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The domain-growth problem in the kinetics of nrst-order phase transitions is studied by a com-

putationally e5cient discrete space-time model. The pair correlation function and the charac-
teristic length scale are computed to a time regime which is about an order of magnitude later
than in existing studies of the Langevin model. %e Snd that the dynamical scaling function for
the pair correlation function is identical to that found in studies of the Langevin model, and that
the characteristic length scale satis5es the modi5ed Lifshitz-Slyozov law of domain growth pro-
posed for the kinetic Ising model. This indicates that these two models belong to the same
dynamical universal class. No evidence is found to support the recent predictions of a t ' growth
law.

The purpose of this Rapid Communication is to exam-
ine the a~vplicability of a recent novel approach by Oono
and Puri to the study of domain growth in problems in-
volving the kinetics of firstwrder phase transitions. This
"cellMynamics" approach in principle provides an
efficient algorithm for the numerical simulation of late-
stage growth in systems such as binary alloys, but in our
opinion has not yet been carried out for sufficiently long
times necessary to establish the asymptotic behavior of
their model. This is particularly worthwhile to establish,
given the fact that a disagreement exists concerning the
asymptotic growth law of the characteristic length scale
[e.g., the linear domain size R(t) with time r). On the
one hand, it has been suggested by Huse2 that the asymp-
totic growth for the kinetic Ising model is described by a
modified Lifshitz-Slyozov law R(r ) Ar 'i3+8 (where A
and 8 are related to bulk and surface diff'usion processes,
respectively). It would appear that the argument of Ref.
2 would lead to a similar prediction for the Langevin mod-
el. On the other hand, a study involving renormalization-
group ideas (together with numerical simulations) pre-
dicted 3 a power law R -r", with n 4 for the continuum
Langevin model in two dimensions and claimed that these
two models belonged to difFerent dynamic universality
classes.

Recent extensive Monte Carlo simulations ' of the ki-
netic Ising model with a conserved order parameter show
that the domain-growth law is in excellent agreement with
the modified Lifshitz-Slyozov law. s Similar studies have
been carried out quite recently for the continuum model
by numerically integrating the Lagevin equation.
These studies also conclude that the asymptotic growth
law is given by n 3 at late times, rather than the value
n —,

' predicted in the renormalization-group-type study.
Clearly, as noted earlier, more work is needed to utilize
the full potential of the cell-dynamics method, which by
virtue of its efficiency might be able to clarify some of the
important issues in the field of pattern formation.

In this paper we report some of the results of a numeri-
cal simulation of spinodal decomposition for the two-

dimensional Langevin model, using the cell dynamics ap-
proach of Oono and Puri. ' We consider a large lattice
(256&256, which is at least four'7s and in some cases3
64 times the area of the lattice used by other authors) and
carried out calculations for the pair correlation function
for very late times. (This function was not computed by
Oono and Puri. ) Our work surpasses the original studies
of Oono and Puri by about two orders of magnitude and
obtains information about growth law and scaling behav-
ior at times longer than considered in any other numerical
study of continuum models, such as the Langevin or cell
dynamics models. For example, the maximum value of
the characteristic length in our study is about twice that
calculated in recent simulations ' of the Langevin model.
This would imply that we are at a time which is at least 8
times larger than in the previous studies. Our main con-
clusions are the following: We find that dynamical scaling
is satisfied for the pair correlation function in this model
and that our data for the characteristic length scale is con-
sistent with the modified Lifshitz-Slyozov law. No evi-
dence of a r 'i4 growth law is found, which strongly sug-
gests that the continuum Langevin (with a scalar order
parameter) and kinetic Ising models belong to the same
dynamical universal class.

In the Oono-Puri scheme, the original Langevin equa-
tion is replaced by the following equation:

~here

F[y;.(r) j -f[y;(r) j+D[«y;(r)» —y;(t)l, (2)

f(y) A tanhy, D is a positive constant proportional to
the phenomenological diff'usion constant, and «yr» —y is
essentiaBy the isotropized discrete Laplacian V~@. We
should note that we have considered for simplicity the
zero-noise case, since there is by now considerable evi-
dence to support the argument that the asymptotic
domain growth law is independent of the noise. s Follow-
ing Oono and Puri, we use the following definition of «y»
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on the square lattice

((y) & —,
' g yr(nearest-neighbor cells)

+ —,', gy(next-nearest-neighbor cells) .

The motivation for replacing the Langevin equation by
the cell dynamics in Eq. (1) is given in Ref. 1. In our nu-
merical study, we have considered a square lattice of
256X256 points, with the order parameter lir; given at
each of the lattice points. We have chosen A 1.3 and
D 0.5, following Oono and Puri. Our initial distribution
of y's is speci6ed by a random, uniform distribution in the
range ( —0.125, 0.125). To average over the initial distri-
bution, we solved the equations a large number of times
(70 "runs"). We have found that 70 runs is sufficient to
yield accurate results, e.g., we estimate our error is within
1%-2%. We also made several long runs to very long
times. The error bars associated with the quantities calcu-
lated in these runs are about 4%. Time is measured in
number of updates per site. In this paper we have concen-
trated on the calculation of the correlation function
g(r, t), since it has been shown2 that this yields a nu-
merically accurate calculation of the characteristic length
scale. The correlation function g(r, t) was calculated
from an average of g(r, t) for r parallel to the lattice axes
and lattice diagonals, respectively. The average charac-
teristic length scale Rs(t) is defined as the smallest value
of r for which g(r, t) 0 at time t. The length Rs(t) was
calculated by fitting the four points in g(r, t) closest to its
6rst zero (of which two fall on each side of its first zero) to
a cubic polynomial of r and defining Rs(t) as the value of
r where this fitted function vanishes. Our results for
Rs(t) are shown in Figs. 1 and 2. In Fi . 1 we plot Rs(t)
vs t'/ and in Fig. 2 we plot it against t' . lt is clear that
Rs A+Bt '/3 is a much better representation of the data
than either a t'/ growths or a crossover from an early
time t ' "behavior to a late time t ' behavior. ' The cross-
over time was estimated to be about 2000 updates/site for
the zero noise case in the original study' which was based
on the first moment of the structure function. However,
our data seem to obey the t '/3 law given above at a much
earlier time and we do not observe any crossover behavior.
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FIG. 2. Plot of R vs t ' . The straight line is the attempted
fit to the data.
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Huse predicted that this quantity behaves at long times as

n, tt(t) - —,
' [1 —Ro/R, (t)+0[Rs '(t)B, (5)

where the length Ro arises from surface diffusion effects.
In Fig. 3 we plot gn(t) vs I/Rs(t) where we calculated
n, tt(t) as

n, tt(t ) -log2[Rs(2t )/Rs(t )l . (6)

As can be seen n,g(t) approaches —,
' as I/Rs 0, as ex-

pected in Eq. (5).
We also addressed the validity and extent of the

dynamical scaling ansatz, which states that the pair corre-
lation function satis6es a scaling relation g (r, t )

In order to analyze the data in an equivalent yet trans-
parent manner, we define an effective exponent following
Huse as

"eff"'
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FIG. I. Plot of our data for Rg vs t '/ . The straight line is the
best fit to the data.

FIG. 3. Eff'ective exponent n,s(t) [defined in Eq. (6)l vs

1/Rs(t). The open squares are computed from the data of
Rs(t) averaged over 70 runs. The solid squares belong to the
late time data of Rs(t ) averaged over 5 runs.
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f[r/Rs(t)l for t greater than some initial "transient"
time to. In Fig. 4 we show the results by plotting g(r, t ) vs

r/Rs(t) for various values of t. It seems clear that the
system is in the scaling regime for t ~ 2000, whereas, for
earlier times systematic deviations from scaling are seen.
It is interesting to note that Oono and Puri claimed to see
a growth law with exponent —,

' in this regime where actu-
ally the system is yet to enter the scaling regime. It is im-
portant to note that the characteristic length of Oono and
Puri, defined as a moment of the structure factor, in gen-
eral is a different physical length scale than our Rs. Thus,
it is quite possible that before one enters the scaling re-
gime the time dependence of these two lengths is different.

Perhaps the most important point beyond our result for
the growth law is that the scaled form of g(r, t) is identi
cal to the scaling function calculated in recent simula-
tions7 s of the Langevin equation for various values of the
noise (including the zero noise considered here), at least
for r/Re~ 3.5, over which one usually has numerically
accurate data. It is of course also important to note that
none of these studies can reveal whether or not scaling
holds for large distances, at the largest times studied.

We conclude that dynamical scaling is obeyed in the
model considered here at sufficiently late times. Our re-
sults strongly favor a modified Lifshitz-Slyozov growth
law and imply that the Langevin model for scalar order
parameter and spin-exchange kinetic Ising model belong
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FIG. 4. Correlation function g(r, t) at various times t vs
scaled distance r/Rs(t) System. atic deviations from scaling are
observed at early times (t & 2000).

to the same dynamic universality class. As well, cell dy-
namics seems to provide a very efficient approach to prob-
lems such as studied here.
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