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We consider a resonating-valence-bond state as a trial wave function for the ground state of the
antiferromagnetic Heisenberg model on the square lattice. The energy and the staggered spin-
spin correlation functions are calculated on a small lattice and are compared with the results of
the exact diagonalization of Oitmaa and Betts. The trial energy is only about 4.7% different from
the exact ground-state energy on a 4x4 lattice. The importance of the singlet pairs between the
next-nearest antiferromagnetic sites is inferred. An argument against the previous interpretation
of the numerical data as being evidence of long-range order is presented.

The ground-state properties of the antiferromagnetic
Heisenberg model are not well-understood except in one
dimension where the exact Bethe ansatz solution is avail-
able."? The model is gapless in one dimension; there is no
long-range order and the correlation functions decay alge-
braically with respect to the distance.?

The two-dimensional problem seems to be rather im-
portant since, in the oxide high-T, superconductors, the
antiferromagnetism in the planes might play an important
role. The Hubbard model which contains the electron-
electron interaction can be mapped to the antiferromag-
netic Heisenbcr§ model in the strong repulsion limit at the
half-filled case.* Anderson and co-workers> proposed that
the resonating-valence-bond (RVB) state to be a basic in-
gredient of the new mechanism of superconductivity. This
RVB state is based on various combinations of singlet
pairing of spins and may be regarded as a spin liquid.

There is no exact result on the ground state of the two-
dimensional Heisenberg antiferromagnet. However,
based on numerical calculations and the spin-wave the-
ory,® there is a tendency among condensed-matter physi-
cists to believe in the existence of long-range order at
T=0. If this is the case, the ground state is certainly not
of a RVB type and one perhaps requires more special in-
gredients (e.g., next-nearest coupling, spin-Peierls phase)
to have the RVB state if it exists at all.

One of the numerical calculations which is often refer-
enced as a support of long-range order is that of Qitmaa
and Betts” who diagonalize the Hamiltonian on a small
lattice. On the other hand, there is more recent work® on
related antiferromagnetic models such as the XY and the
Heisenberg model on the triangular lattice which seem to
show the absence of long-range order. Although these re-
sults do not directly imply the absence of long-range order
in the Heisenberg model it is, however, rather natural to
consider the absence of the long-range order in the
Heisenberg model, if the XY model does not have any.
The Heisenberg model has more spin degree of freedom
which acts toward destroying long-range order.

In order to shed light on this confusing situation, we
reexamine the numerical results of Oitmaa and Betts and
also consider a special type of the RVB state as a trial
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wave function for the ground state. The Hamiltonian of
the Heisenberg antiferromagnet is

H=JY s@W)s(), 1)
(i,j)

where J is a coupling constant which is set to unity for
convenience and s (i) is the usual spin- 3 operator at site i.
The summation is taken over the all nearest-neighbor sites
of the square lattice. We take a special type of the RVB
state as a trial wave function for the ground state. Con-
sider a dimer covering of a square lattice [see Figs. 1(a)
and 1(b) for examples]. For each dimer, associate a sing-
let coupling of the spins whose wave function is written as
|t1>—1]11) with obvious notation. Now each dimer cov-
ering corresponds to a wave function, say y,, which is a
product of these singlets. The trial wave function is a
linear combination of all the wave functions of the dimer
coverings, namely ¥ =3 .c,v,. We choose all the co-
efficients to be unity.>!? A rationale for this choice is dis-
cussed later. The trial energy is given by

Erve=(¥|H|¥)/(¥|¥). )

This gives an upper bound on the true ground-state energy
and if it is close to the ground-state energy one can expect
that the trial wave function has a large overlap with the
true ground-state wave function. The integral (¥ |¥) is a
sum of terms involving {wg| w,) for various e and B. This
overlap integral is graphically represented by a covering
of the square lattice by loops and (double) dimers [see
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FIG. 1. (a) and (b) Examples of dimer covering. (c) The
overlap of dimer coverings (a) and (b).
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Fig. 1(c)]. It is possible to have a sign convention such
that all the overlap integrals are positive. Divide the
square lattice into two ordinate lattices 4 and B. A bond
always connects a site on sublattice A and a site on sublat-
tice B. Give a bond +1 for spin up for the site in 4 and
spin down for the site in B. Consequently, the bond gets
—1 in the other case where the spin is down for the site in
A and the spin is up for the site in B. A loop has L sites in
A and L sites in B. If spins on A are up, then the spin on B
are down. In this case all the bonds have +1 and the
overall sign is positive. The other case is that the spins on
A are down and the spins on B are up. We then have —1
for all the bonds and get (—1)2. =1 for the overall sign.
Therefore, all the loops get the same sign. Each loop or
dimer carries a weight of 2 since there is two ways of as-
signing spins antiferromagnetically on the sites on a loop
or a dimer. On the other hand, the integral can be written
as a sum over the coverings I'. In a covering I, a dimer
carries a weight of 2 as described above. However, a loop
carries a weight 4 instead of 2. There is an extra multipli-
cative factor of 2 due to two ways to have a loop with as-
signed spin directions. In a loop, color every other bond
red, and all the others black. One way to have the loop is
that the red bonds comes from a bra state and the black
bonds from a ket state. Another way is obviously obtained
by exchanging the red and the black bonds. Note that a
dimer does not have this extra factor of 2. Thus we have

(v|wy=Yx"P, 3)
r

where x=2, y=4, P, is the number of dimers, and P is
the number of loops in a covering I'. This expression can
be thought as a partition function of a statistical mechani-
cal model, and related statistical models for different
values of x and y are discussed by Sutherland.!' The en-
ergy integral (¥ | H|¥) is also written in terms of a sum-
mation over the covering by examining how the Hamil-
tonian acts on those dimers and loops. The result is given
by Sutherland’®

(v|H|w)=Xe)xy?, 4)
r

where (') is the singlet energy &singier (= — 7 ) times the
number of bonds in the loops and the dimers plus the
number of additional bonds which are not on a loop, yet
connect two sites of a loop. An example of this additional
bond is in Fig. 1(c) as the middle broken line of the rec-
tangle. If one chooses a single state, say y,, as a trial wave
function, there is only a single covering with (double) di-
mers. Then we have the trial energy per spin E gimer
-asingchZ- — 3 since each dimer associates with two
sites. This is a rather poor trail energy since the Néel
state without quantum correction already gives
Eneée™ — +. As seen from (4) we can expect that the
mixture of different dimer coverings will lower the energy
since the number of bonds and sites are equal in a loop
and also we have additional bonds connecting two sites in
a loop which contribute to the energy. The above observa-
tion rationalizes our choice of the coefficients of the linear
combinations (¢, =1 for all ) which maximizes the over-
lap. It is, however, far from obvious how this simple
choice of the coefficients is close to optimal. Note that we
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FIG. 2. A 4x4 square lattice. Note that this lattice is actual-
ly wrapped around a torus due to the periodic boundary condi-
tion.

also must take into account the denominator of (2) for the
energy estimate.

We numerically determined the energy and the correla-
tion function of ¥gryp on a 4x4 lattice with the periodic
boundary condition. Denote the correlation function by

G, =4¥|s5,(0)s,(r) | W)W | ). (5)

There are five different values of the correlation function
Gga, Gb, G., Gg, and G, on the 4x4 lattice. The corre-
sponding sites are marked in Fig. 2. The RVB trial state
gives G, = —0.446, G, =G.=0.198, Gy = —0.125, and
G.=0.0937. These are plotted in Fig. 2 together with the
result of the numerical diagonalization of the Hamiltoni-
an which gives G,=—0.0468, G,=G.=0.285, G4
= —(.270, and G, =0.240.7 The energy per site E and
the staggered magnetization M =3, (—1)"(s,(0)s,(r))
are given by

E=3G,, 6)
and
M=—G,+G,+G.[2—Gy+G./4. 7

First note that the RVB trial energy is Eryp= —0.669
which is only 4.7% different from the exact energy
Ecxact™ —0.702. The Néel state without quantum fluc-
tuation would give Engg= —0.5. Thus we see that the
RVB state may be a much better starting choice of a vari-
ational wave function than the Néel state.

Another interesting feature is that G, equals G, in both
data. This can be understood as a finite-size effect. Note
that a site of type b has two sites of type a and two sites of
type d at nearest neighbors, while a site of type c also has
two sites of type a and two sites of type d at nearest neigh-
bors due to the periodic boundary condition (see Fig. 1).
For a larger lattice we would certainly expect to have
Gy > G.. Therefore G. is enhanced by the finite-size
effect. This enhancement is expected for all the correla-
tion functions. For example, G, must be much enhanced



RAPID COMMUNICATIONS

3814
0.5
*
o
0.41
0.31 . . . ¢ exact
- g RvVB
@ 021 o o
o
0.11 o
0.0 T T T T T
a b c d e

site

FIG. 3. Staggered correlations.

since there are four equivalent lines connecting 0 and e
(note that the lattice is actually wrapped around a torus
due to the periodic boundary condition).

Oitmaa and Betts claimed that the ground state has
nonzero staggered magnetization in the infinite lattice
based on the extrapolation of the finite-size data. As
shown explicitly above, however, the finite-size effect is
rather prominent even in their largest lattice of 4x4.
Therefore we should not draw a definitive conclusion in
regard to the existence of long-range order.

In conclusion, we calculated the energy and the correla-
tion functions of the trial RVB state on a small lattice.
The comparison to the exact energy shows that the ground
state may have a large overlap with the RVB state. Prob-
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ably one can improve the trial wave function by introduc-
ing singlet pairings between non-nearest-neighbor antifer-
romagnetic sites variationally. A sign of this may be seen
in Fig. 3 where the correlation function at 4 of the exact
diagonalization is rather large compared with that of the
RVB state. We also exhibited the enhancement of the
staggered magnetization in the finite lattice and warned
that the previous prediction of the existence of long-range
order cannot be accepted as it stands. We instead antici-
pate a possibility that the ground state of the antiferro-
magnetic Heisenberg model on the square lattice is of a
resonating-valence-bond type. The correlation function of
the RVB state treated in this paper decays exponentially
with respect to the distance.'> However, even in one di-
mension where the quantum fluctuation is expected to be
larger than two dimension, the Heisenberg antiferromag-
net has a power-law decaying correlation function. There-
fore the true ground state in two dimension should have
significant amount of singlet pairings between distant
spins which probably gives the long-range power-law
correlation.
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