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%e report the Grst numerical simulation of the relative resistance noise in percolating networks

of dimensions higher than t~o. The results con6rm the scaling estimates of the corresponding

noise exponents up to six dimensions. Since hypercontinuum systems ~ith unit resistors are used,

this confirmation indicates the universality of' the derived exponents.

In recent papers, Rammal, Tremblay, and co-workers
have analyzed the critical behavior of the resistance 6uc-
tuations noise in percolating networks. ' Their work was
followed by intensive experimental and theoretical'
activity. The experiments, however, yielded results
different than those expected from their simple model,
which is based on a percolating network of unit resistors.
While a proper explanation for this discrepancy seems to
be given, 'c there is still no con6rmation of their universal
predictions. In particular, there is no experimental or
computational proof for the fulfillment of their scaling ar-
gument' or the scaling argument presented by Wright et
al. "for the dimensional dependence of the noise exponent
tt. The only result which can be checked against the scal-
ing arguments was given in the pioneering paper on the
subject' by a numerical simulation on a twoMimensional
lattice. Hence, an al14imension con6rmation of their
theory and the scaling relation was called for. z Since ex-
perimental systems are limited to two- and three-
dimensional networks and since these systems usually con-
tain a distribution in the values of the resistors'c it ap-
pears that the only way to test the above-mentioned pre-
dictions is by computer simulations.

Following these considerations we have carried out
computer simulations on continuum systems composed of
intersectable hyperspheres such that each intersection has
a unit resistor attached to it. This work on systems of two
to six dimensions enabled us to directly determine the
noise-critical exponents. Other quantities that can be ex-
pressed in terms of current moments (see below) were also
studied. In particular, the critical behavior of the back-
bone (a geometrical quantity) and the critical behavior of
the electrical conductivity (a physical quantity) were in-
vestigated, and the corresponding critical exponents P'
and t were determined. For example, for three-dimen-
sional systems we found P' 0.9+'0.1 and t 1.8+'0.1,
and for six-dimensional systems we found P' 1.7~0.2
and t 2.9 ~ 0.1. The fact that these values are in agree-
ment with the results estabhshed in the literature' is then
a con6rmation of the validity of our computational pro-

cedure.
The fact that this work is carried out on a continuum

geometry makes it also a test of universality. This is a
consequence of the fact that a con6rmation of the theoret-
ical predictions will indicate that (as in the case of the
electrical conductance'") the critical noise exponents are
the same for lattice and continuum geometries. This
means that the continuum connectivity as such does not
aH'ect the critical behavior of the electrical resistance
noise. Continuum nonuniversality could arise however
from a "bond strength" distribution'0 which is not con-
sidered in this paper.

The generation of the samples for the present work was
similar to that used for the study of the cluster statistics
and the resistivity of three-dimensionil systems. ' Hyper-
spheres are randomly implanted in the continuum of a
unit hypercube. Correspondingly, the diameter of the
sphere d is given below in units of the hypercube edge.
Two hyperspheres are considered connected if there is
some overlap between them. The onset of percolation is
associated with the formation of a continuous path of con-
nected hyperspheres between two opposite faces of the hy-
percube. Hence, the percolation threshold is determined
by the critical concentration of hyperspheres N, which is
required for this onset. Applying the computational pro-
cedure which we have used for low dimensions, ' one
could study the geometrical-statistical properties and the
transport properties as a function of the hypersphere con-
centration N. However, separate procedures were needed
for each group of properties. A considerable simplifica-
tion, using current moments, has been shown recently by
de Arcangelis, Redner, and Coniglio'5 to enable a single
procedure for the determination of some geometrical and
statistical properties as well as the transport properties for
1V ~ N, . Such a study'5 '7 has to be carried out, however,
for a network in which a unit resistor is associated with
each bond of the percolating system, and in which a unit
current is set between the opposite plane electrodes. For
the property of interest in the present work, the relative
resistance noise Sn, it has been shown by Rammal and
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co-workers' that it can be given in terms of the fourth
and second current moments, i.e., that'

Here A is a constant' (that is taken in this work to be 1),
and the sums are over all the resistors in the network.
One notes of course that the denominator is simply the
square of the sample's resistance and that contributions to
the sums come only from the backbone elements (see
below). Following Eq. (1) and Ref. 15 we have associated
a unit resistor with each intersection of two conducting
hyperspheres and we have "set" a unit current between
the two opposite hyperplanes which provide the "elec-
trodes*' to the cube.

Preliminary simulations, in which the sums given by
Eq. (1) were computed, have shown that our inverse
matrix method (used previously' for two- and three-
dimensional resistor network simulations) can handle
samples which are too small to get the proper configu-
ration averages' required for the study of Sg. In particu-
lar, the N 1000 limitation associated with the method
was found to be quite severe. This is a result of the fact
that such a sample size is insufficient for the simulations
of samples of higher dimensions for which much better
statistics are required. Hence, we have turned to a
preconditioned conjugate gradient algorithm which is
designed for the solution of large systems of linear equa-
tions. The basic difference between this method and our
previous inverse matrix method'" is in the technique used
for the solution of the node-voltage vector (v) from the
Kirchhoff equation

Dv+1 —2' ~ x ~ Dv —gg, (3)

where D is the dimensionality of the system, v is the corre-
lation length exponent, and gg is the "two-terminal" resis-
tance exponent. ' '9zo For D~6 one expects'" that
x 2.0 for all dimensions. The comparison made in Fig. 3
between the present numerical results and the limits given
by Eq. (3) leaves very little doubt that the present values
for the "noise exponent" w are indeed within the scahng
limits. The values of v and gg used for drawing the scal-
ing predicted estimates are taken from Ref. 19. One
should note however that the values of the above ex-

for deviations expected' from such effects. In Fig. 1 we
present the dependence of the relative resistance noise on
the proximity to the percolation threshold. The data
points, down to N/N, —1 0.1, are shown to exhibit a
power-law dependence. The deviation from the power-law
behavior below this point is well understood in terms of
the smearing of the transition in finite-size samples. 's Ap-
plying our least-squares-6t procedure' we found that the
data yield an exponent value of x 1.57+ 0.08. This
value is in excellent agreement with the scaling estimates
of Wright, Bergman, and Kantor" who predicted that L

will be between 1.53 and 1.60. In Fig. 2 we show the re-
sults obtained in the sixMimensional hypercontinuum.
Here too, the power-law behavior of the data is apparent
and the least-squares fit

fields
a value which is very close

to the scaling prediction "of r 2.0. These results sug-
gest then an agreement of our numerical data with the
scaling estimates.

The scaling argument of Wright, Bergman, and Kan-
tor" predicts that

Here G is the conductance matrix, '4 (I) is the net current
(through-a-node) vector which is given by (I) (1,0,
0, . . . ,0,0, —1) and (0) is the zero vector. On the other
hand, the current through an existing bond ij between
hypersphere-node i and hypersphere-node j is simply
given by (v; -uj). In the inverse matrix method one in-
verts G and then solves (v) while in the present method
one looks for a solution for (v) such that the left-hand side
of Eq. (2) is minimized by consecutive iterations. Details
of this method will be presented in a subsequent paper.
For the present work it is important that this method en-
abled the use of much larger samples than those which
were available to us previously (the only limitations were
computer-time costs). We have typically used this new
procedure for samples as large as N 50000. One notes
that since (v) is solved for the entire sample there is no
need to single out the percolating cluster prior to the
currents determination.

In this paper we present the data obtained for three-
dimensional and six-dimensional systems and report the x
values derived from these data as well as from the data
obtained for the other dimensions. These values are com-
pared with the scaling predictions. '" We have chosen to
show here the results for the largest samples (largest N,
or smallest d) used in our simulations in order to exhibit
the behavior when 6nite-size effects are not important. In
smaller samples the behavior was much the same except
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FIG. l. The dependence of the relative resistance noise on the
proximity to the percolation threshold in a system of intersect-
able spheres.
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O. I I.O FIG. 3. A summary of the noisewxponent values derived in

the present work. Also shown are the low and high scaling esti-
mates for these values [Eq. 0)1.

FIG. 2. The dependence of the relative resistance noise on the
proximity to the percolation threshold in a six-dimensional sys-
tem of intersectable hyperspheres.

ponents are accurately established only for D 2, D 3,
and D 6. For D 4 and D 5 differen authors have re-
ported somewhat different values for the exponents. 's 2'

These values vary from one report to another by up to
20/o. Hence, the true limits may deviate somewhat from
those drawn in Fig. 3. This however cannot change the

above conclusion that out simulations con6rm the scaling
predictions of Etl. (3) for the hypercontinuum.

In conclusion, we have shown that within our computa-
tional accuracy and the accuracy of available values for v

and (tr the scaling predictions are fulfflled for the noise
exponents. This result and the fact that the simulations
were carried out on a continuum geometry further show
that our numerically derived exponents are universal.
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