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The line shape for high-momentum-transfer neutron scattering experiments on quantum Auids

is derived by a novel perturbative method which includes the effect of the spatial correlations in

the ground state. The 6nal-state broadening of the impulse approximation is shown to be non-

Lorentzian, to have a zero second moment, and to be signi6cant for all feasible experiments.
There are important implications for the goal of measuring momentum distributions. Numerical
results are presented for ~He.

Momentum distributions are fundamental to our under-
standing of quantum fluids and solids, nuclei, and even
elementary particles. There have been many calculations
of the momentum distribution nk by a wide variety of
many-bod methods. ' There is also a long history of ex-
periments which attempt to measure nk by "deep inelas-
tic" scattering at momentum transfers Q, which are high
relative to collective behavior. Such experiments presume
that the impulse approximation (IA) can be applied at
sufficiently high Q. The IA would predict a simple rela-
tion between the scattering law S(Q, ro) and nk Howe. v-

er, in helium fluids and in nuclei the potentials are steeply
repulsive at short distances resulting in significant
broadening of the IA due to final-state interactions.
Hohenberg and Platzman3 predicted a Lorentzian
broadening of the IA with width proportional to the
scattering rate for a high-Q particle. Then, Gersch, and
co-workers predicted that spatial correlations, as given
by the radial distribution function g(r), result in a non-
Lorentzian broadening. Nevertheless, the subsequent
theories either ignored g(r) or concluded that g(r) was
not important, and they usually predicted quasi-
Lorentzian broademng. Experimentalists have also failed
to apply the results of Gersch er al. to their data analysis.
A correct theory for final-state effects is critical to the re-
liable extraction of nh from experiment, and it is especial-
ly urgent in view of the new generation of momentum dis-
tribution experiments on quantum fluids at pulsed neutron
sources and on nuclei at electron accelerators.

The goal of this Rapid Communication is to clarify the
theory of deep inelastic neutron scattering (DINS) exper-
iments by providing the first perturbative derivation of the
final-state broadening which includes the spatial correla-
tions. I introduce dynamical "hard-core perturbation
theory" (HCPT) methods which are generally applicable
to strongly correlated systems. I show that predictions of
quasi-Lorentzian broadening can result from the improper
neglect of vertex terms. Relatively simple results for the
broadening are derived which depend on the He-He phase
shifts and g(r).

The broadening of the IA for S(Q, ro) at high Q can
take the form

QS(Q, m) =F(Y)- dY'~„(Y—Y')F, (Y') . (1)

Here, Y=—M(m —hQ /2M)/hQ is the scaling variable7
and F1A(Y) is the IA prediction for QS(Q, co). Silver and
Reiter suggested a quasiclassical model for the broaden-
ing, R~q(Y). Before a neutron strikes a He atom, its ini-
tial position is in the attractive part of the He-He poten-
tial due to its neighbors. After a neutron imparts a high
momentum Q, the atom recoils on almost a straight line
for some distance until it is scattered by the steeply repul-
sive core of the potential on a neighboring atom. Rpg(Y)
is the Fourier transform of the probability for no core col-
lisions as a function of recoil distance. His(Y) should
have no large Y components (i.e., no Lorentzian wings)
due to the absence of collisions at short distances.

In a fully quantum theory, the spatial correlations of
the strongly interacting ground state are critical to the
calculation of

S(Q, ro) - (Sg(ro)p-g(0))
xN

at high Q for He, where

Sg( )— dr ialt —fi iHl/h " (0) iHl/h-e e pg e

Here, the angular brackets denote the ground-state expec-
tation value, pg(0) gk rik+gak, and N is the number of
particles. A naive expansion of Eq. (3) results in an
infinite number of terms which diverge as inverse powers
of r0 —AQ /2M+i' This seri.es is analogous to the diver-
gences as inverse powers of ru+ie of the perturbative ex-
pansion of the Kubo formula for the frequency-dependent
conductivity in a metal cr(co). The Boltzmann equation
result for the resistivity may be derived from the Kubo
formula by using Liouville perturbation theory and a di-
agonal projection "superoperator" to resum all the singu-
lar terms. In the following, i shoe& that an ana1ogous
procedure can be adopted for S(Q,m), except that I need
an off'-diagonal projection superoperator for QWO.

An operator 0 is a sum of products of scalars with
creation and annihilation operators. A "superoperator" S
acts on an operator on its right to create a ne~ operator
0' according to SO O'. For example, the Liouville su-
peroperator L is defined by LO= —[H,OI. The Liouville
perturbative expansion of Sg(ro), Eq. (3), is given by the
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where Sk (nl) are scalar ctwmponents of Sg(ro). 5 must
also satisfy AA 5 and hBa+gtsk Bk+gnk. The explicit
constrUct106 ls

60=- ZrkygBa&[(aa+gBa), O])
k Nk

—?lk+ g

Here [3~8] is a commutator and nk (ttkBk). Defining
6'= 1

—6, straightforward manipulation yields

U'g(e) - [t'h, pg(0)+3 TAMg(nl)], (7)
hnl -K+ i@

(s)T=—V+Va' P'V .
5re+is K —6-'Vh'

Note that (8) is the superoperator analogue of the Hamil-
tonian T-matrix equation. So far, this reordering of the
perturbation expansion has been exact.

Now, I assume that two-body collisions dominate the
final-state scattering at high Q, so that it is safe to make a

I

Dyson equation

Sg(~) - [iaPg(0)+ VSg(~) l, (4)
AN —EC+ EE

where E is the kinetic and V the potential part of L. The
singular terms in inverse powers of m-5 /2M+is
occur a~ (has —E+ie) ' acts on terms in S (nl) of the
form uk+~era I.define a particle-hole projection super-
operator 6 such that

ESP(nl )tsa+g~a, (S)

two-body approximation, TO= —[T2,0], such that

A

Z Ta,a,g&k, +g4, g-ttapa, (9)2 k)k2Q

in terms of the free particle Ta,a,g. Then Eqs. (6), (7),
and (9) constitute a closed system for the Sa (rn) defined
in Eq. (S) in terms of the nk and the expectation value of
the two-particle density matrix

c (kl k2 Q) =(~k, +g~k gn—krak, ) (10)

which satisfies a sum rule

g @(kl k2 Q) &bg-o+p d re'g'[g(r) —1]
k)k2

where p=N/Q. All the terms in the Dyson equation for
Sk (rn) involve a product of a Ta„a,,g and a 4(kl, k2, Q),
such that the steeply repulsive core of the potential (large
Q) is screened by the ground-state correlations. The
"small parameter" of this perturbation expansion is T2@,
and it is not Tor V.

For the DINS problem, I use the concept of "high" and
"low" momenta to select the important terms in the
Dyson equation for Sk (e) at high Q. Operationally, a
hi h momentum, capital Q, satisfies ng =0 and

p d 3r e'g'Q(r) —1]=0, whereas a low momentum, small

q, does not. To be important, a term must have a high
momentum in the arguments of T to sample the steeply
repulsive core„and it must have no high momenta in the
arguments of @ to have nonzero expectation value in the
ground state. Then,

Sk (nl) . lit+ QSk, 4n) g Ta+g a. e(k —q, k, q)
I

tn —8k-g+ck+l8 Onk ~

where T'" is the forward and backward symmetrized T
matrix. I approximate Ita 'pk 4(k-q, k', q) by its na
weighted average from the sum rule, i.e., the right-hand
side of Eq. (11). I obtain three terms on the right-hand
side of (12) corresponding to the "bare," "self-energy, "
and "vertex" terms shown in Fig. 1. The bare term alone
produces the IA. Adding the self-energy term produces
quasi-Lorentzian broademng of the IA. The vertex term
introduces the important spatial correlations, g(r ) —1, re-
sulting in a non-Lorentzian broadening.

Equation (12) is solved by Fourier transform to real
space, since Sa depends only on the kl component and the
vertex term has the form of a momentum-space convolu-
tion. I approximate the T matrix by its on-energy-shell
behavior, which can be accurately evaluated at high Q
using standard semiclassical methods. Details will be
presented elsewhere.

The final HCPT result for RFs (Y) is

p OO AX

&rg(Y) -—Re ' dxexp i dx'[Y+I (x')], (l3)~0

k+0 2xI"(x) . dbdfbg(Jx +b2),

f e ' —1+exp 2ib(b) — ~ bb

SELF-ENERGY VERTEX

FIG. 1. Diagrammatic representation of the Dyson equation,
Eq. (12), for deep inelastic neutron scattering. Here, right ar-
row denotes a particle line, left arro~ a hole line, ~iggly line a T
matrix, and & a four-point function in the ground state related
by a sum rule to g(r) —1.

I"(oo) is related by a constant to the He-He T matrix ex-
pressed in terms of the Jeffreys-Wentzel-Kramers-
Brillouin (JWKB) phase shift b(b) for impact parameter
b. The third term in Eq. (1S) is due to Bose statistics, and
it leads to the hard-sphere glory oscillations of the He-He
cross section.
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FIG. 2. Final-state broadening function, R(Y), calculated

for He at Q ~20 A ' in the present theory (HCPT) and in the
quasi-Lorentzian (LZ) approximation obtained by taking
g(r) 1.

FIG. 3. Calculations of QS(Q, m)—=F(Y) in the present
theory (HCPT), quasi-Lorentzian (LZ), and the impulse ap-
proximation (IA) for 4He at Q 20 A

Rrs(Y), Eq. (13), has been numerically evaluated for
4He at T 0 K and g 20 A ' using experimental g(r)
(Ref. 10) and V(r). ' Figure 2 compares HCPT to a
quasi-Lorentzian (LZ) obtained by taking g(r) 1 in

Eq. (14). RHcpT(Y) has a narrower full width at half
maximum (FWHM), a zero second moment, and no
high-frequency wings. Figure 3 shows calculations of
F(Y) for the HCPT, LZ, and IA models using a theoreti-
cal momentum distribution by Lam et al 'z which .has an
11.9% Bose condensate fraction. The linewidth of the
noncondensed atoms is comparable in HCPT and IA,
while it is much larger in LZ. The Bose condensate peak
is not clearly resolved in either HCPT or LZ. The high

~ Y~ components are suppressed in HCPT compared with
the IA. Calculations as a function of Q (not shown) re-
veal a logarithmic decrease with Q of the width of
Rrg(Y) The I.A is never reached for the hard-sphere
Bose liquid at high Q even though Y scaling is obtained.
Hard-sphere glory oscillations in the width of F(Y) in the
LZ theory are suppressed in HCPT for Q & 10 A

This theory captures the leading behavior at high Q of
the final-state broadening. It satisfies the f sum rule to
O(Q ), the m3 sum rule to O(Q '), and the ru (kinetic
energy) sum rule at high Q to O(Q ). '3 It shifts the
motivation for pushing DINS experiments to higher Q

from "approaching the impulse approximation" to "ap-
proaching a limit where final-state corrections are under-
stood. " The new pulsed neutron source data are at much
higher Q than reactor data, but comparison is complicated
by the effect of the instrument resolution function. Such
HCPT predictions as an absence of high ~ Y~ (Lorentzi-
an) wings around the recoil peak, negligible broadening of
the noncondensed atom distribution, an asymmetric line
shape, and significant broadening of the Bose condensate
peak appear to be confirmed by experiment, z although
careful study is needed.

HCPT provides a straightforward path for the sys-
tematic improvement of these calculations. Inclusion of
the oFwnergy-shell behavior of the T matrix would lead
to a more complex Rrs(Y) which is weighted toward the
high Y side of the recoil peak. The question of a
significant k dependence of nk 'gk e(k -q, k', q) could
be tested by a correlated basis function evaluation of 4.
Recent Green's-function Monte Carlo results' yield more
reliable nk
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