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Interface at general orientation in a two~ensional Ising model

D. 8. Abraham
Department of Theoretical Chemistry, i South Parks Road, Oxford. OXI STG, England

P. J. Upton
Department of Theoretical Physics, i Kege Road, Oxford, OXi SNP, England

(Received 12 November 1987)

The magnetization pro61e of a t~e@imensional Ising model, containing an interface vnth gen-
eral orientation, is obtained exactly in the thermodynamic limit for all subcritical temperatures.
At zero temperature the interface is found to be rough if it is not oriented in one of the lattice
directions. The results are compared eath those of a construction of the %ulff type.

Recently there has been much interest in the statistical
mechanics of twoMimensional interface models. In par-
ticular, it has been proposed'2 that the rms displacement
w(8) of an interface, whose mean position is at an angle
of 8 from one of the axial lattice directions is given by

w'(8) -Lb(8)+r"(8)] ',
where L is its mean length and r(8) is its angle-dependent
surface tension. This is a pneralization of an earlier ob-
servation by Fisher et a/. for 8 0 which was obtained
from fluctuation theory and an exact result. ' Akutsu
and Akutsu' showed that (I) it is true for the solid-un-
solid model and assumed its validity for the Ising model.
De Coninck and Ruiz considerated generalizations of the
solid-on-solid model. 2

In this Rapid Communication we demonstrate that (1)
is indeed correct for the two-dimensional Ising model us-
ing exact methods. We provide only a brief account of the
calculation here, leaving details to a further publication. s

We start by defining the model.
Spin-2 Ising spins occupy sites (tt, m) of a 2NXM

square lattice A and interact through the following Ham-
iltonian

A~» JZ rrw, m(re+ l,m+ 4n, as+1)

Z~-(s)-&- (Z, (s)V Z, (s) [ -),
M

V-V)"V,VP', V, -exp —SC'g~;
1

M

V2 exp EC+efajs+t

(5c)

(5d)

there. In order to evaluate (4) we use a transfer matrix
method. Cyclic boundary conditions are set up by intro-
ducing a second interface into the system passing through
boundary spina at (n, trt ) (-N, s) and (tt, ttt )

(N, t+s —1) and then joining the two horizontal edges
together to produce a cylinder of circumference M. The
single-interface properties are then recovered by taking
s oe. A transfer matrix V operates in the direction
parallel to the symmetry axis of the cylinder from which
~e can write

m(PN;P) - ltm Itm Xss(s ~PN, P)/Z„' (s), (sa)

Zst(s)PN, p) ( —~R1(s)V '+s rs'V ' s R, (s)
~
-),
(5b)

An interface is introduced into the system by imposing
boundary conditions along all four edges of A as shown in
Fig. 1. Let ZA be the canonical partition function for
the system with the interfacial boundary conditions and
Z+ be that for the same lattice with all boundary spina set
at tr„, +1. Then the surface tension is defined by

r(8) -—lim (2Nsec8) ' lim ln(Z„+ /ZA ) (3)

and the magnetization at position (n pN, m p) is
defined as

m (pN, p) lim (crtttv, s), —1 & p & 1,
where ( . ) denotes the ensemble average with respect to
(2). r(8) has already been evaluated by Abraham and
Reed and a partial result along the lines of (4) was stated

FIG. 1. The boundary conditions of the lattice under con-
sideration. Spins along edges labeled + (—) are kept in the up
(down) state. Here and throughout this Rapid Communication

2N tan8.
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where K J/kttT and exp(-2K ) tanhK. of are the
usual Pauli matrices operating on the direct product of M
two-dimensional Hilbert spaces. [

—& is defined as the
state where crjs (

—
&

—
)
-

& for 1 ~j~ M. R; (s) is the
block rotation operator which, when applied to [

—
&, rev-

erses all spina from i to i+s inclusive. Xst(s ) PN, p) and
Zsr (s) are evaluated using Ref. 8 and the standard fer-

mion methods of $chultz et al.
A Jordan-Wigner transformation is used to convert the

system into one involving fermions. As usual, one has to
separate V into V+ and V which operate on states con-
taining only even and odd numbers of fermions, respec-
tively. Equation (5b) then becomes

~ ( IW,p)--,' X &~,'IRi()V,"'s'";V-";""R,()l~'-,& (6)

and similarly for Zst (s). ~
@~a& is the state associated with the largest eigenvalue of V,. The translational symmetry of

the system is exploited by Fourier transforming the fermion operators and writing erg T t'oft', R, (s) T 'RI(s)T'
where T is the linear translation

operator.
V+ is diagonalized by using the Bogoliubov-Valatin transformation which

produces new fermion operators G (a;), Gt( —Pr) (i 1,2) where a;(P;) is the wave number belonging to a state con-
taining odd (even) number of fermions in the site representation. It now follows that the e —term in (6) (and similar-
ly for e +) becomes

exp[-N(1+P) [y(a~)+ y(a2)] -N(1-P) [y(-P~)+ y(-P2)]]exp[i(P~+P2)t -i(a~+ az)p i(P—~+P2)p]
NioaPA

x&4- (R)(s)Gt(a))G (az) [%-&&4- (G(az)G(a~)oI'Gt(-P~)Gt(-P2) (@+&

&e iG( —Pz)G(-P )R ( ) ie4&,

where ( ++ & are the G-particle vacuum states and we have used the fact that only states containing exactly two particles
contribute. y(m) is the usual Onsager function. 'o The factors containing t and p arise from the translations. As M
the sum becomes an integraL The matrix element containing four G operators has been evaluated using a generalized
Wick theorem. s The remaining matrix elements, which were evaluated by Abraham and Reed, 5 give a factor of
exp[is(a~+Pt)l which forces Est(s )PN, p) 0 as s ee unless there is a pole at a~ —P~. Thus, the only nonvanish-
ing term in (7) in this limit is that coming from the pair contractions represented by the diagram in Fig. 2. The diagram
can be thought of as representing two "dressed" domain walls.

A similar analysis follows for Zst (s) so that we are eventually left with

exp[-N[(l+P) y( ~m)+(1-P) y( m)]2+i [ ~mt
—p(m~+mz)]]f+(e ', e ')

ttt(PN, p) m'ltv '(2rr) ' d(m)2Jo cos 2 b m~ cos 2 b m2
(8a)

exp(imt )exp[-2Ny(m)]
l~ tr dm

st 0 I +cosa» (m)

where b (m) and f+(s~,sz) are defined in Abraham and Reeds and m is the usual spontaneous magnetization for the
system with homogeneous boundary conditions.

As N ee [(Sa) and (Sb)] can be evaluated using the saddle-point method. We present the result below in terms of
the coordinate system (x,y) defined along and normal to the mean position of the interface (see Fig. 1)

0, O~b& 2,

lim m(x y PL,y aLs) m sgn(a), b & —,',
I —» oo

m sgn(a)@((a[ [2[v(8)+r"(8)]/(1 —P )]'/ ), b

Nq f+ P~
5
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/'

r
/

6[2 f+ 2

r X r X /
/

r
/' &/ v

FIG. 2. The only Feynman diagram contributing to
X~(s )P, p) as s

FIG. 3. A possible ground-state con6guration for the case
when 8 x/4. The broken lines denote the positions each V seg-
ment in the solid Hne can jump to without changing the energy.
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where 4 is the standard error function and we have used the known result for r(8). L is the mean length of the interface
as shown in Fig. l. By taking the second moment of (9) we obtain (1) thus proving the conjecture made by Akutsu and
Akutu' for the Ising model.

The zero-temperature properties of this model can be alternatively derived from random-walk arguments. To see this,
consider the case when 8 4 tr. A possible ground state is illustrated in Fig. 3. Spina adjacent to the interface are fully
frustrated (i.e., they can 6ip without changing the energy). Therefore each section of the interface is free to Hip to one of
the positions denoted by the broken line. So, if we de6ne hj as being the height of the jth section above its mean position
(the solid line in Fig. 3), then the set [hj} can be treated as a Markov chain. "We de6ne the following generating func-
tion (now for general 8):

g *"gb(h, ,o)b(h, ,t')exp(ih, y) W(h, -ho)" W(h~-h~, )
(exp(ihl y))

gb(ito, 0) tI(h 2N, t') W(hi-ho) W'(h2tv-it2N 1)
ho half

(io)

where W(h) 2 [b(h, —1)+b(h, l)], t' 2Ntan8', and 8'
& rt —8. Also 0»j»2N and the %used here is different

from that of the previous calculation. The magnetization at lattice position (j,H~ ) (see Fig. 3) is obtained from

P f/) 1
%21

nt(J', HJ) 2„p(hj)dhj, Jr(hl) dpexp(-ihip)&exp(ihip)&, (i 1)

where p(hJ ) is the probability that the interface will pass through (j,hl ).
The generating function was evaluated using Fourier transforms and the remaining integrals were evaluated for

N eo using the saddle-point method. After transforming the coordinates onto the (x,y) system of Fig. 1 we obtain the
following expression for the zero-temperature magnetization:

0, 0»b& ~,

lim trt(-,' PL, trL ) sgn(tt), b & ~,
L.

sgn(a)@(I a I [a (1-0')sin8cos'8(1+tan8) 'l', b- —,
' .

(i2)

This is, of course, the zero-temperature limit of (9).
Note that at T 0, w(8) 0 for 8 0, 2 tr only. The
zero-temperature roughening for all other values of 8 is
due to the presence of fully frustrated spina at the inter-
face. The pair-spin correlation function has also been
evaluated at T 0 via (exp(hjpi+hl+, pq)) (Ref. 6).

Finally, we discuss the relevance of our results to the
Wulff construction 'z for equilibrium crystal shapes. If we
assume that the equilibrium crystal shape is differentiable
with fixed ends at (0,0) and (L,L tan8) then a simple vari-
ational calculation for the surface free energy functional,
along Wulff lines, gives a straight line shape, exactly as
given by the mean direction from (9) and (12). The form

of the 6uctuations proues faceting at T ~0 for
8 0, + 2 tr, exactly as the Wulff phenomenology re-
quires. There is, however, one snag at T 0. If we allow
discontinuous solutions, then at T 0 any nondecreasing
function f:ZA [-N,Nj~ Z with f(0) ~0 and
f(L) Ltan8 will minimize the energy; it is therefore a
Wulff solution in a general sense; (12) shows which of
these solutions are signi6cant.
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