectrum is transferred from the linear portions in co(q) to the
van Hove singularities. As the unit cell becomes infinite for
~=1/vz the van Hove singularities have become the peaks
marking the localized quasienergy eigenstates which overlap
with the level no.

The local density of states, which is shown in Fig. 22, is
very helpful in understanding the behavior of the current
and of the wave functions. Whereas essentially nothing
changed when we increased ro to r, a new feature appears
as we go beyond v &. The number of gaps in the spectrum
increases with the size of the denominator v in r„In.
general, we Snd v gapa for r=plv (for r7 we found only
17 instead of 34 gapa). The size of the gaps increases as
the amphtude for Zener tunneling t decreases, as we have
seen in the preceding section already. The I.DOS shows
the following three features.

(i) A strongly oscillating behavior is seen within the
linear portion of the dispersion relation co(q). This is
most easily seen for the'case ~2 ———', , where the linear por-
tions in the dispersion relation are still large. These oseil-
lations are due to the standing ~aves created by the
reflecting boundary at n =1: Consider the simplest ex-
ample of free traveling waves in a half-infinite lattice with
a boundary condition 4'(0)=0. The eigenmodes are the
functions sin(qn). The LDQS at n =no is large for those
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FIG. 24. Quasienergy eigenstates in leve1 n representation are

plotted vs level index n for four diFerent sizes of a, finite unit cell
and for the case of an infinite unit cell. The tunneling amplitude
t =0.9 is held constant. The smooth envelope modulating the
extended eigenfunctions is due to the cute'in the Fourier trans-
form enforced by the finite simulation time. The pronounced
spikes in the wave functions mark a region within the unit cell
where the eigenfunction is large. The simulations suggest that
these peaks within the unit cell become the exponentially local-
ized eigenfunctions as the unit cell size is increased.

FIG. 23. Local density of states vs quasienergy co at diFerent
positions in level space. The tunneling amplitude t =0.9 and
the unit cell size 2v are held constant. Following the figures
from top to bottom we approach the boundary at n =1. The
period of the oscillations in the LDOS due to the rejecting
boundary grows like 1/no. As we approach the lowest level an
additional peak appears in the gap which marks the quasienergy
of an exponentially decaying boundary state.

values of q which have a maximum at no and small for
those states having a node at no The oscill.ations in the
LDOS should therefore show a period proportional to
1/no, and indeed they do, as we show in Fig. 23. Here
we study the LDOS for dilferent levels no holding r=rz
and t =0.9 fixed. Besides the above-mentioned change in
oscillation, we also see the appearance of a boundary
state in the gap as we approach the lowest level. When
we filter out the corresponding eigenfunction with the
help of Eq. (14), we find a boundary state which decays
exponentially with a decay length of about 20 levels.

(ii) The number of the gaps increases with increasing
size of the unit cell. [The LDOS does not drop to zero
exactly because we have to cut o8' the Fourier transform
in Eq. (13) due to our finite simulation time. ] The frac-
tion of 2m occupied by the increasing number of gaps in-
creases, i.e., the measure of the spectrum decreases. Ex-
trapolating to the case of the inSnitely extended unit cell
(full phase randomization), we expect to find a pure point
spectrum of measure zero, which is typical for a system
with exponentially localized wave functions.

(iii) The dominating features in the LDOS, finally, are
the van Hove singularities which are created each time a
new gap opens. All the weight of the spectrum goes into

these peaks which then become the sharp peaks in the
LDOS of the fully phase randomizing model showing lo-
calization of the wave functions. The linear portions of
the dispersion ai(q) disappears gradually and their weight
goe% into the sharp peaks characteristic of strong disper-
sion. This explains how the particles apparently become
heavier with increasing unit cell size, explaining the
features observed in the current j'"' and in the distribu-
tion

/ c„/i.
The final question we may ask is how do the extended

wave functions in the examples with a finite unit cell size
approach the localized wave functions in the case of full
phase randomization? To obtain an idea of what is going
on we have filtered out some wave functions at the van
Hove singularities for different sizes of the unit cell. The
results are shown in Fig. 24 together with an example of
a localized wave function for the case ~= 1/rG

The wave functions in Fig. 24 show two features. A
spikey behavior on the scale of the unit cell and a smooth
decay on a larger scale. The smooth decay is an artifact
of our numerical Ster which operates in co space. At the
location of a van Hove singularity, the density of states
dq/de diverges and therefore a good filter in co space of
width hey is always a bad 61ter in q space, since
bq =he@(dq/dao). Therefore, by probing states over the
range 5q we pick up a shape function of width
hn —m /dkq which modulates the infinitely extended
eigenfunctions.

We then have to concentrate on the spikey structure
within a unit cell. The picture which emerges from our
simulations is the following: The eigenfunctions at the
van Hove singularities peak strongly somewhere within
the unit cell. Only those states contribute to the LDOS
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which have their peak in the unit cell matching up with
the probed state no. As we increase the size of the unit
cell, the neighboring peaks move away and we r'emain
with what will become the exponentially localized state.
So the localized eigenfunctions develop out of a sharp
peak within the unit cell of the extended eigenfunctions
for the periodic case.

In this section we have shown how important a role the
phase plays in this system. Let us therefore terminate
this section by briefly considering the opposite 1imit of a
classical model characterized by probabilities p„'"'instead
of amplitudes c„'"',therefore lacking any phase. In such a
model, particles are either transferred with probability t
to the neighboring band or proceed within the same band
with probability r, where now t +r =1. The time evolu-
tion of the probability distribution p„'"'is then determined
by a stochastic "matrix T which is again found by iterat-
ing twice the mixing of probabilities at each level ap-
proach.

Since there are no phases, the problem has a minimal
unit cell of size 2 and we can repeat the analysis above for
the case r=ra. The eigenvalue equation for the polariza-
tion vector (p~,p~ ) now reads

2 t2 2'
—2rt cosp

e'—2rt cosq Pq

e
—cg r2 t2e —2lg po

[Note the quadratic dispersion co(q).] Fourier transform-
ing to real space we finally find that an initial disturbance
decays diffusively,

1/2
(k)I' n

—[[n —no] /42)k]
e

with a difFusion constant B=t /r. We thus obtain a com-
pletely different behavior for the classical and the
quantum-mechanical systems characterized by either
periodic or quasiperiodic phases 6„.

V. SUMMARY AND CONCLUSION

In this paper we have studied the single-particle prop-
erties of an electron in a small conducting ring subject to
a constant electric 6eld E which is generated by a linearly
ramped magnetic Aux. %e have introduced the adiabatic
eigenenergies c„andthe corresponding eigenstates u„
which define a complete orthonormal basis set at every
point in time. As the strength of electric Geld E is in-
creased, transitions between the adiabatic eigenstates be-

with r, t p 0, r+ t = 1. The eigenvalues are given by

e "=(ri+t cos2q)+[(ri+t cos2q) —(r —t ) ]'~

For the long wavelength modes (q~O) we find the
simpler expressions 1 q t lr and —(r —t)(1+q r lr).
Since all modes with eigenvalues less than one decay ex-
ponentially in time, we end up with a diffusive behavior
determined by the eigenvalue 1 q t lr: aft—er k steps the
corresponding long-wavelength modes decay like

e =e—key —q [t/r)k

come possible.
To account for these transitions we have reformulated

the problem of the time evolution and cast it into the
form of a scattering problem. This was accomplished by
integrating the time evolution of the system over one
basic scattering event during which the particle can ei-
ther tunnel to the neighboring state or be backscattered
to its initial state. As a result, the time evolution of the
system was reduced to a discrete set of points in time and
thereby became amenable to numerical treatment. The
time evolution of the system is determined by an operator
T which takes the system forward in time by t2„,the
period of Bloch osciliations. We have introduced the no-
tion of the quasienergy co and the corresponding eigen-
functions u„which diagonalize the unitary operator T
and constitute another complete basis set. %'hereas the
basis u„' ' is useful to visualize the wave function 4', the
basis u„'"'is useful for understanding the asymptotic be-
havior of the system in time.

Having established the formalism, we have investigated
the behavior of several model systems. To study the
efFect of phase randomization we have set the tunneling
amplitudes t„to a constant value t. %e then have ana-
lyzed a model where the phases e„picked up over one
half-period t are quasirandom as we move through level
space n. We have found that the quasienergy eigenfunc-
tions for this model are exponentially localized in energy
space. Since every solution 'P(t }of the Schrodinger equa-
tion can be represented as a linear superposition of these
quasienergy eigenstates, we find that 4(t) has to be local-
ized in energy space, too. As a consequence the current
carried by a state %(t) has to reach a zero mean asymp-
totically, since no net energy can be pumped into the sys-
tem once the wave function has attained its (localized)
asymptotic form.

To investigate the role of phase randomization further,
we have studied a model where the phases e„arenot
quasiperiodic but periodic (with a period p) in level space,
e„+——e„.For this model we have obtained extended
quasienergy eigenfunctions and a current rising linearly
in time. As the length p of the unit cell in energy space is
increased, the quasienergy spectrum develops an increas-
ing number of gaps and the weight of the spectrum is
transferred to the van Hove singularities which separate
allowed from forbidden regions of quasienergy ai. Simul-
taneously, the eigenfunctions corresponding to quasiener-
gies at the van Hove singularities develop a sharp peak
within the unit cell. Studying the behavior of the system
when increasing the period p we could observe how the
phase randomization tends to localize the eigenfunctions.
As p~ 00 we conjectured that the quasienergy spectrum
becomes pure point and the peaks of the eigenstates
within the unit cell develop into the exponentially local-
ized states.

The second important set of parameters are the tunnel-
ing amplitudes t„.To investigate the effects of their
dependence on level index n on the single-particle proper-
ties of the system, we have studied two models. For the
Kronig-Penney model the n dependence of the ampli-
tudes is due to the quadratic dispersion relation of the
(nearly free} electrons alone. The amphtudes t„1slyow
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approach unity as we move up in level space. As a conse-
quence we found indications for algebraically localized
quasienergy eigenstates and again zero-mean asymptotic
current. The asymptotic behavior of the system, howev-
er, is reached much more slowly than for the model with
constant tunneling amplitudes.

As a more realistic model we have treated the case of a
screened impurity potential which leads to gaps which
close asymptotically. The tunneling amplitudes t„then
approach unity much faster than for the Kronig-Penney
model where the gaps are asymptotically constant. For
this model we have found delocalized wave functions
which can move up in level space indefinitely. The
current the'refore increases with time and the system con-
tinuously absorbs energy from the electric field. Howev-
er, also for this more realistic model we have found that
the process of phase randomization is very important as
it prevents a large fraction of the wave function from
moving up ballistically in level space. To complete the
analysis we have also studied a classical model and have
found a difFusive behavior for the propagation of the
probability distribution in energy space.

In this paper we have concentrated on the single-
particle properties of the system. An important exten-
sion of this theory will be the incorporation of the fer-
mionic nature of the electrons. As we want to describe
realistic structures it also becomes important to take into
account the finite number of transverse channels which
are occupied in a wire of finite width. We also neglected
effects due to inelastic scattering which may affect the
transport properties in a real system. Since inelastic
scattering tends to randomize the phases further and ex-
tracts energy from the electronic degrees of freedom, the
combined effects of the phase randomization and (even
weak) inelastic scattering are expected to prevent the
electrons from attaining large energies in the electric
field.

A technologically interesting problem to study is the
transport properties of electrons in a semiconductor su-
perstructure in strong electric fields where Zener tunnel-
ing between the mimbands has to be expected. In this
system the analysis then is complicated by the formation
of "Stark ladders. "

The main conclusion which we draw from our study is
that the process of phase randomization leads to localiza-
tion effects and not to Ohmic or resistive behavior. This
result is in agreement with the fact that a particle in a
ring constitutes a Hamiltonian system for a single degree
of freedom.
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APPENDIX A

to describe the wave function g&„(x)on the left (g&„'~)
and right-hand side (y) ) of the scattering potential
V(x)= V05(x), we can use the continuity condition
p» (0)=g~ (0) and the condition

vo
(&„q„')(0)-(&,p„' )(0)=, y„',(0)

to relate the amplitudes A„and8„to the amplitudes
a„andb„viathe transfer matrix T„

T

&n, a
~n, a

n, a

1+i U

n, a

&n, a
(A2)

Here U =m VOL lfi, s„~=AE„l2m, and (Al) is found
by integrating Eq. (4a) over the interval [—z, e] in real
space. T„has all the properties of a transfer matrix,
~22 ~11 ~21 ~12 detT = 1, and due to the symmetric,
potential Re T12 ——0.

The Bloch condition Eq. (4b) relates y„and its
derivative at x =L [i.e., y„(L}and (B„y„)(L)]to the
corresponding quantities at x =0 [i.e., y»~(0) and
(8 q&» )(0)],and we obtain the second condition

~n

i[a—X„L,~
e 0 &n, a

i (a+K„L)
e It, Q

(A3}

The Schrodinger equation (A2) together with the bound-
ary condition (A3) determine both the spectrum E„and
the eigenfunctions y„(x).The spectrum is found as usu-
al by requiring that the matrix equation

&n, a
(T„M„)—

n~a
=0

has a norivanishing solution, det(T„—M„)=0, leading
to the implicit equation for E„

cosa = (cKo„sL)+ sin(K„L) .U

tl,

(A5)

In this appendix we briefly derive the energies and
wave functions for the adiabatic limit of the ring prob-
lem, using a 5-function scattering potential V(x) as our
model potential. The eigenfunctions p„,(x) are most
easily determined by a transfer-matrix method.
Defining

iK„ x —iK„x
p„» (x)=a„e "' +b„e
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Normalizing ((()„(x)to 1 and choosing {(()„0(x)to be real
we find the Bloch waves (0 &a & m )

(A6)

with

q„=. [sin(K„++5„)—cos5„sina],1

sln5 „~
LN„ sinK„L

1+/~ ~ —2g~ ~
n, cr

With (a,K„),a solution of (A5), all the combinations
(+a, +K„)are solutions, too. The upper band edges are
determined by LK„=nm,+=0,m. The allowed energy
states are' given by values LK„&nm, and the gaps in the
spectrum correspond to values of LI{:„slightly larger
than nm, see Fig. 25. For a weak scattering potential Vo
the solutions for LI{:„awayfrom the Brillouin-zone
edges nm are approximately given by LK„={no.a—),
n =1, 2, . . . , aG[0, ir].

The wave functions ((()„(x)are determined by the
eigenvectors of (A4) which satisfy

b„ iK„Q
&no

(a=sr/2) and goes back to 1 as a approaches n. For
odd-band indices the sign of q„ is reversed. The normal-
ization constant LX„start sout at —,

' (a=0), approaches
1 as a=a/2, and drops back to —,

' at the Brillouin-zone
edge a =m. This completes the description of the eigen-
values c.„andeigenfunctions y„ for the case of a 5-
function scattering potential in the ring.

APPENDIX 8

In this appendix we brieAy illustrate how Zener tunne1-

ing and backscattering can be cast into the form of a nor-
mal scattering problem. As many of the results are
spread over the literature and derived in a difFerent way,
we give a self-contained derivation here. The time evolu-
tion of the coefficients c„(a)is determined by the system
of differential equations (6). This system is simplified by
(i) a unitary transformation to the variables

b„(a) =exp (i /eFL) I da'e„c„(a),
0

and (ii) a choice of phase —P{a) for the eigenfunctions
u„(x)such that the diagonal matrix elements A„„van-
ish. As A„„is purely imaginary (due to the normaliza-
tion of u„which does not depend on a) the condition
ImA„„=Ocan always be satisfied by a suitable choice of
P(a). A rather lengthy calculation leads to the result
P(a) =a/2. Using Eqs. (A6), (3), and the result for P (a)
the eigenfunctions u„(x)become

~ (.n —I ) —i (a/2) —ia(x//L)
~n, a ='& n, a'

i /i[x +(L/2)] —i/i„[x+ (L/2)]
y, e —q„~e (Bl)

The eigenfunctions in the region —m & u & 0 are obtained
by complex conjugation,

,(x)=qr„' (x), 0&a&re .

For even-band indices n, q„starts out with a value 1 for
a=0, drops near to zero in the middle of the band

Note that whereas (p„=(]()„'„=((p„„wefind that u„
=u„' = exp(2i—rix /L )u„,i.e., the functions (i()„show
the usual symmetries of Bloch functions, whereas the u„
do not.

Using the results of (i} and (ii) above, the time evolu-
tion of the coefficients b„(a)becomes

db„(a)
i = i g A—„~(a)exp (i /eFL)

m (~n)

X I da'(e„~ e) —b (a) .

0

cn

vr 2' 5vr 4m 5m em 7vr

KL

FIG. 25. Graph to determine the allowed and forbidden adi-
abatic eigenenergies e« ——A E„~/2m for the Kronig-Penney
model. The heavy lines mark the positions of allowed values for
EC„L=KL. The upper edges of the bands are given by
EL=nm, n =1,2, . . . .

Using the relations

( u„,()u /(}a)= {u„,[BH(a)/()a]u1

Cm, a —
F-n, a

we can express the matrix elements A„by the simpler
expressions D„(a)=—L(u„„,(}„u ). We calculate the
matrix elements D„(a)using the expression (Bl) for the
wave functions u„,taking advantage also of the ortho-
gonality (u„,u }=5„~,as well as the periodicity
(u„'~@~~)(0)—(u„' u )(L)=0 of the wave functions.
The result is
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+Ill, ll IIV,

X sin(R —A„)—,L (83}

db„+,(z)

Gfz

db„(z)
1

dz

1 1
exp iy„dy(1+y ) b„(z),2

2 1+z2 . 0
(86)

1 1 z 2exp —iy „dy(1+y ) b„+,(z),
1+z

D„(—a)=( —1) +" 'D„(a)=D„*(a),

D „(a)= D„'—(n) .

with

25
m„eFL

LK„=n~ 1— N~
1 — 1+ Q (83a)

for the upper edge of the nth band, and

So far, all the formalism in Appendixes A and 8 is exact.
%'e have studied the dependence of the matrix ele-

ments A„ in (82) on a and on the level pairing n and m.
It turns out that (i) neighboring levels couple strongly as
they approach each other, and (ii} levels further apart
couple only weakly, even- (odd-) numbered pairs of levels
do not couple at a = Im.

In principle the set of Eqs. (82) can be solved numeri-
cally taking into account the coupling to the k nearest
neighbors. Here we adopt the following approximations:
(i) only the coupling to the nearest approaching level is
taken into account, and (ii) we assume the scattering po-
tential V(x) to be weak or the energy s„ofthe electron
in state n to be large. The approximation (ii) allows us to
solve Eq. (A5) perturbatively and we find the results (to
leading order in 5iE„)

r
2

Equations (86) have been found before by Lenstra and
van Haeringen using a different approach (their result
slightly difkrs from ours due to the use of a diferent
phase in the definition of the coefficients b„)and were in-
tegrated analytically by Eilenberger in the weak field
limit y„~no. The strong field limit y„~Ohas been
treated by Sauter and %eisse and by Eilenberger. Start-
ing with a particle in the lower band b„(—oo)=1,
b„+&(

—oo ) =0, a transition probability

- 2 —( m /2)ynn=e

is found in both cases of weak and strong 6eld as z~ 00.
The regime of intermediate fields strengths has been
thoroughly studied by Lenstra and van Haeringen' by
numerical integration of Eqs. (86). We have integrated
(86) using a standard Runge-Kutta routine with adaptive
stepsize control and we illustrate the result in Fig. 26
for six dift'erent values of y„.The amplitude b„starts out
at 1 and reaches an asymptotic value in the first quadrant
of the complex plane as z ~ co, b„(oo ) =r„exp(iX„)with

LK„+) ——nm 1+
n

1+ 1+ o.'

(83b)

for the lower edge of the n + 1st band (w„=2E,n ). Here
we have chosen the origin o;=0 to coincide with the
closest approach of the two bands and we have intro-
duced the gap parameter b, = Vo /L. The energy
difference between approaching bands then is

' 2 1/2

=26 1+ 0.0 ~-.
I

bn

%e note that, as expected, the gaps c.„+,o—c„o=26 ap-
proach a constant value for the Kronig-Penney model.
Using the approximations (83) and (84) we find for the
matrix elements A„„+,(a)

Changing variables to z =m„a/m.h we 6nally obtain the
set of equations

0.0
real port

FIG. 26. Time evolution of the amplitudes b„{o. } and

b„+,(o.} during Zener tunneling between two approaching ener-

gy levels. The six pairs of trajectories apply to difkrent values
of the electric field F. %ith y„=2m' /ao„eFL we show exam-
ples for (a) y„=0.1, a strong field, (b) y„=0.25, {c)y„=0.5, (d}
y„=1.0, (e) y„=1.5, and (f} y„=3.0, a weak field. %'e start
with a particle in the lower band, b„(—~ ) = 1, b„+,( —~ ) =0
and folio~ the time evolution of the amplitudes as a~ Oo. The
amplitude for the lower band reaches its asymptotic value in the

if
first quadrant, b„(Oo }=r„e ", the amplitude for the upper band
ends up on the imaginary axis due to the time reversal symme-
try, b„+l(~ ) =it„.
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0(X„&tr/4 and r„=l t„—. The amplitude b„+,starts
at 0 and ends up on the imaginary axis as z~~,
b„+i(oo )=it„.The unitary matrix s„which relates the
initial amplitudes at z~ —ao to the final amplitudes at
z ~ then is

—i(x„+e„+8„)r„e
—ie„lt„e

dex n.
Finally transforming back to the coefficients c„(a)we

obtain the scattering matrix 5„

'+n
me

J

(8&)

S =
n

with

—ie„it„e i (x„—8„+d„)r„e

Note that (86) has the same symmetry properties as the
original Hamiltonian (l) and therefore s„is unitary and
symmetric. In agreement with I enstra and van
Haeringen's observation, we find that Eq. (87) holds for
all field strengths F. %'e also find the same dependence of
g„onF as reported in their paper.

In our original problem of Zener tunneling between
minibands the integration parameter a runs from —n. /2
to n/2, therefore we should integrate z in (86) from
—w„/2h to io„/25. For the case of a weak potential
V(x) and/or high energies s„ the ratio between the
bandwidth w„and the gap 26 is always large and we ac-
tually reach the asymptotic regions. For the case of low
energies e„(atthe bottom of the spectrum) the transi-
tion rates t„and scattering phases 1'„aremodified, but
we do not expect these minor modifications to have a
severe e8'ect on our results. Therefore we extrapolate Eq.
(88) to describe scattering at low energies, too.

A second source of error are the approximations (84)
and (85) used for the energy difFerence s„+,—s„and
the matrix elements A„„+,(ct). Again we find very good
agreement between these approximations and the exact
results (the error in the matrix elements is less than 4%
over the entire range —n/2&a&m/2 for io„/6=2).
Note that when generalizing (87) to smooth scattering
potentials V(x) the gap parameter b, depends on level in-

n/2
da(e„+, —s„).

eFL 0

Finally using e„+ia+a„=2(5„+E„)and (84) for the
difference e„+,—e„wehave derived Eq. (7).

%e finish this appendix with a brief derivation of the
current j(t). Using the definition (5) we find

j(t)= —g ~
c„(t)

~

' ' +, g c'(t)c„(t)D„(tt).
n lML m~n

(89)

The examination of this expression at our sampling
points az» shows that the diagonal term is completely
dominating the current carried by the off-diagonal part.
We therefore neglect the second term in (89). Evaluation
of a.„.at the sampling points a&k finally leads to

J(k) 1 y ~

c(kl
J

2( l)n —1(n
n=1

with
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