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Introduction of two defect lines, one near a wall and another at a distance I., in the d 2 Ising

model, results in a rounded 6rstwrder wetting transition which becomes sharp as I. oo. All the

thermodynamic properties of this transition can be evaluated exactly. Predictions on the 6nite-
size rounding of 6rst-order transitions are verined and con6rmed explicitly.

Since the work of Onsager, a number of models describ-
ing second-order phase transitions have been solved exact-
ly. ' These exactly soluble models have been invaluable in
that they provided a solid basis for scaling theories both in

the thermodynamic hmit and in the case of finite systems.
Finite-size scaling in turn is a useful method when no ex-
act solution of the problem is available and one
has to interpret results of numerical Monte Carlo and
transfer-matrix calculations.

The finite-size scaling theory of first-order phase transi-
tions has progressed in the recent years. 3 ~ However, ex-
cept for the mean-field theory, there are no known models
which describe first-order transitions and can be solved ex-
actly for finite-size efFects. The aim of this publication is
to present such a model.

The system we consider is a modification of Abraham' s

model, which describes a continuous wetting transition
with short-range forces in two space dimensions. The ex-
perimentally observed wetting transitions are typically of
first order and usually involve also some kind of long-
range interactions.

In our model, in which only short-range interactions are
present, a first-order wetting transition is rigorously ob-
tained. We also calculate the finite-size scaling form of
the free energy and investigate the rounding of the transi-
tion. By doing so, we confirm recent predictions on the
analytic properties of finite-size free energies close to a
first-order transition. 3 7 In what follows, we describe our
model and then report the results. (Details of the calcula-
tion will be presented elsewhere. )

The model is depicted in Fig. 1. We consider a semi-
infinite two-dimensional Ising model. The couplings con-
necting the substrate (the boundary with all spins down,
denoted by a minus sign in Fig. 1) to the first layer
(column) are given by J~ a|J, with 0~a~~ 1, where J
denotes the bulk interactions. The boundary conditions at
the Nth layer favor all spins up (denoted by a plus sign in
Fig. 1). At a distance L from the substrate an additional
column of defect bonds J2 a2J is placed with 0 ~ a2 ~ 1.

At zero temperature (the temperature T will be ex-
pressed in units of k/J and we denote K J/kT, K~

J~/kT, K2 J2/kT), and provided ai & a2, an interface
develops and is localized at the substrate. If a2 1, this
interface, in the limit N ~, followed by M ~ depins
from the substrate at a well-defined temperature T„. This
depinning transition first obtained by Abraham is of

second order, with a discontinuity in the specific heat.
With a~ & a2 & 1 and L & oo, the second-order depinning
transition from the double defect structure still exists at
T (L)) T . However, this transition disappears as
L oo [with T (L) T„where T, is the critical tem-
perature of the two-dimensional Ising model]. A new

feature develops in the L ~ limit: The interface un-

binds discontinuously at some temperature T&. The wet-

ting transition at T T~ becomes sharp first order for
L ~, and it is "finite-size rounded" for L & ~, as ex-
plained below. These observations are depicted in Fig. 2.
(The inset will be discussed later. ) The dashed line is the
surface tension, or the surface free energy per spin of the
regular Ising model, which corresponds to ai aq l.
The solid line with a well pronounced cusp at T~ =1.62
describes the surface free energy f (per spin) of our model
with a~ 0.5, a2 0.6 in the L ~ limit. The dotted
lines are analytic continuations of the solid lines above
and below T~. The solid-dotted curve with the dotted part
for T( T~ and solid part for T) T~ corresponds to a
model (denoted by A) with a~ 1, a2& 1 (and L ~).
There is no wetting transition in this model. s 9 The other
solidMotted curve in Fig. 2 describes the surface free ener-

gy of the Abraham model (model 8) with al (1, a2 1.
It merges smoothly with the Onsager curve at T .

For a given value of at (which determines T ) the
6rst-order transition will take place for a~ & a2 (1. For

FIG. 1. Dennition of the model. Double lines denote
Jl alJ, solid-dashed lines denote J2 a2J. All the other cou-
plings are J.
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FIG. 3. The jump h in the free-energy derivative as a func-
tion of T[. 6 is proportional to the latent heat.
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FIG. 2. See explanation of the curves in the text. The sides

of the inset rectangle are as followers: Horizontal side denotes T
from 1.610 to 1.630, vertical side denotes the free energies from

0.829 to 0.848. The solid and dotted curves correspond to the
limit L , while the dashed lines are the two branches of the
free energy for L 14.

the corresponding value of T~, we have 0& T~ & T (in
the hmit a2 a ~, T ~ 0). At T ~ the first derivative of
the free energy with respect to T, which is proportional to
the latent heat, has a jump. The variation of this jump 5
with T~ is shown in Fig. 3 for a~ 0.72, T~ 1.6.

Since the first-order transition takes place only in the
L ~ limit, by keeping L finite (but large) we can study
the finite-size rounding of this transition. For finite L the
free energy is analytic at T~. As mentioned, for L & ~
there is also an overall continuous depinning transition
taking place at T (L))T, where T, —T (L) O(l/L).
Instead of the two solidMotted curves of Fig. 2 (describing
the free energies f~, fe of the models A and 8), two
branches (dashed lines in the inset of Fig. 2) appear with
a gap between them. The value of the gap at T~ is propor-

tional to e ~i'. The expression for 1 will be given below.
The exponential dependence of this gap on L is reminis-
cent of finite-size scaling behavior of Ising models in cy-
lindrical geometry Here. the full finite-L scaling behav-
ior will be derived in closed analytic form.

To calculate the free energy, we used the transfer-
matrix method. The boundary conditions at the vertical
edges of the system described in Fig. 1, can be convenient-
ly expressed in terms of a projection matrix, which as-
sumes a simple form upon the application of the Jordan-
Wigner transformation. ' The boundary conditions in the
M direction are periodic. Thus, the free energy can be ex-
pressed as a trace of an operator which involves a product
of the Onsager transfer matrices (with couplings J~, J2, J)
and the projection matrix. This trace is evaluated in the
basis spanned by the eigenvectors of the Onsager transfer
matrix. For the surface free energy, in the finite L case,
we get

—f/T lim in[1-exp(-aM (z ) + )1

-ln/z/ .

where denote subleading terms for large M. Here a
is an unimportant constant, and z e'v is determined by
the following equation:

[[1+cosq cosav+c* sinq sinai] (c~+s ~ cosav )+ [cosq sinav+ sinq(s —c cosa')]s ~ sinai] (c2+s2cosav)

—e 's2sinav[(1+cosqcosav+c sinqsina~)s~sinav+ fcosqsinav+sinq(s —c cosav)](c~ —s~ cosa')] . (2)

The notations-in (2) are c cosh2K, c cosh2K, s* sinh2K, tanhK e, and with i 1,2,

c; cosh2(K~ —K ), s; sinh2(K; —K*), cosh' cc +cosq, tanav (3)
c +ccosg

s in (3) is sinh2K. The quantity z in (1) is that solution of Eq. (2) the absolute value of which is the closest to unity and
at the same time is smaller than unity.

Before discussing the 6nite L case, let us consider the L ~ limit. In this limit we have two factors on the left side of
(2). Each can vanish separately, and the corresponding solutions with the same properties as z above are denoted by z~
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and ztt [zz is the zero of the expression (cq+ szcosae )). In terms of zz and ztt, the surface free energy is given by

—f/T - lim ln fl —exp' —M(ag ) zg [
~+ att ) ztt (

~+ . )l/ -inlmax( ) zg ), [ ztt [ )I,
M

a~ and att here are unimportant constants; z~, ztt are
functions of T, at, az. The first-order transition tempera-
ture Tt is determined by z~ za z . For T&Tt,» Ill & lz~ I; ~h~~~~~ «r T& Tt, Izs I & lz~l &1.
Consequently, in the L ~ limit f ftt(ztt) for T&Tb
whereas f fq(z~) for T & T~. If f~ and ftt are extend-
ed to the regions T & Tt and T & Tb respectively, then
they give the free energies of models A and 8. These are
the solid-dotted lines in Fig. 2. Solving z~ ztt, we obtain
Tt tn terms of a t, a2 from the relation

xt cs(1-xt') —(c+sx j)
(5)

cs(1 —xi') —(s+cx/)
'

Here, x;~tanhEC; (i 1,2). In the limit a2 1, (5)
reduces to

X2

s(s —1)x t (6)

which gives T T (at) for the Abraham transition.
Let us now turn to the finite L case. For large L, close

to Tt, Eq. (2) can be conveniently written as

(z —zg)(z -ztt) Pe (7)

f+ 2 l(fg+ftt)+t(fg-ftt)'+Re ' 'I' l .

Both Ev and the coeflicient P are complicated functions of
T, L, at, and az. Here, however, they are evaluated at
L ~ and T Tt(at). Relation (7) determines z correct-
ly in the asymptotic regime L ~; zz, ztt z . Solving
(7) for z finally gives the two branches, denoted by dashed
lines in the inset of Fig. 2,

I

Here R is a complicated function of z, etc.; f~, ftt are
now defined on both sides of Tt. Relation (8) is, of
course, valid only in the vicinity of T~ and in the limit of
large L; f+ and f are, —respectively, the lower and the
upper branch in the inset. The characteristic length l, in-
troduced before, is given by Ee '. We did not find any
simple interpretation for this length scale. It is certainly
not the bulk correlation length (evaluated at T~). The
"mixing" of two branches as a mechanism of finite-size
rounding is similar to that predicted phenomenological-
ly3 for Ising models in cylindrical geometries.

In conclusion, we presented the exact solution of a
first-order wetting transition, with short-range interac-
tions, in two dimensions. We were able to analyze the
finite-size rounding of this transition and for the first time
check explicitly the phenomenological finite-size scaling
theory. ' One interesting consequence of our analysis is
that defects or imperfections far from the wall can drive
the wetting transition first order (it will be practically
sharp as long as L is large). Unlike other theories of
weakly first-order wetting transitions, there is no prewet-
ting line in this case (for L oo), which is reminiscent of
several experimental findings.
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